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Abstract

New experimental and numerical investigations of confined systems of particles
demonstrate the existence of rotational excitations. We develop here a statistical
theory of finite systems, including rotational modes, by introducing the angular
momentum into the formalism and by constructing the relevant distributions. As
special applications we study systems driven to a prescribed kinetic energy by nega-
tive friction or by special isokinetic thermostats. Several distribution functions which
are solutions of the Liouville or Fokker-Planck equations are given. The theory is
applied to Coulomb clusters confined by parabolic forces .
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1 Introduction

The development of the statistical mechanics of finite systems starts with the
pioneering papers of Gibbs [1]. In the twentieth century the theory of finite
systems was developed mainly in connection with the theory of clusters [2].
There exist several examples of finite physical systems which show sponta-
neous excitation of rotational modes. As examples we mention rotations of
grains in confined dusty plasmas and in confined plasmas created by strong
laser pulses. Another well-studied example are systems of active Brownian
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particles, discussed in our previous work [3–6]. What all of these systems have
in common is that they are driven by an energy supply to rotational modes.
Here we wish to contribute to the general theory of the statistical mechanics
of confined finite systems, using special considerations of the angular integrals
of motion. In the last decade a new interest arose from new experimental pos-
sibilities for holding a finite system of particles in special field configurations
using, for example, Paul traps, Penning traps, and heavy ion storage rings [7].
There also is strong interest in the properties of confined plasmas created by
strong laser pulses [8]. Recently in dusty plasmas rather large Coulomb clus-
ters have been created [9–12]. Considerable progress has also been achieved
in the theoretical description of these phenomena. For example, 2D Coulomb
clusters with parabolic confinement were studied by Lozovik, Bedanov and
Peeters and others [13]. These authors give a Mendeleev table of the elemen-
tary excitations for N = 2 − 52. Further, the spectral properties of classical
2-d Coulomb clusters have been investigated [14]. It was shown that for any
axial symmetric system, the system as a whole can rotate corresponding to
an eigenfrequency ω = 0. We mention also several simulations which demon-
strate the dynamics of 2-d Coulomb clusters [15]. The most interesting new
effect observed experimentally and theoretically is the excitation of rotational
modes, and the present work is devoted to a discussion of this phenomenon.
The development of a corresponding statistical theory of finite systems includ-
ing rotational modes is still in its infancy. As we will show here this requires
the introduction of the angular momentum into the formalism of statistical
mechanics. In standard statistical mechanics, characterized by canonical dis-
tributions, the angular momentum usually does not play a role except for
special systems as e.g. rotating stars [16]. Assuming canonical distributions
the mean angular momentum is alway zero. This follows from the Maxwell
distribution which is peaked around zero velocity. Here we need distribution
functions which include the angular momentum explicitly in a non-trivial way.
We will profit from four directions in the theory of far from equilibrium sys-
tems,

• the theory of relevant distributions [17,18]
• the theory of canonical-dissipative systems [19–24].
• the theory of active Brownian particles [3–6]
• the theory of thermostats [25,26].

In all of these different approaches a rather general ensemble theory can be
developed. Most of the applications of the theory for nonequilibrium distrib-
utions have been to transport theory [17, 18], and the theory of thermostats
has largely been applied to molecular dynamics [25, 26]. On the other hand
the theory of canonical-dissipative systems and the theory of active Brownian
particles mainly concentrated on biological applications, e.g. cell and swarm
dynamics [3–6].
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2 Construction of Nonequilibrium Ensembles

2.1 Observables describing rotational modes

In this section we develop some aspects the general theory of the classical and
quantum statistical mechanics of confined finite systems making a special con-
sideration of the angular integrals of motion. Let us consider an N− particle
system with the Hamiltonian:

HS =
N∑

i

p2
i

2m
+

1

2

∑

i6=j
V (ri − rj) . (1)

Including an embedding in surroundings, a heat bath, we have two additional
terms in the total Hamiltonian:

Htotal = HS +HB +HSB

here the bath is modeled by HB = HB(Q,P ) , and the coupling by HSB =∑N
i V (ri, Q). Special cases are the isolated system with HSB = 0 and external

fields V ext(ri), modeling traps.
Let us discuss now the observables corresponding to conserved or prescribed
quantities. Since the choice of these observables is not clear from the beginning,
candidates we consider are the invariants of the dynamics and quantities which
are prescribed by the boundary conditions. Among the invariant quantities is
the angular momentum of special interest is in our context:

LN =
N∑

i

Li, Li = ri × pi .

