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Abstract

The nonlinear climbing sine map is a nonhyperbolic dynamical system exhibiting
both normal and anomalous diffusion under variation of a control parameter. We
show that on a suitable coarse scale this map generates an oscillating parameter-
dependent diffusion coefficient, similarly to hyperbolic maps, whose asymptotic
functional form can be understood in terms of simple random walk approximations.
On finer scales we find fractal hierarchies of normal and anomalous diffusive regions
as functions of the control parameter. By using a Green-Kubo formula for diffusion
the origin of these different regions is systematically traced back to strong dynami-
cal correlations. Starting from the equations of motion of the map these correlations
are formulated in terms of fractal generalized Takagi functions obeying generalized
de Rham-type functional recursion relations. We finally analyze the measure of the
normal and anomalous diffusive regions in the parameter space showing that in
both cases it is positive, and that for normal diffusion it increases by increasing the
parameter value.
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1 Introduction

Low-dimensional time-discrete maps are among the most important models
for exploring different aspects of chaos. These systems display a very rich dy-
namical behavior but are still very amenable to straightforward computer sim-
ulations. Even more, in some cases rigorous analytical solutions are possible.
After it was realized that diffusion processes can be generated by microscopic
deterministic chaos in the equations of motion, time-discrete maps became
useful tools in deterministic transport theory. The analysis of these simple
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models required to suitably combine nonequilibrium statistical mechanics with
dynamical systems theory leading to a more profound understanding of trans-
port in nonequilibrium situations [1–4]. However, time-discrete maps provide
not only a suitable starting point for studying normal diffusion but also for
investigating the anomalous case [5–26]. Moreover, there are certain classes of
more realistic models which share specific properties of maps such as being
low-dimensional and exhibiting certain periodicities. Indeed, theoretical inves-
tigations of chaotic billiards subject to external fields [27], of periodic Lorentz
gases [28,29], and of pendulum-like differential equations [30–36] showed that
many properties of deterministic transport in maps carry over to these more
complex chaotic dynamical systems.

In this framework, recently a new feature of deterministic diffusion was dis-
covered. For simple one-dimensional hyperbolic maps it was shown that the
diffusion coefficient is typically a fractal function of control parameters [37–40].
Subsequently an analogous behavior was detected for other transport coeffi-
cients [41,42], and in more complicated models [27–29]. However, up to now
the fractality of transport coefficients could be assessed for hyperbolic sys-
tems only, whereas, to our knowledge, the fractal nature of classical transport
coefficients in the broad class of nonhyperbolic systems was not discussed.

On the other hand, studying nonhyperbolic dynamics appears to be more
relevant in order to connect fractal transport coefficients to some known ex-
periments. Here we think particularly of dissipative systems driven by peri-
odic forces such as Josephson junctions in the presence of microwave radiation
[43–49], superionic conductors [50,51], and systems exhibiting charge-density
waves [52] in which certain features of deterministic diffusion were already
observed experimentally. For these systems the equations of motion are typ-
ically of the form of some nonlinear pendulum equation. In the limiting case
of strong dissipation they can be reduced to nonhyperbolic one-dimensional
time-discrete maps sharing certain symmetries [53,54]. The so-called climbing
sine map is a well-known example of this class of maps [5,6,9].

In this paper we pursue a detailed analysis of the diffusive and dynamical
properties of the climbing sine map. Particularly, we show that the nonhyper-
bolicity of this map does not destroy the fractal characteristics of deterministic
diffusive transport as they were found in hyperbolic systems. On the contrary,
fractal structures appear for normal diffusive parameters as well as for anom-
alous diffusive regions. We argue that higher-order memory effects are crucial
to understand the origin of these fractal hierarchies in this nonhyperbolic sys-
tem. By using a Green-Kubo formula for diffusion, the dynamical correlations
are recovered in terms of fractal Takagi-like functions. These functions ap-
pear as solutions of a generalized integro-differential de Rham-type equation.
We furthermore show that the distribution of periodic windows exhibiting
anomalous diffusion forms Devil’s staircase like structures as a function of the
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parameter and that the complementary sets of chaotic dynamics have a pos-
itive measure in parameter space that increases by increasing the parameter
value.

Our paper is organized as follows. In Sec. II we introduce the model. In Sec.
III we explore the coarse functional form of the parameter-dependent diffusion
coefficient and discuss it in relation to previous results on hyperbolic maps.
In Sec. IV our analysis is refined revealing complex scenarios of anomalous
diffusion, which are explained in terms of correlated random walk approxima-
tions. In Sec. V generalized fractal Takagi functions are constructed for the
climbing sine map and the connection to the diffusion coefficient is worked
out. Periodic windows exhibiting anomalous diffusion are studied in detail in
Sec. VI. We then draw conclusions and discuss our results in the final section.
For a concise summary of the main results we refer to Ref.[55].

2 The climbing sine map

The one-dimensional climbing sine map is defined as

Fig. 1. Illustration of the climbing sine map for the particular parameter value of
a = 1.189. The dashed line indicates the orbit of a moving particle starting from
the initial position x0.

Xn+1 = Ma(Xn) , Ma(X) = X + a sin(2πX) , (1)

where a ∈ �
is a control parameter and Xn is the position of a point parti-

cle at discrete time n. Obviously, Ma(X) possesses translation and reflection
symmetry,

Ma(X + p) = Ma(X) + p , Ma(−X) = −Ma(X) . (2)

The periodicity of the map naturally splits the phase space into different boxes,
(p, p + 1], p ∈ � , as shown in Fig. 1. Eq. (1) as restricted to one box, i.e., on
a circle, we call the reduced map,

ma(x) := Ma(X) mod 1 , x := X mod 1 . (3)

The probability ρn(x)dx to find a particle at a position between x and x+ dx
at time n then evolves according to the continuity equation for the probability
density ρn(x), which is the Frobenius-Perron equation [56]

ρn+1(x) =
∫
dy ρn(y)δ(x−ma(y)) . (4)
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The stationary solution of this equation is called the invariant density, which
we denote by ρ∗(x).

Due to its nonhyperbolicity, the climbing sine map possesses a rich dynamics
consisting of chaotic diffusive motion, ballistic dynamics, and localized orbits.
Under parameter variation these different types of dynamics are highly inter-
twined resulting in complicated scenarios related to the appearance of periodic
windows [6,9]. For map parameters corresponding to periodic windows
the system dynamics is non-ergodic and a unique invariant density
does not exist, whereas for all other parameters the dynamics is
ergodic and a unique invariant density does exist.

