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Abstract

Recent advances in the periodic orbit theory of stochastically perturbed sys-
tems have permitted a calculation of the escape rate of a noisy chaotic map to
order 64 in the noise strength. Comparison with the usual asymptotic expansions
obtained from integrals and with a previous calculation of the electrostatic po-
tential of exactly selfsimilar fractal charge distributions, suggests to a remarkably
accurate form for the late terms in the expansion, with parameters determined inde-
pendently from the fractal repeller and the critical point of the map. Two methods
give a precise meaning to the asymptotic expansion, Borel summation and Shafer
approximants. These can then be compared to the escape rate as computed by
alternative methods.
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1 Introduction

Fractal sets and measures appear naturally as invariant sets (respectively measures) of
many nonlinear dynamical systems. Periodic orbit theory [1] provides an effective ap-
proach to computing useful properties such as averages, Lyapunov exponents and di-
mensions, particularly when the fractal corresponds to a nonattracting set (“transient
chaos”) so that direct simulation methods are harder to implement. In the case of Axiom
A dynamics, the convergence of periodic orbit (or “cycle”) expansions can be spectacular,
see Tab. 1 below.

Recent work has extended the theory to include chaotic systems perturbed by exter-
nal noise, motivated by realism (all physical systems are coupled to unknown degrees of
freedom) and smoothness (delta functions are replaced by smooth distributions). While
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several approaches have been attempted, including Feynman diagrams [2] (by analogy
with quantum perturbation theory) and smooth conjugations [3] (by analogy with clas-
sical perturbation theory), the most computationally effective method [4] has been to
represent the stochastic evolution (Fokker-Planck) operator by a matrix in a basis of
polynomials about each periodic orbit, truncated to finite size using the fact that the
elements decay exponentially, that is, the eigenfunctions are very smooth.

The previous work [4] computed the escape rate of a stochastically perturbed map to
order 8 in the noise strength. In this paper the same matrix method, extended to high
(60 digit) precision arithmetic, is used to compute the escape rate to order 64 in the noise
strength. With this number of coefficients, it is meaningful to consider the asymptotic
form of the late terms, the subject of this paper.

We will discover that to unlock the secrets of the noise expansion will require in-
sights not only from the classical theory of asymptotic expansions, but also from more
recent analytic calculations involving fractals. The relatively small number of numerical
coefficients is compensated by their high precision, allowing a reliable fit to a functional
form involving several parameters. Comparing two interpretations of the series, Borel
summation and Shafer (generalised Padé) approximation to the “exact” function, we will
find that exponentially small corrections will need to be considered by a future theory.

At this point we note a few other relevant works. Contour integration methods [5] have
obtained the asymptotic form of noise coefficients for fixed periodic orbit length, however
this does not directly determine the noise expansion of the escape rate since the latter
requires successively longer orbits for higher noise corrections. Direct integration [6] has
shown numerically that the cumulant expansion on which the cycle expansions are based
is valid for strong as well as weak noise. Stochastically perturbed dynamical systems
constitute a vast field, applying many methods other than periodic orbit theory.

Section 2 outlines the previous theory and methods needed to understand the results
and their interpretation. For space reasons, readers interested in the full details are
referred to the original works. Section 3 gives the coefficients, the logic used to fit
them to a particular functional form, and the Borel summation or Shafer approximation
needed to assign a precise meaning to the asymptotic expansion. Final discussion is given
in section 4.

2 Preliminaries

2.1 Asymptotic series

This subsection gives the background for asymptotic series. A very readable review of this
subject and its applications is given by Boyd [7]. Singular perturbations of integrals or
differential equations, such as perturbative approaches to physical problems, frequently
have power series expansions of the form

∑

m

(m+ α)!
(
x

x0

)m
Mm (1)
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where α is often an integer or half integer, and x0 (or rather its inverse) is called the
singulant, and is related to the nearest critical point of an integrand. Mm is called the
modifying factor and tends to a constant as m → ∞; it contains all the slower varying
functional behaviour.

Such series diverge for all x 6= 0, and a number of methods have been employed to
make sense of them. The simplest (albeit discontinuous) is to truncate the sum at its
smallest term. An alternative, which Boyd states as usually the most computationally
efficient, is to replace the series by its Padé approximants, more specifically the Shafer
extension [8] in which the function is written as the solution of a quadratic equation with
polynomial coefficients; the coefficients of the polynomials are found by a set of (typically
ill-conditioned) linear equations.