Further L2
N and higher powers of the angular momentum are of interest. The

time evolution is given by:

d

dt
LN =

i

h̄
[H,LN ] =

i

h̄
[HSB,LN ] . (2)

We will assume central forces, so that any change of the angular momentum is
due to the “bath”. If the coupling HSB is absent or has rotational symmetry
then the total angular momentum is a conserved quantity. Alternatively we
may prescribe the angular momentum by boundary conditions. For the relax-
ation time of the angular momentum we find from linear response theory the
expression

τL ∝
∫ ∞

0
dt 〈

(
dLN
dt

)

t

(
dLN
dt

)

t=0

〉 ,

i.e. if the torque is weak, the relaxation time is long. The equilibrium correla-
tion function may be evaluated by simulations or by analytical methods like
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perturbation expansions.
Among the quantities which may be prescribed by the surrounding, the kinetic
energy is of special interest. Due to specific boundary conditions in some sit-
uations the individual kinetic energies are prescribed up to certain accuracy.
For example, the interaction with a laser beam or with a surrounding plasma
may fix the kinetic energies of the individual particles Ti around some value
given by the laser intensity

Ti =
mi

2
v2
i ' T0 .

In a recent paper Trigger and Zagorodny [27] have shown that the charged
grains in a dusty plasma have a velocity distribution which is peaked around
a characteristic kinetic energy of the grains.

2.2 Distributions for the relevant quantities

As pointed out above, if the couplingHSB is absent or has rotational symmetry
the total angular momentum is a conserved quantity. Alternatively we may
prescribe it by boundary conditions. Then, in classical or quantum statistical
approach

ρ = ρ(HS, N,LN ) .

Such a distribution is then given by the initial conditions, and this may be a
canonical distribution, but also any other forms of functional dependence are
possible. Two cases are of special interest:
1) For rotating bodies of N particles which are only weakly coupled to an
external heat bath and which otherwise are in internal equilibrium, the distri-
bution is well known. Here the angular momentum LN is given as a conserved
quantity and we may assume an extended Gibbs distribution (see Landau and
Lifshits [16]).

ρeq =
1

Zeq
e−β(HS−µN−ω·LN) . (3)

here ω is the angular velocity. 2) If the torque due to the surrounding bath is
weak, then LN is nearly conserved, and it is a long-living mode of the system.
In particular this is the case if the cluster and the surroundings have nearly
spherical symmetry. Then LN , L2

N , etc. are quasi-conserved and should be
included in the relevant distribution [17,18].
Assuming that several n− order moments of the angular momentum are given
at time t

Tr{ρrel(t)L
n
N} = 〈LnN 〉t
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then we find the distribution by maximizing the entropy following standard
methods [17,18]. In our case we get the generalized Gibbs distribution

ρrel(t) =
1

Zrel(t)
e−β(HS−µN−

∑
n
ω(n)(t)Ln

N) (4)

Here the Lagrange multipliers ω(n)(t) are determined by the prescribed aver-
ages as shown in detail e.g. in [17,18]. Of special importance is the case n = 2,
i.e. the square of the angular momentum is given.
Now we will consider relevant distributions including kinetic energy and angu-
lar momentum. As already mentioned, sometimes the experimental conditions
are such that the particles are driven to to a prescribed kinetic energy

v2
i (t)→ v2

0

Examples are charged grains in dusty plasmas [11, 27] or Coulomb clusters
driven by a strong laser field. Due to the interaction with the surrounding, in
the examples the bath is provided by the plasma ions or the radiation field,
and the particles are accelerated to certain kinetic energy. In this case we
postulate that the distribution is of the following form

ρN (v1, ...,vN ) = ΠN
i=1 exp

[
−αv(v2

i − v2
0)2
]

(5)