In order to study diffusion we will be interested in parameters that are greater
than a > a0 = 0.732644... for which the extrema of the map exceed the
boundaries of each box for the first time indicating the onset of diffusive
motion.

3 Coarse structure of the parameter-dependent diffusion coeffi-
cient

In this section we explore the relationship between nonlinear maps like the
climbing sine map and simple piecewise linear maps for which, in contrast to
the climbing sine map, the diffusion coefficient can be calculated exactly. It
is well-known that in special cases such different types of maps are linked to
each other via the concept of conjugacy. Indeed, we show that maps which
are approximately conjugate to each other exhibit a very similar oscillatory
behavior in the diffusion coefficient on coarse scales. Our argument refers to
some existing methods for calculating the diffusion coefficient of piecewise
linear maps, which we briefly review. We then describe how we numerically
calculated the complete parameter dependence of the diffusion coefficient for
the climbing sine map and discuss a first result.

3.1 Computing and comparing the diffusion coefficient for approximately con-
jugate maps

One speaks of normal deterministic diffusion if the mean square displacement
of an ensemble of moving particles grows linearly in time. The diffusion coef-
ficient is then given by the Einstein relation

D(a) = lim
n→∞〈X

2
n〉/(2n), (5)

where the brackets denote an ensemble average over the moving particles.
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There exist various efficient numerical as well as, for some system parame-
ters, analytical methods to exactly compute diffusion coefficients for piecewise
linear hyperbolic maps, such as transition matrix methods based on Markov
partitions [37–40], cycle expansion methods[15–18], and more recently a very
powerful method related to kneading sequences [42].

We first restrict our analysis of diffusion in the climbing sine map to parame-
ters for which there are simple Markov partitions. For one-dimensional maps, a
partition is a Markov partition if and only if parts of the partition get mapped
again onto parts of the partition, or onto unions of parts of the partition, see
Ref. [38] and further references therein. An example of a Markov partition
consisting of five parts is shown in the inset of Fig. 2. In case of the climbing
sine map Markov partitions can be constructed simply by forward iteration
of one of the critical points xc defined by the condition that m

′
a(xc) ≡ 0 in

the reduced map. If higher iterations of this point fall onto a periodic orbit
a Markov partition exits. Indeed, if a Markov partition is known, for piece-
wise linear maps the diffusion coefficient can often be calculated analytically
via calculating the invariant measure of the map or via computing the sec-
ond largest eigenvalue of the Frobenius-Perron operator written in form of a
transition matrix.

One can now identify an infinite series of parameter values corresponding to a
certain type of Markov partition [37–40]. For parameter values which belong
to such a Markov partition series the corresponding invariant densities ρ∗(x)
have a very similar functional form. Note that, in case of nonlinear maps,
singularities in the invariant density exactly correspond to the iteration of the
critical point xc [57]. An example of ρ∗(x) for one series of parameter values
(marked as filled circles) is shown in the inset of Fig. 2.

By using respective series of Markov partitions piecewise linear maps can be
related to nonlinear maps. For this purpose let us consider, along with the
climbing sine map, (i) the piecewise linear zig-zag map [7,8,16,17]

Ma(xn) =





m1xn, 0 ≤ xn < b1

−m2(xn − b1) + a, b1 ≤ xn < b2

m1(xn − 1) + 1, b2 ≤ xn < 1

(6)

with m1 = m2 = 4a − 1, b1 + b2 = 1 and b1 = a/m1, and (ii) the nonlinear
cubic map [6,56]

Ma(xn) = ax3
n −

3

2
ax2

n + xn(1 +
1

2
a). (7)

The definitions of both maps are given on the unit interval.

In order to compare the diffusion coefficient of these different maps, the para-
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meters a were chosen such that the maps all display the same height h, defined
as the distance between the first iteration of the leftmost critical point ma(xc)
and the zero bound in the first box (0, 1]. Thus, h = 1 corresponds to the
onset of diffusion for all three maps.

For the two simple Markov partition series ma(xc) = 0 and ma(xc) = 0.5,
corresponding to integer and half-integer values of h, respectively, the diffusion
coefficient of the zig-zag map can be calculated analytically. For integer values
of h the result reads [8,16]

D(h) =
h(h − 1)(2h − 1)

3(4h − 1)
. (8)

For half-integer values of h the diffusion coefficient is easily calculated analyt-
ically, e.g., by transition matrix methods [38,40], to

D(h) =
h(4h2 − 1)

6(4h − 1)
. (9)

In case of the climbing sine map and of the cubic map the diffusion coefficient
was obtained from computer simulations by evaluating the mean square dis-
placement Eq. (5) for the same series of Markov partitions. Results are shown
in Fig. 2. For the climbing sine map some more Markov partition series points
(altogether five different series) were included. For all three maps there is a
very analogous oscillatory behavior of the parameter-dependent diffusion co-
efficient. These oscillations can be explained in terms of the changes of the
microscopic dynamics under parameter variation, that is, whenever there is
a local maximum there is an onset of strong backscattering in the dynam-
ics yielding a local decrease of the diffusion coefficient in the parameter, and
vice versa at local minima [37–40]. However, the five Markov partition series
for the climbing sine diffusion coefficient already indicate that there are more
irregularities on finer scales. For piecewise linear maps, the origin of these
irregularities was identified to be the topological instability of the dynamics
under parameter variation [38,40]. That is, a small deviation of the parameter
changes the Markov partition and the corresponding invariant density which,
in turn, is reflected in a change of the value of the diffusion coefficient. Note
that the dependence of the diffusion coefficient for a single Markov partition
series appears to be a monotonously increasing function of the parameter [58].
Nevertheless, computing D(a) for more and more Markov partitions series will
reveal more and more irregularities in D(a) thus forming a fractal structure
[37–40].

Since the climbing sine map shares the same topological features as piecewise
linear maps in terms of these series of Markov partitions, one may wonder
whether it is not possible to straightforwardly calculate the diffusion coefficient
for nonlinear maps from the one of piecewise linear maps by using the concept
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of conjugacy [9,56,59], see also the definition in Appendix A. In fact, it was
stated by Grossmann and Thomae [9] that the diffusion coefficient is invariant
under conjugacy, however, without giving a proof. In Appendix A such a
proof is provided. Unfortunately, conjugacies are explicitly known only in very
specific cases and for maps acting on the unit interval [56,59]. As soon as
the map extrema exceed the unit interval, which is reminiscent of the onset
of diffusive behavior, only some approximate, piecewise conjugacies could be
constructed in a straightforward way, see Ref. [9] for an example.