While Padé methods give results on average as good as any other method to this order,
an alternative, Borel summation, offers the possibility of systematic exponentially accu-
rate (“hyperasymptotic”) corrections. These methods (for example Berry and Howls [9])
start from the Borel summation method as formulated by Dingle [10], which we follow.
The latter retains the decreasing terms, then performs Borel summation on the divergent
“tail”. Borel summation is an approach in which the factorial is replaced by its integral
representation [11], and the sum and integral are interchanged. In the present context,
where the terms are all the same complex phase, this leads to a pole in the path of in-
tegration (corresponding to a “Stokes line”); the constraint that the result must be real
then indicates that the principal value of the integral should be taken. Dingle also shows
how to write the Borel summed expression in terms of a few standard functions (related
to incomplete gamma functions [11]) which he calls terminants; we use his method based
on the forward difference expansion. More details can be found in Dingle’s book [10].

For the bulk of this paper, we will need only Eq. (1), in order to fit the parameters, and
generalise it slightly. Once the form for the coefficients has been established, the Shafer
and Dingle methods will be applied, and compared with the “exact” numerical result; the
Shafer method gives marginally more accurate results. Since the coefficients are fitted,
not known exactly, and our calculation does not attempt to identify exponentially small
corrections (although this should be possible in the future), we cannot apply the more
detailed hyperasymptotic methods of Berry and Howls [9] and others (refer to Ref. [7]
for extensive references). Nevertheless, we succeed in computing a function accurate to
remarkably high values of the noise strength (perturbation parameter).

2.2 Exactly self-similar fractals

This subsection gives the background for analytic expansions pertaining to exactly self-
similar fractals, giving additional clues to the value of the parameter α in Eq. (1) and
generalisations of this equation that we might expect for the noise expansion in later sec-
tions. The first paper to introduce asymptotic methods applied to a fractal problem [12]
discussed Julia sets, but is more technically involved than the exactly selfsimilar fractals
in Refs. [13, 14]. The discussion in this section is based on Ref. [13].
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The middle-third Cantor set consists of two copies of itself scaled down by a factor
of three, thus it has dimension d = ln 2/ ln 3 according to many definitions. The uniform
measure on the set located between x = ±1/2 satisfies the relation

∫
f(x)dµ(x) =

1

2

∫ [
f
(
x− 1

3

)
+ f

(
x+ 1

3

)]
dµ(x) (2)

for arbitrary smooth function f(x), which together with the definitions of the electrostatic
potential

V (x) =
∫ dµ(x)

|x− x′| (3)

and the moments
Cn =

∫
xndµ(x) (4)

lead after several steps [13] to the following expression for the potential near the edge of
the fractal,

V (1/2 + ξ) = ξd−1
∞∑

p=0

ap cos
(

2πp

ln 3
ln ξ + φp

)
+
∞∑

p=0

bpξ
p (5)

where ap, bp and φp are known series given in terms of the Cn, which are in term given as
explicit rational numbers with a well understood asymptotic form. The ap have a large
exponential decay rate for example a0 = 1.7685, a1 = 7.04977×10−8, a2 = 6.7575×10−17.
The oscillatory terms come from the p 6= 0 solutions

d =
ln 2

ln 3
+

2πip

ln 3
(6)

of the equation 3d = 2 defining the dimension. Such “complex dimensions” of fractals
appear in a number of physical applications [15].

Even though the context is different from that of the noise corrections considered
below in Sec. 3.3, in particular the expansion for the potential has a finite radius of
convergence while that of the noise is divergent, we may conjecture that there are a
number of general principles applying to fractal expansions. In particular, the leading
order of the expansion is not a single term but a sum of terms containing a variable (here
ξ) raised to powers α+ ipβ for all integers p, where α and β are determined by properties
of the fractal:

1. The parameter α (here d − 1) is related to the dimension of the fractal.

2. The parameter β (here 2π/ ln 3) is determined by the spatial scaling factor 3 of the
fractal.

3. Due to the rapid decay of the oscillatory coefficients, accurate results may be ob-
tained by considering only one or two of these terms, ie |p| ≤ 1.

Note that in the absence of the imaginary β terms (perhaps a “nonfractal limit”), the
α in this section corresponds to the α in Eq. (1) since the latter effectively has α in the
exponent: (m+ α)! ∼ m!mα as m→∞.
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2.3 Periodic orbit theory of stochastically perturbed maps

This subsection gives a background to the numerical coefficients discussed in the main
part of the paper. The periodic orbit theory [1] allows the computation of long time
properties such as averages, Lyapunov exponents, and correlation functions from periodic
orbits. The required properties are related to the leading eigenvalue(s) of an evolution
operator (defined below), which, in the most rapidly convergent formulation, are com-
puted using determinants. The determinant is expressed as an expansion in traces, and
the traces are expressed in terms of periodic orbits.