According to this distribution the most probable squared velocities (kinetic
energies) are at the values v2

0. Here αv is an appropriate parameter character-
izing the dispersion. We denote this type of ensemble “isokinetic ensemble”.
This notation is borrowed from molecular dynamics, where Gaussian isoki-
netic ensembles play an important role [25,26].
This can be generalized to conditions that fix the individual energies Hi of the
particles around a given value H0. This leads to the Gaussian distributions

ρN (v1, ..., vN) = ΠN
i=1 exp

[
−αH(Hi −H0)2

]
(6)

In radially symmetric systems, this driving to v2
0 or H0 implies for a special

class of systems (an example will be given below) that Li is also fixed about
a certain Li0. This is due to internal connections between the invariants of
motion. Therefore we will consider also the distributions

ρN (L1, ..., LN) = ΠN
i=1 exp

[
−αL(Li − Li0)2

]
(7)

Let us briefly discuss the physical meaning of probability distributions with
prescribed angular momenta.

Where is the probability concentrated in the phase space? We consider as a
simple case a rotating 2-dimensional particle in a 4-dimensional phase space
(a physical realization will be considered below). Then fixing the total energy
H = E defines the surface of a sphere (or a cylinder if the kinetic energy
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Fig. 1.

Typical distribution of a rotating 2-d particle with fixed angular momentum
L2 = L2

0. The two possible values of the angular momentum select two tires
on the sphere H = const.. We see a projection of the 4-dimensional phase on
the x− y − vy− space.

is prescribed) in the 4-dimensional space. If, in addition, the square of the
angular momentum is prescribed, L2 = L2

0, we define this way two planes in
the phase space which intersect with the sphere on two perpendicular circles.
An example is shown in Fig. 1. This way the probability will be concentrated
on two “tires” in the phase space.
We used in this section the method of generalized Gibbs distributions [16]
and in particular the Zubarev method for constructing relevant distributions
[17,18]. These methods are of phenomenological character and connected with
the maximum entropy approach. We repeat the basic assumption: Due to the
boundary conditions certain averages as e.g. here the angular momentum LN
or L2

N are prescribed. This does not mean that the quantities are fixed, only the
averages are prescribed and fluctuations around the means which are described
by the distribution are possible. In the next section we will develop a more
special microscopically oriented method for the construction of nonequilibrium
distributions. This method is based on a theoretical model for a special driving
mechanism, the model of canonical-dissipative driving.

3 Driven Nonequilibrium Systems

3.1 Driving by canonical-dissipative forces

The term “canonical - dissipative” expresses a special extension of the Hamil-
tonian dynamics [19–24]. The new equations of motion have Hamiltonian
structure but contain additional dissipative terms. These terms, character-
izing the driving/dissipation, are fully determined by integrals of the conserv-

6



ative motion. The rather special character of this assumption allows in many
cases exact solutions of the dynamical and stochastic equations. The theory
of canonical-dissipative systems is closely connected with the theory of invari-
ants of motion. The relation between canonical- dissipative systems and finite
systems is based on the fact that in systems of finite particles which are held
in a field configuration, the invariants of motion play also a very specific role.
In macroscopic systems under normal conditions only the Hamiltonian is rel-
evant and other invariants as e.g. the angular momentum do not exist. This
is in part connected with the boundary conditions which forbid e.g. free rota-
tions of macroscopic systems. In driven finite systems of canonical-dissipative
type, rotational excitations and distributions of the angular momentum play
a special role [6]. In the simplest case the dissipation is determined by the
Hamiltonian I0 = H. However we may introduce also other invariants of mo-
tion: I1, I2, ..., Is e.g I1 = L2, ... In the general case we postulate the equations
of motion:

dpi
dt

= −∂H
∂qi
− ∂G(I0, I1, I2, ...)