We now apply this reasoning along the lines of conjugacy in order to under-
stand the similarities between the diffusion coefficient of the three maps as
displayed in Fig. 2. The functional form of the cubic map can be obtained
from a Taylor series expansion of sin(xn) by keeping terms up to third or-
der thus representing a low-order approximation of the climbing sine map.
This seems to be reflected in the fact that at any odd integer parameter
value of h the climbing sine map has an invariant density whose functional
form is very close to the one of the cubic map at parameter value h = 1,
ρ∗(x) = π−1(x(1− x))−1/2. Hence, one may expect that both diffusion coeffi-
cients are possibly trivially related to each other, however, note the increasing
deviations between the respective results at larger h.

For h = 1, the cubic map and the piecewise linear zig-zag map are now in turn
conjugate to each other [56,59]. However, for h > 1 we are not aware of the
existence of any exact conjugacy between zig-zag and cubic map. Still, along
the lines of Ref. [9] one can at least approximately relate both maps to each
other via using piecewise conjugacies. This explains why the zig-zag map and
the climbing sine map display qualitatively the very same oscillatory behavior
in the diffusion coefficient, somewhat linked by diffusion in the cubic map.

In summary, by using Markov partitions and by arguing with the concept of
conjugacy we have shown that the structure of the diffusion coefficient for the
nonlinear climbing sine map has much in common with the one of respective
piecewise linear maps, in the sense of displaying a non-trivial oscillatory pa-
rameter dependence. However, to use conjugacies in order to exactly calculate
the diffusion coefficient for nonlinear maps does not appear to be straightfor-
ward [57], hence in the following we restrict ourselves to alternative methods
as discussed in the next subsection.

Fig. 2. Diffusion coefficient at certain Markov partition parameter values for three
different maps, which are the zig-zag map Eq.(6) (squares), the climbing sine map
(circles), and the cubic map Eq. (7) (triangles). The values for the zig-zag map
represent analytical results, see Eqs.(8,9), the remaining values are from computer
simulations. The lines are guides for the eyes. The inset shows an example of a
Markov partition for the climbing sine map on the unit interval and the corre-
sponding invariant density.
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3.2 Complete parameter dependence of the climbing sine diffusion coefficient

In the previous section the parameter h was employed for comparing
the diffusive properties of three different maps with each other.
However, for the climbing sine map alone the parameter a as it
appears in Eq. (1) is a more convenient choice, since h must be
calculated as a function of a by solving the transcendental equation

h = xc + a sin(2πxc), xc =
1

2π
arccos

(
− 1

2πa

)
. (10)

Hence, from now on we will stick to a as the control parameter of
this map.

In order to obtain the full parameter dependence for the diffusion coefficient
of the climbing sine map we numerically evaluated the Green-Kubo formula
for diffusion in maps [3,4,8,29,38,41] reading

Dn(a) = 〈ja(x)Jna (x)〉 − 1

2
〈j2
a(x)〉 . (11)

Here the angular brackets denote an average over the invariant density of the
reduced map, 〈. . .〉 =

∫
dxρ∗(x) . . .. The jump velocity ja(x) is defined by

ja(xn) := [Xn+1]− [Xn] ≡ [Ma(xn)] , (12)

where the square brackets denote the largest integer less than the argument.
The sum

Fig. 3. Diffusion coefficient for the climbing sine map over a large range of pa-
rameter values. Note the oscillations on large and small scales. The small scale
fluctuations represent regions of anomalous diffusion where the diffusion coefficient
either diverges or vanishes. Some of the divergent regions are cut off after a certain
number of iterations showing plateaus instead of singularities. The data set consists
of 265005 points.

Jna (x) =
n∑

k=0

ja(xk) (13)

gives the integer value of the displacement of a particle after n time steps that
started at some initial position x, and we call it jump velocity function. Eq.
(11) defines a time-dependent diffusion coefficient which, in case of normal
diffusion, converges to

D(a) = lim
n→∞Dn(a) . (14)

In our simulations for this figure we truncated J na (x) after 7 time steps. The
invariant density was obtained by solving the continuity equation for ρ∗(x) Eq.
(4) with the histogram method of Ref. [1]. Note that both the integer displace-
ment and the density are coupled via Eq. (11). Results for D(a) are shown
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in Fig. 3 for a large range of parameters demonstrating a highly non-trivial
behavior of the diffusion coefficient. The large-scale oscillations as predicted
from the simple Markov partition series (see Fig. 2) are still clearly seen, how-
ever, on top of this there exist further oscillations on finer scales. These are
regions of anomalous diffusion that manifest themselves in form of abrupt
divergences, D(a)→∞, or by a vanishing diffusion coefficient, D(a) → 0.

4 Simple and correlated random walk approximations

In this section we study the parameter-dependent diffusion coefficient in more
detail. Based on the Green-Kubo formula we derive a systematic hierarchy of
approximations for the diffusion coefficient and show how they can be used to
understand the complex behavior of this curve in more detail.

4.1 Asymptotic functional form of the diffusion coefficient on large scales

We are first interested in understanding the coarse functional form of the
parameter-dependent diffusion coefficient in the limit of very small and very
large parameter values. For this purpose we use simple random walk approx-
imations that are based on the assumption of a complete loss of memory
between the single jumps. Such an analysis was already performed for hyper-
bolic piecewise linear maps [38,39]. Here we apply the same reasoning to the
nonlinear case of the climbing sine map.

We start in the limit of very small parameter values, i.e., near the onset of
diffusion. Here we assume that particles make either a step of length one to
the left or to the right, or just remain in the box. The transition probability
is then given by integrating over the respective invariant density in the escape
region. Putting all this information into Eq. (5) yields [6]

D(a) ' ρ(xc)(2ε/a0π
2)1/2, (15)

where ε = a− a0. Making the additional approximation that ρ(x) ' 1 we get

D(a) ' 0.525ε1/2, ε� 1. (16)

The other limiting case concerns values of a � 1. Here the precise value of
the width of the escape region is much less important than the precise value
of the step length which is very large, hence by again assuming that ρ(x) ' 1
Eq. (5) can be approximated to [38,39]

D(a) ≈ 1

2

∫ 1

0
dx (Ma(x)− x)2 ≈ a2

4
, a� 1. (17)
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These two asymptotic random walk approximations are shown in Fig. 4 as