Consider the discrete time dynamics described by

xn+1 = f(xn) + σξn (7)

where σ is the noise strength and ξn are instances of an uncorrelated random variable. In
the present case x is a real number, but higher dimensional generalisations are straight-
forward, at least in the deterministic case σ = 0. Continuous time dynamics can also
be considered; the stochastic version has been discussed in Ref. [16]. The probability
density ρ(x) evolves according to

ρn+1(y) = (L ◦ ρn)(y) =
∫
ρn(x)δσ(y − f(x))dx (8)

where L as defined above is the (discrete time Fokker-Planck) evolution operator. The
noise distribution δσ(z) is an arbitrary function of standard deviation σ; it reduces to a
Dirac delta in the deterministic case σ = 0. We compute the trace

trLn =
∫
dx0dx1 . . . dxn−1δσ(x1 − f(x0))δσ(x2 − f(x1)) . . . δσ(x0 − f(xn−1)) (9)

which is an n-dimensional integral. In the deterministic case, it reduces to a sum over
periodic points x satisfying fn(x) = x of the relevant Jacobian. The weak noise theory
is effectively a stationary phase approximation in which the leading order behaviour is
given by the deterministic limit, with corrections determined by higher derivatives of the
map f(x) evaluated at the periodic points. Exponentially small corrections are obtained
by considering local extrema, which are given by the “generalised periodic orbits” of [5],
that is, periodic orbits of the extended system (x, p) → (f(x) + p/f ′(x), p/f ′(x)); these
will be discussed later.

The characteristic determinant is

0 = det(1 − zL) = exp tr ln(1− zL) = 1− ztrL − z2

2
(trL2 − (trL)2) + . . . (10)

where we define the determinant in terms of its expansion in powers of the inverse eigen-
value z; this is consistent with our desire for the largest eigenvalue (smallest z). The
eigenvalue itself can be obtained by truncating the above equation at some zn, which
requires computing periodic orbits up to length n, and solving numerically for the first
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zero. The leading eigenvalue ν = z−1 has a direct interpretation: the quantity γ = − ln ν
is the escape rate, that is, a uniform distribution of initial conditions leads to a number
proportional to exp(−γn) remaining at long times n � 1. Other useful quantities can
be obtained by small modifications of the method, for example weighting the evolution
operator using the function for which an average is desired.

We note that because the eigenvalue is not directly expressed as an integral, rather an
expansion of integrals or the infinite dimensional limit of an integral, the Dingle theory
discussed in Sec. 2.1 does not strictly apply. In principle (although not in practice) an
infinite number of critical points are required to determine the eigenvalue.

There have been two analytical approaches to evaluating the integral for the trace
in the stochastic case, in particular Feynman diagrams [2] and smooth conjugations [3].
These give the trace explicitly in terms of the derivatives of f(x) at the periodic points,
but have been applied only up to order σ4. A more numerical approach was used in
Ref. [4] to obtain coefficients up to σ8, and it is the latter approach which is used in this
paper.

The evolution operator is expressed in an explicit polynomial basis (in contrast to the
usual situation in periodic orbit theory, where all calculations are kept independent of
the basis), defined in the vicinity of each periodic point. Truncating the representation
to a finite matrix is justified since the eigenfunction is very smooth, leading to exponen-
tial decay of the matrix elements. All quantities are expanded in powers of the small
parameter σ, and the full trace is obtained as a sum over periodic points, to each order
in σ. Finally the leading eigenvalue is obtained as a formal power series

ν(σ) =
∞∑

m=0

ν2mσ
2m (11)

where odd powers vanish by the symmetry of the Gaussian noise distribution used. Fur-
ther details of the calculation are given in Ref. [4].