Fig. 4. Dynamical crossover in the climbing sine map. The two asymptotic regimes
at small and large parameter values are approximated by simple random walk argu-
ments yielding the functional forms shown as bold lines. The series of more irregu-
lar curves corresponds to higher-order correlated random walk approximations with
n = 0, 1, 2, 3, which give an indication of the exact functional form. The magnifica-
tion (inset in normal scale) of a small region around a = 3 shows more irregularities
on a finer scale pointing towards a fractal structure of the diffusion coefficient.

bold lines. One can clearly see that there is a dynamical crossover between the
different functional forms of these two asymptotic regimes. This crossover was
first observed in piecewise linear maps and appears to be typical for diffusive
systems exhibiting some spatial periodicity [38,39]. It was lateron also verified
for diffusion in the periodic Lorentz gas [28]. The coarse functional form of the
random walk approximations should be compared to a certain series of higher-
order approximations based on the Green-Kubo formula Eq. (11), which is
also shown in the figure. These refined approximations are getting closer and
closer to the exact functional form, as explained below, and thus give a good
indication for these exact values.

4.2 Fine scale of the diffusion coeffcient: anomalous diffusion and bifurca-
tions

In the previous subsection we have outlined two simple random walk approx-
imations for diffusion that do not include any memory effects. However, one
can do better by systematically evaluating the single terms as contained in the
series expansion of the Green-Kubo formula Eqs. (11,13). For a simple piece-
wise linear map and for the periodic Lorentz gas this was done in Ref. [29] and
provided a simple approach to understand the origin of complex structures in
the diffusion coefficient on fine scales.

The basic idea of this approach is as follows: The Green-Kubo formula Eq.
(11) splits the dynamics into an inter-box dynamics, in terms of integer jumps,
and into an intra-box dynamics, as represented by the invariant density. We
first approximate the invariant density in Eq. (11) to ρ(x̃) ' 1 irrespective
of the fact that it is typically a very complicated function of x and a [6,38].
The resulting approximate diffusion coefficient we label with a superscript
in Eq. (11), D1

n(a). The term for n = 0 obviously excludes any higher-order
correlations and was already worked out in form of the simple random walk
approximation Eqs. (15)-(17).

The generalization D1
n(a) , n > 0, which systematically includes more and

more dynamical correlations, may consequently be denoted as correlated ran-
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dom walk approximation [29]. We now use this expansion to analyze the pa-
rameter dependence of the diffusion coefficient of the climbing sine map in
terms of such higher-order correlations. Fig. 4 depicts results for Dn(a) at

Fig. 5. (a) Sequence of correlated random walks D1
n(a), see Eq. (11) with uniform

invariant density ρ(x) ' 1, for n = 1, · · · , 10. Note the quick convergence for normal
diffusive parameters. The dashed lines define periodic windows, which are the same
as in Fig.6. The insets (b) and (c) contain two magnifications of (a) in the region
close to the onset of diffusion for D1

10(a) only. They show self-similar behavior on
smaller and smaller scales.

n = 0, 1, 2, 3 over a large range of parameters, whereas Fig. 5 (a) presents
a respective detailed analysis for the region close to the onset of diffusion,
i.e., for parameters a ∈ (0.732644, 1.742726], showing results for Dn(a) at
n = 1, . . . , 10. The series of approximations in Fig. 4 clearly reveals finer and
finer sequences of oscillations that eventually converge to a fractal structure,
as is particularly shown in the inset of this figure. However, here the order of
the expansion is not large enough to identify parameter regions of anomalous
diffusion. These regions can be better seen in Fig. 5, where three different
cases of parameter regions can be distinguished: (i) regions with quick conver-
gence of this approximation corresponding to normal diffusion (ii) divergence
of D1

n(a) corresponding to ballistic motion, in agreement with D(a)→∞, and
(iii) localized dynamics where D1

n(a) alternates in n between two solutions,
with D(a) → 0 for the exact diffusion coefficient. This oscillation points to
the dynamical origin of localization in terms of certain period-two orbits. That
these approximate solutions are non-zero is due to the fact that the invariant
density was set equal to one. The dashed lines in Fig. 5 indicate the largest
regions of anomalous diffusion. The approximate diffusion coefficient D1

10(a)
of this figure is compared to the “numerically exact” one in Fig. 6. Here “nu-
merically exact” we wish to be understood in the sense that no further ad
hoc-approximations are involved, i.e., we evaluated the Green-Kubo formula
according to the numerical method described in Sec. III. by truncating it after
20 time steps. This comparison shows that in case of normal diffusion our
approximation nicely reproduces the irregularities in the non-approximated
diffusion coefficient. Like the inset of Fig. 4, the magnifications in Fig.5 give
clear evidence for a self-similar structure of the diffusion coefficient. These
results thus show that dealing with correlated jumps only yields a qualitative
and to quite some extent even quantitative understanding of the regions of
normal and anomalous diffusion in the climbing sine map.

Fig. 6. Upper panel: bifurcation diagram for the climbing sine map. Lower panel:
diffusion coefficient computed from simulations as a function of the control parame-
ter a in comparison with the correlated random walk approximation D1

10(a) (dots).
The dashed vertical lines connect regions of anomalous diffusion, D(a) → ∞ or
D(a) → 0, with ’ballistic’ and ’localized’ windows, respectively, of the bifurcation
diagram.
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The impact of specific features of the microscopic dynamics on the diffusion
coefficient is nicely elucidated by comparing the bifurcation diagram of the
reduced climbing sine map Eq. (3) with the numerically exact diffusion coef-
ficient, see Fig. 6. As one can see in the upper panel of Fig. 6, the bifurcation
diagram consists of (infinitely) many periodic windows. Whenever there is
a window the dynamics of Eq. (1) is either ballistic or localized [6,8]. Fig.
6 demonstrates the strong impact of this bifurcation scenario on the diffu-
sion coefficient. For localized dynamics, orbits are confined within some finite
interval in phase space implying subdiffusive behavior for which the diffu-
sion coefficient vanishes, whereas for ballistic motion particles propagate su-
perdiffusively with a diverging diffusion coefficient. In these two different
parameter regions the mean square displacement of the map is pro-
portional to either 〈X2

n〉 ∼ n2 or ∼ n0 in the limit of n→∞. Only for
parameters outside periodic windows the climbing sine map exhibits
normal diffusion, with the mean square displacement being propor-
tional to 〈X2

n〉 ∼ n, that is, here D(a) is nonzero, finite, and the limit
in Eq. (14) exists. At the boundaries of each periodic window this nor-
mal diffusive behaviour is related to intermittent-like transient dynamics
that enhances or suppresses diffusion. This transient behaviour yields
a parameter dependence of the diffusion coefficient of D(a) ∼ a(± 1

2
)

[5,6,9,10].

5 Diffusion coefficient in terms of fractal generalized Takagi func-
tions

In this section we further analyze the dynamical origin of the different struc-
tures in the parameter-dependent diffusion coefficient by constructing objects
called fractal generalized Takagi functions. These functions somewhat resem-
ble usual Takagi functions but, as will be shown, they fulfill a more complicated
type of functional recursion relations than standard de Rham-type equations.
Interestingly, Takagi functions were known to mathematicians since about a
hundred years [60–62], however, in the field of chaotic transport they were
appreciated by physicists only very recently [3,4,38,63,64].

We first show how to construct fractal generalized Takagi functions and study
their properties with respect to the three different types of dynamics in the
climbing sine map. We then relate these objects directly to the diffusion coef-
ficient.

From the definition of the time-dependent jump velocity function there follows
the recursion relation [37,38]

Jna (x) = ja(x) + Jn−1
a (ma(x)). (18)
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Since the time-dependent jump velocity function J na is getting extremely com-
plicated after some time steps, we introduce the more well-behaved function

T na (x) :=
∫ x

0
Jna (z) dz, T na (0) ≡ T na (1) ≡ 0. (19)

Integration of Eq. (18) yields the recursive functional equation

T na (x) = ta(x) +
1

m′a(x)
T n−1
a (ma(x))− I(x) (20)

with the integral term

I(x) =
∫ ma(x)

0
dzg′′a(z)T n−1

a (z) , (21)

where g′′a(z) is the second derivative of the inverse function of ma(x). The

Fig. 7. (a): Generalized fractal Takagi functions for the diffusive climbing sine map
with parameters a = 1.2397 (upper curve) and a = 1.7427 (lower curve). (b), (c): An
example of nonconverging iterations of the generalized fractal Takagi functions for
the climbing sine map with parameters corresponding to (b) ballistic dynamics at
a = 1.0 and to (c) localized dynamics at a = 1.5, both for the time steps n = 5, 6, 7.
Note the divergence of the iterations in (b) and the alternation between two states
in (c). The curves for n = 5 and n = 7 in (c) overlap.

function ta(x) is given by

ta(x) =
∫
dzja(z) = xja(x) + c(x) , (22)

where c(x) is defined to be constant on each subinterval where the jump ve-
locity ja(x) has a given value. This constant is fixed by the condition for ta(x)
to be continuous on the unit interval supplemented by

ta(0) = ta(1) ≡ 0. (23)

The generalized Takagi function is now defined in the long-time limit of Eq.
(20),

Ta(x) = lim
n→∞ T

n
a (x) . (24)

For piecewise linear hyperbolic maps I(x) in Eq. (21) simply disappears, and
the derivative in front of the second term of Eq. (20) reduces to the local slope
of the map thus recovering ordinary de Rham-type equations [3,4,38,41,42].
It should be noted that for smooth nonlinear maps like the climbing sine
map the reduced map ma(x) is generally not invertible. In order to define a
local inverse of ma(x), we split the unit interval into subintervals on which this
function is piecewise invertible. Thus Eq. (20) should be understood as a series
of equations where each part is defined for a respective piecewise invertible
part of ma(x). The detailed derivation of Eq. (20) is given in Appendix B.
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It is not known to us how to directly solve this generalized de Rham-type
integro-differential equation for the climbing sine map, however, solutions can
alternatively be constructed from Eqs. (19), (22), (23) starting from simula-
tions. Results are shown in Fig. 7. For normal diffusive parameters the limit
of Eq. (24) exists and the respective curves are fractal on the whole unit inter-
val somewhat resembling standard Takagi functions [3,4,38,63,64]. However,
in case of periodic windows T n

a (x) either diverges due to ballistic flights, or
it oscillates indicating localization. Interestingly, in these functions the corre-
sponding attracting sets appear in form of smooth, non-fractal regions on fine
scales as marked by the dashed lines in Fig. 7.

The diffusion coefficient can now be formulated in terms of these fractal func-
tions by carrying out the integrations contained in Eq. (11). For simplicity we
restrict ourselves to the parameter region of a ∈ (0.732644, 1.742726] in which
the respective solution reads

D(a) = 2 [Ta(x2)ρ(x2)− Ta(x1)ρ(x1)]−Dρ
0(a), (25)

where xi, i = 1, 2, is defined by [Ma(xi)] := 1, and Dρ
0(a) :=

∫ x2
x1
dxρ(x). Our

previous approximation D1
n(a) with ρ(x) ' 1 is recovered from this equation

in form of
D1
n(a) = 2 [Ta(x2)− Ta(x1)]−D1

0(a) . (26)

Hence, Eqs. (25), (26) explicitly relate the generalized fractal Takagi functions
shown in Fig. 7 to the fractals of Fig. 6.

6 Periodic windows

One of the most important problems regarding periodic windows in maps
remains the question of their total measure. Much understanding has been
achieved for one-dimensional unimodal maps [65–71]. Based on the Sharkovskii
theorem about the ordering of periodic orbits [65], Metropolis, Stein and Stein
organized periodic windows in universal symbolic sequences (U-sequences)
such that the sequence of next order is uniquely determined by the previ-
ous one [66]. Later Jacobson came up with the proof that chaotic parameter
values in one-dimensional unimodal maps with a single maximum do have
positive measure [67]. Related numerical studies were made by Farmer [70].
Furthermore, it was shown that periodic windows in such a map form so-called
fat fractal Cantor-like sets with positive measure.

However, for diffusive maps on a line, apart from the preliminary studies of
Refs.[6,8], nothing appears to be known. On the other hand, as was exemplified
in Sec. IV there is an intimate relation between the irregular structures of the
diffusion coefficient and the occurrence of periodic windows. Hence, in this
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section we investigate the periodic windows for the climbing sine map in full
detail.

Due to the spatial extension of our model a new type of periodic motion,
which is not present in unimodal maps, exists, which is that particles move
on average in one direction. These ballistic solutions are born through tangent
bifurcations, further undergo a Feigenbaum-type scenario and die at crises
points [6,8]. Localized solutions occurr at even periods only and start with
tangent bifurcations followed by a symmetry breaking at slope-type bifurca-
tion points [6,8]. In this case the bifurcation scenario is much more complex.
Obviously, periodic windows are related to certain periodic orbits, thus there
are infinitely many of them, and they are believed to be dense in the parameter
space [2].