3 Results

3.1 Numerical details

In the previous paper [4] the results were limited to σ8 since high precision is required (the
cumulant expansion (10) involves many cancellations), and commercial high precision
mathematical packages required too much memory and time. The results of this paper
were achieved by code written in C, involving 60 digits precision, a maximum matrix
size of 200 (the largest matrices are required for the shortest orbits) and periodic points
up to n = 10. The matrix size for each orbit length and the maximum length were
determined adaptively; the precision was estimated conservatively using the results of
shorter calculations. Here, as in previous calculations [2, 3, 4], the noise is Gaussian, and

6



0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

x

f (x)

Figure 1: The map (12) appearing in (7).

n ν0 ν2 ν4 ν64

1 0.307735902965 0.421227543767 2.15906608736 1.397115735 × 1053

2 0.371401067274 1.421640613096 32.97365355137 5.001186917 × 1075

3 0.371109569907 1.435552381965 36.32563272348 2.001067045 × 1080

4 0.371110995255 1.435811262322 36.35837768356 2.651047356 × 1080

5 0.371110995235 1.435811248197 36.35837123374 2.660918038 × 1080

6 0.371110995235 1.435811248197 36.35837123384 2.660918375 × 1080

Table 1: The noise coefficients of the eigenvalue, as defined in Eq. (11), calculated using
periodic orbits up to length n.

the map appearing in (7) is

f(x) = 20

[
1

16
−
(

1

2
− x

)4
]

(12)

This map is Axiom A with complete binary symbolic dynamics, so the rate of con-
vergence of the cycle expansion with orbit length is super-exponential, both for ν0 (the
deterministic case) and the noise corrections. Examples of this convergence (noted in the
previous studies) are given in Tab. 1. The results for orbit length n = 10, expressed as
the logarithms of the (always positive) ν2m are given in Tab. 2.
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2m lnν2m 2m ln ν2m 2m ln ν2m

0 -0.99125408258905 22 49.59463191979195 44 117.84381872333873
2 0.36173001922727 24 55.44039700516978 46 124.39362242853359
4 3.59342447275687 26 61.37352232130161 48 130.98895554172700
6 7.63842801043723 28 67.38731548909859 50 137.62787534158868
8 12.15107844830820 30 73.47605210071374 52 144.30858981612283

10 16.97610609587220 32 79.63476897706259 54 151.02944299196041
12 22.03308958456985 34 85.85911504876676 56 157.78889107050155
14 27.27470590323921 36 92.14524039569617 58 164.58550964455421
16 32.67034394383728 38 98.48971155485100 60 171.41796376702617
18 38.19872657460701 40 104.88944552922095 62 178.28500846576056
20 43.84418495656653 42 111.34165748821478 64 185.18547875658766

Table 2: The natural logarithm of the noise coefficients of the eigenvalue, as defined in
Eq. (11). All ν2m are positive.

3.2 Fitting ν2m to the form (1)

We immediately note that, while the coefficients ν2m converge very rapidly with orbit
length n, they diverge with order m. This is not surprising since the noise expansion of
the eigenvalue is effectively a stationary phase expansion of an integral, albeit with an
infinite number of critical points. See Secs. 2.1, 2.3. A little curve fitting leads to the
very approximate form

ν(σ) =
∑

ν2mσ
2m ≈

∑
m!32mσ2m (13)

that is, α = 0 and σ0 = 32−1/2 by comparison with (1). We would like to know the form
of the coefficients more precisely than this, and in particular predict them from other
information about the dynamics.

From the general theory of asymptotic expansions (Sec. 2.1) the singulant σ0 is some-
how related to the distance between the critical point we are expanding around (periodic
orbits on the fractal repeller) and the nearest critical point. In the present situation,
if we consider the critical point of the original map (12) at xc = 1/2, and ask for the
probability for returning to the repeller, of which the most accessible point is xr = 1, to
first approximation this is

exp
[
−(xr − f(xc))

2/2σ2
]

= exp
[
−1/32σ2

]
(14)

which indeed gives the 32. The reason that the singulant σ0 should be related to the
coefficient of an exponential is that this exponentially small quantity (for small σ), is,
up to slower varying factors, the magnitude of the smallest term in the expansion, and
hence the order at which exponentially small hyperasymptotic terms might contribute.

The above expression assumes that the transition from the critical point x = 1/2
to the repeller x = 1 takes place in a single step. Actually, for sufficiently small noise,

8



10 15 20 25 30

0.96

0.98

1

1.02

1.04

m

Mm
M32

α = −1.4

α = −1.2

Figure 2: Attempt to fit the ν2m to a single asymptotic series of the canonical form. See
Eq. (15). For none of the α do the coefficients asymptote to a convincing horizontal line.

longer trajectories may be more likely. The probability is of the form exp[−∑(xn+1 −
f(xn))2/2σ2] which can be maximised over all trajectories starting at the critical point
x = 1/2 and reaching the repeller in the infinite time limit. The result is
σ0 = 32.31850341240166−1/2 for the trajectory {0.5, 1.00244613635157,−0.00024587488150,
−2.460023246×10−5 , −2.46015082×10−6, −2.4601636×10−7 ,−2.460165×10−8 , . . . , 0}.
The approach to zero is geometric with ratio f ′(0)−1 = 1/10.