Fig. 8. Upper panel: The total measure T
p
j of all period p-windows (lines with

symbols) for the first three parameter intervals (from top to bottom) as defined in
the text. The dotted lines represent exponential fits; for the parameters see Table 1.
The measures corresponding to windows with localized orbits are shown as pluses.
Lower panel: The partial sum Spj for all periodic windows at a certain period p. The
dashed curves represent approximations as calculated from Eq. (28), the straight
lines are their limiting values at p→∞.

By dividing the parameter line into subsets labeled by the integer value of the
map maximum on the unit interval, [Ma(Xcr)] = j, j ∈ � , we computed all
windows of a certain period p in a certain subset. The numerical procedure
which was used for these computations is outlined in Appendix C. Let T p

j

denote the total measure of all period p-windows in a subset j and let Spj be
the partial sum of T pj defined by Spj =

∑p
i=1 T

i
j . In Fig. 8 log T pj is plotted as

a function of the period for the three first subsets j = 0, 1, 2. The measures
corresponding to windows with localized orbits are shown in Fig. 8 as pluses.
Is it clear that they make the major contribution to the total measure for even
periods hence explaining the origin of the pronounced oscillatory behavior of
T jp .

Table 1
Fit parameters for the exponential decrease of the measure at even and odd periods
for the first three subsets of the map control parameter labeled by j.

j aevenj bevenj aoddj boddj

0 0.284 0.61± 0.01 0.012 0.62

1 0.224 0.87± 0.01 0.007 0.89

2 0.242 1.01± 0.02 0.006 0.98

For odd periods all windows are due to ballistic orbits. Thus, we more carefully
distinguish between even and odd periods. The dotted lines in Fig. 8 represent
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Fig. 9. Upper panel: Total measure T 1
j for period one-windows as a function of the

control parameter interval labeled by j. The slope of the line appears to be −1 (see
text). Lower panel: the same as on the upper panel but here for different window
periodicities p, and for smaller j. The labels at the single graphs give the value of
p.

Table 2
The Lebesque measure ∆j , the total measure of periodic windows Sj , and the com-
plementary measure of chaotic solutions Cj for the first three subsets of the map
control parameter labeled by j.

j ∆j Sj Cj

0 1.01008 0.226± 0.002 0.783± 0.002

1 1.00265 0.103± 0.002 0.898± 0.002

2 1.00123 0.068± 0.002 0.932± 0.002

exponential fits to the functional dependence of the measure at even and odd
periods according to aevenj exp(−bevenj p) and aoddj exp(−boddj p), where j stands
for the box number j = 0, 1, 2, as defined above. The fit parameters aj, bj are
given in Table 1. From Fig. 8 and Table 1 one can conclude that the total
measures at even and odd periods at a certain label j decrease approximately
with the same rate, bevenj ∼ boddj ' bj. The exponential decrease of T p

j suggests
that the measure of chaotic solutions in each box, which is complementary to
the measure of periodic windows, is indeed positive. Based on the information
of T pj , it is straightforward to approximate the total measure of all the periodic
windows in the jth box by

Sj = T 1
j +

∞∑

i=2

′
T ij +

∞∑

i=3

′′
T ij ' T 1

j +
aevenj + aoddj e−bj

e2bj − 1
(27)

and to approximate the parameter dependence of the partial sum Spj to

Spj ' T 1
j e
−bj(p− 1

2
) + Sj(1− e−bj(p−

1
2

)) . (28)

Sums with one or two primes go only over even or odd terms, respectively.
In the lower panel of Fig. 8 results for Sj are shown as horizontal lines, the
dashed lines in the upper panel (without symbols) are the approximations for
Spj according to Eq. (28).

The values for the measure of all periodic windows in the jth box, Sj , and the
measure of the chaotic solutions Cj = ∆j − Sj , where ∆j is the total measure
of the j box, are listed in Table 2 for the first three subsets of the control
parameter.

The main message of Table 2 is that the measure of periodic windows is
different for a different subset j and obviously decreases by increasing the
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Fig. 10. Devil’s staircase like structure formed by the distribution of periodic win-
dows as a function of the control parameter. N is the integrated number of period
six-windows. The inset shows a blowup of the initial region.

control parameter. Correspondingly, the measure of chaotic solutions increases
as the parameter of the system is getting larger. In order to make this more
quantitative we consider the dependence of the measure of period p-windows
as a function of the box index j. First we check period one-windows. Since in
each box there exists only one window of this period, we are able to go to up
to j = 20. In the upper panel of Fig. 9 the logarithm of T 1

j is plotted against
log j. We find that the slope of this function almost exactly equal to −1. The
behavior of T pj for different p is shown in the lower panel of Fig. 9. The slope
of the line for period two is also −1, for period three and four it is −2, and
for period five it is −3. Fig. 9 shows that even and odd periods decrease with
respectively different laws, where the decay rate appears to be precisely given
by the periodicity of the windows according to 1/jp/2 for even periods and
1/j(p+1)/2 for odd periods.

Fig. 11. Difference δµ = µ(ε)−µ(0), where µ(ε) is the total measure of windows that
are smaller than ε. Results are plotted for the first three subsets j = 0, 1, 2 of the
map control parameter, from top to bottom. In all cases, the slope of the solid lines
is approximately 0.45. The dashed lines in each graph represent the corresponding
coarse-grained window distribution functions. In the inset of Fig. (c) the measure
of any single period five-window in the subset j = 2 is shown with respect to an
integer label that accounts for the ordering according to the map control parameter.