Another interpretation of this orbit is as the infinite length limit of a sequence of
generalised periodic orbits (Sec. 2.3), responsible for exponentially small corrections to
the traces; see later discussion in Sec. 3.4. For the rest of this paper, we assume that the
32 in Eq. (13) is replaced by the adjusted value σ−2

0 = 32.3185 . . ..
The only remaining parameter to be fitted then seems to be the α appearing in (1).

With this in mind, we plot the quantity

Mm =
ν2mσ2m

0

(m+ α)!
(15)

normalised to the highest order M32 for various α in Fig. 2.
As Fig. 2 shows, the Mm do not approach a constant for any value of α. Even for the

α ≈ −1.3 at which the curve is roughly horizontal for the largest m, the curvature (as
measured by the second derivative) is still large. There appears to be some oscillatory
behaviour evident.
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q −∞ 0 1 2 ∞
Dq 0.5695 0.4007 0.3872 0.3757 0.2957

Table 3: Renyi dimensions of the fractal repeller, computed using periodic orbit theory.

3.3 Oscillations from complex exponents

At this point we recall the discussion of Sec. 2.2, in particular the three observations
relating to fractal expansions at the end of that section. If we can identify α in some way
with the dimension of the fractal (at least in the Cantor set example), the oscillations
noted at the end of the previous section appear naturally from a sum (over p) of terms
of the form (m+ α + ipβ)! for integer p. Since the real part of α + ipβ is a constant α,
all of these terms are of the same order in the large m limit.

We return later to first observation in Sec. 2.2, that is, the question of whether α is
related to one of the fractal repeller’s many dimensions, and leave it as a free parameter
for the present. The second observation suggests that we look at the spatial scaling
factor of the fractal repeller. The orbit discussed in the previous section reaches the
fractal repeller at x = 0; at this point the repeller is selfsimilar with a scaling factor
of f ′(0) = 10; the same scaling factor that appears in the critical orbit of the previous
section. The second observation of Sec. 2.2 then suggests β = 2π/ ln 10, which matches
the oscillations well (see below). The third observation suggests that only small p may
lead to sizable contributions, hence we will ignore |p| ≥ 2 and only include the real α
and a single pair of complex conjugates α ± iβ.

We thus fit the data, as represented by the Mm of Eq. (15) to the function

c0 + c1
(m+ α+ 2πi/ ln 10)!

(m+ α)!
+ c∗1

(m+ α− 2πi/ ln 10)!

(m+ α)!
(16)

where the ∗ indicates complex conjugation, c0 is a real fit parameter and c1 is a complex
fit parameter. Note that dividing through by (m + α)! in Eq. (15) permits a linear
(hence more reliable) fit for c0 and c1. This fit is made for a range of values of α, and
for mmin < m < 32 with various mmin. The error (in the least squares sense) χ2 is
given in Fig. 3, which shows an improvement limited by the precision of the results (14
decimal places in Tab. 2). From the optimal fit, we have α = −1.290, corresponding to
c0 = 0.045514 and c1 = 0.000958 + 0.000185i. This fit is shown in Fig. 4.

We now return to the question of whether α is related to a dimension of the fractal
repeller. The Renyi generalised dimensions Dq of the repeller are straightforward to
compute using the usual periodic orbit theory of deterministic systems [1]. The results
are given in Tab. 3, but do not seem to exactly match our fitted value α = −1.290. The
closest is D∞ (or rather −1−D∞), however this corresponds to the most stable periodic
orbit which is the fixed point at x ≈ 0.871, not the (most unstable) point x = 0 used in
the above calculation of the complex exponents.
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Figure 3: Effectiveness of the fit to the Mm in Eq. (15) using the function in Eq. (16).
Note the dramatic spike at α = −1.290.
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Figure 4: Optimal fit to the Mm in Eq. (15) (dots) using the function in Eq. (16) (curve),
with α = −1.290, c0 = 0.045514 and c1 = 0.000958 + 0.000185i. For most of the range
of m the difference between the two is much smaller than the scale visible on this plot.
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3.4 Borel summation

To conclude the analysis of the results, we apply the Shafer (generalised Padé) and Dingle
(Borel summation) methods discussed briefly in Sec. 2.1 and compare the results with the
exact eigenvalue ν(σ) computed using the discretized eigenfunction method of Ref. [2]
which is accurate to about six digits. Note that the full power of the Borel summation
applied to the full computed series up to order σ64 is not (currently) testable, since this is
the smallest term when it (and hence the expected errors) is of order (2e)−64/2 ≈ 10−24.
Instead, we will consider quite large values of σ, where the smallest term is very close to
the beginning of the series.

The only slight extension of the Dingle approach discussed in Sec. 2.1 concerns the
modifying factor Mm. Since the asymptotic series now has three components, with
p = 0,±1, it is not clear whether each component should have a modifying factor.
The point of view taken here is that a single modifying factor Mm is used for all three
components. This choice is pragmatic; while it is probably more natural to modify each
series separately, there is no method of extracting this information from the numerical
data.

The results of the Borel summation are shown in Fig. 5. The bunch of lower solid
curves are the Borel summed series, using five forward differences (see Sec. 2.1) and from
two to four terms of the series before truncation. Note that the Borel summed function
is consistent for relatively large σ, despite the obvious approximations made in approx-
imating the series by so few terms. The dashed line is the result of a Shafer (quadratic
Padé) approximation to the first 13 nonzero coefficients, as discussed in Sec. 2.1; the
exact number of coefficients fitted makes little difference. These two interpretations of
the power series are quite consistent. The dotted line is the true eigenvalue, computed
as in Ref. [2]. It is extremely close to the Borel summed series for σ < 0.08, after which
it is significantly higher.

The difference may be modelled by a function which is exponentially small for σ →
0. The most obvious candidate (but one of many) is C exp(−σ2

0/σ
2), which is roughly

the magnitude of the smallest term, and is also the first expected “hyperasymptotic”
correction. The remaining solid curve in Fig. 5 gives one of the Borel summed curves,
plus this function with C = 0.09. The dot-dashed curve gives the equivalent result for
the Shafer approximant. The result is a fit valid for roughly σ < 0.16, indicating that
the exponential part of the correction has the right form.

It is reasonable to identify this exponentially small correction as the contribution of
the generalised periodic orbit in Sec. 3.2. However, there is actually a fractal set of such
generalised periodic orbits, starting from the critical point of the map and limiting to
each orbit on the repeller. The orbit given in Sec. 3.2 is the most probable case, but
other orbits have exponents which are arbitrarily close. The nontrivial task of summing
these contributions is left to a future paper.

Incidentally, there exist rigorous results pertaining to Borel summation of asymptotic
series [17]. The observation of hyperasymptotic corrections implies the presence of singu-
larities in the complex noise domain, however it is difficult to understand what physical
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Figure 5: Borel summation of the series (lower solid curves) and Shafer approximant
(dashed curve) together with an independent numerical calculation of the eigenvalue
(dotted line). When an exponentially small function 0.09 exp(−σ2

0/σ
2) is added to one of

the former, the result is the upper solid line, and the dot/dash line respectively. These
are much closer fits for larger values of the noise. Note that at the largest values of
σ shown here, the asymptotic series is very rapidly divergent, with the minimum term
given by 1.44σ2 ≈ 0.09.
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consequences this might have.

4 Conclusion

Periodic orbit theory of stochastic systems as presented in Ref. [4] has been used to com-
pute the escape rate of a stochastically perturbed map to order 64 in the noise strength
with sufficient precision to permit the theory of asymptotic expansions to be applied.
Similar to a previous calculation of an exactly selfsimilar fractal, complex exponents
appear, and the parameters in the expansion were found by a combination of analytic
arguments and curve fitting. Although connections between this and the previous calcu-
lation were at a phenomenological level, the precise fit gives strong numerical evidence
that the form of the expansion is correct to this order. Finally the Shafer approxima-
tion and Borel summation were performed on the series and compared with the known
escape rate function, giving evidence for hyperasymptotic corrections of the same order
as predicted by the theory of asymptotic expansions and independently by nonleading
stationary points of the action.

In the future, the analytic connections proposed between the singulant and the prob-
ability of returning to the repeller from the critical point, and between the imaginary
exponent and the spatial scaling factor of the repeller, should be verified by calculations
on a variety of different systems. The remaining tentative connection, between the real
exponent α and the D∞ dimension of the repeller would then either be verified or con-
tradicted. The latter possibility is the most intriguing, since in that case α could define
a new “noise dimension”.
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