In order to analyze the structure of the regions of anomalous diffusion in the
parameter space, we sum up the number of period six-windows as a function of
the parameter, that is, the total number is increased by one for any parameter
value at which a new period six-window appears. This sum forms a Devil’s
staircase like structure in parameter space indicating an underlying Cantor
set like distribution for the corresponding anomalous diffusive region, see Fig.
9. Since the Lebesque measure of periodic windows is positive, this set must
be a fat fractal [69]. Its self-similar structure can quantitatively be assessed
by computing the so-called fatness exponent. Following [70], let h(ε) be the
total measure of all periodic windows whose width is greater than or equal
to ε. Define the coarse-grained measure as µ(ε) = ∆ − h(ε), where ∆ is
the total measure of a box related to the control parameter. For quadratic
maps on the interval, it was conjectured and confirmed numerically that µ(ε)
asymptotically scales as a power law in the limit of ε→ 0,

µ(ε) ≈ µ(0) +Aεβ , (29)

where µ(0) is the measure of chaotic parameters. β was called the fatness expo-
nent. For quadratic maps it was found to be β ' 0.45. Since our map belongs to
the same universality class as considered in Farmer’s case, namely the map has
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a single quadratic maximum, one may expect that β will have the same value.
For the climbing sine map a double-logarithmic plot of δµ(ε) = µ(ε)− µ(0) is
shown in Fig. 11 for the first three boxes, j = 0, 1, 2. In all cases the bold lines
have the slope 0.45 with errors of 0.03, 0.04, 0.05, respectively, which seems to
be in agreement with Farmer’s conjecture about the universality of β. However,
apart from this coarse linear behavior one can see an interesting oscillatory
behavior in δµ with respect to ε. This fine structure can be explained with
respect to the histogram distribution functions f of the window sizes d, which
are plotted in Fig. 11 in form of dashed lines. Somewhat surprisingly, the peri-
odic windows are not distributed uniformly or smoothly with respect to their
size but form certain peaks, in which preferably windows of certain periods are
grouped together. This non-uniformity is clearly reflected in the oscillations of
δµ(ε). Moreover, we find that the size distributions of periodic windows have
a fine structure that appears to resemble a fractal function. Some evidence
for this property is given in the inset of Fig. 11 (c), which shows the size of
every window of period five in the subset j = 2 as a function of its appearance
with respect to the map control parameter a, i.e., not the parameter itself
is plotted but just an integer running index N is given instead. Particularly
the height of the peaks is important, and one can clearly see a complicated
hierarchy of different peaks which are reminiscent of the fine structure in the
corresponding distribution function shown in Fig. 11 (c).

7 Conclusions

In this paper we have performed a detailed analysis of the parameter depen-
dence of the diffusion coefficient in a nonhyperbolic dynamical system. The
climbing sine map has been chosen as a paradigmatic example of such a sys-
tem. We have shown that, on a coarse scale, there are certain analogies between
the parameter-dependent diffusion coefficient of this map and the ones in sim-
ple hyperbolic piecewise linear maps, such as the existence of an oscillatory
structure, and the existence of asymptotic functional forms as derived from
simple random walk models. However, in contrast to hyperbolic maps showing
normal diffusion only, in the nonhyperbolic climbing sine map fractal struc-
tures appear for both normal and anomalous diffusive regions of the diffusion
coefficient. An understanding of the origin of these fractal structures was given
in terms of dynamical correlations starting from the Green-Kubo formula for
diffusion. We furthermore related these irregularities in the diffusion coeffi-
cient more microscopically to different characteristics in corresponding fractal
generalized Takagi functions. For this purpose we derived a new functional
recursion relation that defines these fractal forms and generalizes ordinary
de Rham-type equations. Our analysis was completed by extensive numeri-
cal studies of the periodic windows of the climbing sine map showing that
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both the periodic and the chaotic parameter regions have positive measures
in the parameter space. However, these measures are themselves parameter-
dependent, and by increasing the parameter we found that the chaotic regions
occupy larger and larger measures. We finally provided evidence that these
different sets form fat fractals on the parameter axis.

In conclusion, we wish to remark that the climbing sine map is of the same
functional form as the respective nonlinear equation in the two-dimensional
standard map, which is considered to be a standard model for many physical
Hamiltonian dynamical systems. Indeed, both models are motivated by the
driven nonlinear pendulum, both are strongly nonhyperbolic, and though the
standard map is area-preserving it too exhibits a highly irregular parameter-
dependent diffusion coefficient. Understanding the origin of these irregularities
was the subject of intensive research [2,19], however, so far the complexity of
this system did not enable to reveal its possibly fractal nature. A suitably
adapted version of our approach to nonhyperbolic diffusive dynamics as pre-
sented in this paper may enable to make some progress in this direction.

Another interesting problem is to possibly further exploit the concept of con-
jugacy between nonlinear and piecewise linear maps, as explained in Sec. III,
in order to exactly calculate diffusion coefficients for nonlinear maps. A very
promising approach in this direction was presented in Ref. [57]. Based on these
techniques we are planning to perform a spectral analysis of the Frobenius-
Perron operator governing the probability density of the diffusive climbing sine
map. Combining such an analysis with the Takagi function approach outlined
here may lead to a general theory of nonhyperbolic transport.

It would furthermore be important to check out the applicability of periodic
orbit theory for computing the parameter-dependent diffusion coefficient of
the climbing sine map, which may provide an alternative method [15]. An-
other promising direction of future research concerns establishing crosslinks
between our work and the realm of strange kinetics and stochastic modeling
as described in Refs. [24–26], e.g., by trying to apply continuous time ran-
dom walk techniques to more complicated chaotic models exhibiting fractal
diffusion coefficients such as the climbing sine map.

We finally emphasize the importance to look for possibly fractal transport
coefficients in experiments. A very promising candidate appears to be the
phase dynamics in SQUID’s, which was very recently analyzed theoretically
[48] and studied experimentally [49].
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A Diffusion coefficients of two conjugate maps

In this Appendix we give a proof of the statement of Grossmann and Thomae
[9] that two diffusive maps which are conjugate to each other have the same
diffusion coefficient.

Two diffusive maps F : I → I and G : J → J are called conjugate [59,9,56] if
there exists a map H : I → J such that F (x) = H(G(H−1(x))). Let us assume
in the following that the conjugation function H is sufficiently smooth. Let
the invariant densities of the corresponding reduced (mod 1) maps be ρ̃(x) for
F (x) mod 1 and ρ(y) for G(y) mod 1; then it is, according to conservation
of probability, ρ̃(x) = |(H−1(x))′| ρ(H−1(x)). The diffusion coefficients of the
maps F (x) and G(y) we denote by DF and DG, respectively. Without loss of
generality let us furthermore assume that the maxima of both maps are in the
interval [1, 2].

We now start with the Green-Kubo formula written in correlated random walk
terms as

DF =
1

2

1∫

0

[F (x)]2 ρ̃(x)dx+

1∫

0

[F (x)] ·B(x) ρ̃(x)dx, (A.1)

where

B(x) = [F{F (x)}] + ...+ [F ({F ({... ({F (x)}) ...})})] + ... , (A.2)

or shortly
DF = dF0 + dF1 + dF2 + ... (A.3)

where

dF0 =
1

2

1∫

0

[F (x)]2 ρ̃(x) dx, (A.4)

dF1 =
1

2

1∫

0

[F (x)] [F{F (x)}] ρ̃(x) dx, (A.5)

and so on. Focusing on the first term, one can rewrite this expression using
the symmetry of the map to

dF0 =
1

2

1∫

0

[F (x)]2 ρ̃(x) dx =

x2∫

x1

ρ̃(x) dx, (A.6)

where x1, x2 defines an escape region. For the conjugate map G(y) the respec-
tive term reads

dG0 =
1

2

1∫

0

[G(y)]2 ρ(y) dy =

y2∫

y1

ρ(y) dy, (A.7)
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where y1, y2 is the corresponding escape region for G. Note that the escape
regions (x1, x2) and (y1, y2) are not the same, however, it is straightforward to
show that H(xi) = yi , i = 1, 2, that is, the topology of both maps is conserved
such that the two escape regions are mapped onto each other under conjugacy.

Taking into account the conservation of probability mentioned before one im-
mediately gets

dF0 = dG0 . (A.8)

All other terms dF1 , dF2 , ... and dG1 , dG2 , ... have the form

d(F,G)i = A
∫

δesc

ν(z) dz, i = 1, 2, ... (A.9)

where A is a constant, δesc is the respective escape region and ν(z) dz is the
corresponding invariant measure. Thus, the same argument can be applied to
show that dFi = dGi , (i = 1, 2, ...). Combining all results we arrive at

DF = DG . (A.10)

B Recursion relation for generalized Takagi functions

We start with the recursion relation for the jump velocity function Eq. (18),

Jna (x) = ja(x) + Jn−1
a (ma(x)), (B.1)

by recalling the definition of the generalized Takagi function Eq. (19),

T na (x) :=
∫ x

0
Jna (z) dz, T na (0) ≡ T na (1) ≡ 0, (B.2)

or differently

Jna (x) =
d

dx
T na (x). (B.3)

Fig. B.1. Illustration of the construction of the inverse function of the climbing sine
map for the parameter value a = 1.189. Piecewise invertible branches are labeled
by the integer numbers i = 1, · · · , 7.

We have to integrate Eq. (B.1),

x∫

0

dy Jna (y) =

x∫

0

dy ja(y) +

x∫

0

dy Jn−1
a (ma(x)). (B.4)
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By using of Eq. (B.2) we get

T na (x) = ta(x) + I(x), x ∈ (0, 1], (B.5)

where

I(x) =

x∫

0

dy Jn−1
a (ma(y)), x ∈ (0, 1]. (B.6)

Without loss of generality let us assume that the maximum of the map is in
the interval [1, 2].

Depending on x the integral in Eq. (B.6) can be decomposed into

I1(x) =

x∫

0

dy Jn−1
a (ma(y)), x ∈ (0, x1]; (B.7)

I2(x) =

x1∫

0

dy Jn−1
a (ma(y)) +

x∫

x1

dy Jn−1
a (ma(y)), x ∈ (x1, x2];

I3(x) = ..., x ∈ (x2, x3]; ... I6(x) = ..., x ∈ (x5, x6];

I7(x) =

x1∫

0

dy Jn−1
a (ma(y)) + · · ·+

x∫

x6

dy Jn−1
a (ma(y)), x ∈ (x6, x7].

Each integral in Eq. (B.7) now contains only one piecewise invertible branch
of the reduced map mi

a(x) as shown in Fig. B.1. Here, the piecewise invertible
branches of the reduced map are labeled by integers, and the corresponding
branches of the inverse function gia(y) have the same indices i = 1, · · · , 7. Since
all integrals in Eq. (B.7) have the same form (only the inverse parts of the
reduced map are different), we restrict ourselves to the integral

I(x) =

x∫

0

dy Jn−1
a (mi

a(y)). (B.8)

Making the change of variables z = mi
a(y) and using the definition of the

generalized Takagi function Eq. (B.3) we get

I(x) =

mia(x)∫

0

dz (gia(z))
′ d

dz
T n−1
a (z). (B.9)
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Using integration by parts we arrive at

I(x) = (gia(z))
′ · T n−1

a (z)|mia(x)
0 −

mia(x)∫

0

dz (gia(z))
′′ · T n−1

a (z). (B.10)

Now recall that according to Eq. (B.2) it is T n−1
a (mi

a(xj)) ≡ 0, where the xj
define the boundaries of the piecewise invertible parts of ma(x), see Fig. B.1,
and that (gia(z))

′|z=mia(x) ≡ 1/(mi
a(x))

′
. Thus, by formally defining the inverse

function ga(x) as consisting of all branches i = 1, . . . , 7, we can finally write
Eq. (B.5) in the form

T na (x) = ta(x) +
1

m′a(x)
T n−1
a (ma(x))− I(x) (B.11)

with the integral term

I(x) =
∫ ma(x)

0
dzg′′a(z)T n−1

a (z). (B.12)

C Numerical procedure for calculating the measure of the periodic
windows

The parameter values atan which correspond to the tangent bifurcations of
the p-periodic windows were found by solving the two coupled transcendental
equations

∂m(p)
atan(x)/∂x = 1, m(p)

atan(x)− x = 0, (C.1)

where m(p)
a (x) denotes the p-times iterated reduced map. This corresponds to

the situation where m(p)
a (x) touches the bisector. Somewhat after a tangent

bifurcation one will unavoidably find a situation where a critical point xc,
which corresponds to an extremum of m(p)

a (x), crosses the bisector. When this
critical point is exactly located on the diagonal, the reduced map or its higher
iterations have a fixed point and there exists a specific Markov partition on the
interval [37,38]. The periodic orbit generated by the corresponding parameter
value ass is superstable,

m(p)
ass(xc)− xc = 0. (C.2)

By further increasing the parameter value up to acr a crisis takes place, and
this again corresponds to the existence of a certain Markov partition.

Based on this scenario, the full numerical procedure which was used for cal-
culating the measure of periodic windows is as follows: The values of ass cor-
responding to superstable solutions were first calculated by a combination of
bisection with the Newton method. The parameters for the tangent bifurca-
tions could then usually be found by the modified two-dimensional Newton
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method [70]. However, the highly discontinuous nature of m(p)
a (x) made its

implementation very inefficient. Instead, starting in the vicinity of each ass
we again combined the one-dimensional Newton and bisection methods. This
ensured that no windows were missed. Finally, the parameter values corre-
sponding to crisis points acr, which are also defined by Markov partitions, can
be found by solving respective equations that are formally analogous to Eq.
(C.2).
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