∂pi
(8)

This system may be driven to certain bounded manifolds of the phase space,
which correspond to relative minima of the generating functionG. For example
the square of the angular momentum may be prescribed by

G(L2) = d(L2 − L2
1)

This driving force fixes the angular momentum and concentrates the motion
on a submanifold. In the final stationary state which is located on this sub-
manifold, the dissipative terms disappear, i.e. the final trajectories correspond
to a Hamiltonian system. The invariants of motion cannot be prescribed in
an arbitrary way, but they should be consistent with the target Hamiltonian
system and with other given invariants. Therefore prescribing one invariant
may fix also several others.
The stochastic theory may be formulated in the standard way by Langevin
and Fokker-Planck equations. Considering only 2 invariants H and L2 the
Langevin equations read:

dpi
dt

= −∂H
∂qi
− ∂G(H,L2)

∂pi
+ (2D)1/2ξi(t) (9)

The Fokker-Planck equations are given by:

∂ρ

∂t
+
∑

pi
∂ρ

∂qi
−
∑ ∂H

∂pi

∂ρ

∂pi
=
∑ ∂

∂pi

[
∂G(H;L2)

∂pi
ρ+D

∂ρ

∂pi

]
(10)
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The special structure of this partial differential equation allows to find exact
stationary solution depending only on H,L2.

ρ0(q1...qfp1...pf) = Q−1 exp

(
−G(H;L2)

D

)
(11)

The derivative of ρ0 vanishes if G′ = 0. This means the probability is maximal
at the surface H = E1, L2 = L2

1 where G is minimal. In the limit of small noise
D → 0 we get microcanonical ensembles with constant probability density on
shells. For special choices of G the distribution (11) may agree with one of the
relevant distributions discussed before. Let us discuss as a simple example one
particle with

H =
p2

2m
, G(H) = γH − α log(1 + βH) (12)

This leads to the Langevin equation

dp

dt
=

(
α

1 + βp2/2m
− γ

)
p

m
+ (2D)1/2ξ(t) (13)

The stationary distribution which solves the Fokker-Planck equation reads

ρ0(p) = Q−1

(
1 +

βp2

2m

)α/D
exp

(
− γp2

2mD

)
(14)

In the limit of small noise this distribution is sharply peaked around p2 = mv2
0

with the characteristic velocity

v2
0 =

2

m

(
α

γ
− 1

β

)
(15)

In the limit of small noise D → 0 or strong driving β → ∞ the velocity
distribution can be approximated by

ρ0(v) = C exp
[
−αv(v2 − v2

0)2
]

(16)

with αv = (α2/(2γD)). We notice that this distributions is of the type derived
in the previous section from Zubarev’s formalism (see eq.(5)). Physically this
distribution corresponds to a condition where the kinetic energies of the indi-
vidual particles are sharply peaked around certain mean values.
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3.2 Energy depot models and active Brownian particles

The special type of driving described before leads us to the concept of active
Brownian motion. This model unifies the idea of Brownian motion with the
model of (acoustic) oscillators driven by negative friction [3–5]. We will assume
here that the energy supply which drives the system is provided by an energy
depot [3,4]. In order to specify the dissipative forces and equations of motions
we consider 2 − d systems of N masses m (i = 1, 2, ..., k, ...N). The particles
are confined by a linear force −ar which attracts to the center of confinement.
We postulate a Langevin dynamics (m = 1):

d

dt
ri =vi ; (17)

d

dt
vi =F i − ari +

√
2Dξi(t) (18)

The dissipative forces have the following form:

F (e,v) = v(den − γ0) (19)

where e is the energy content of a depot and d is a conversion parameter. The
first term expresses an acceleration in the direction of v. The second term γ0v
is the usual passive friction, which by assumption is connected with the noise
by an Einstein relation D = γ0kT . We assume further that the Brownian
particles are able to take up energy, which can be stored in the depot e.
This internal energy can be converted into kinetic energy with a momentum
dependent rate denv2, which results in the acceleration in the direction of
movement. The exponent n is free so far. In the first variant of the depot
model (SET-model) we assume the exponent n = 1 and formulate the balance
of the depot energy [3,4,28]

de

dt
= q − ce− dv2e (20)

Here q is the rate of energy supply and c the rate of internal dissipation.
Assuming q > 0 and requiring that the internal energy depot relaxes fast
compared to the motion of the particle we get in adiabatic approximation the
effective dissipative force [3,4,28]

F = v

(
dq

c+ dv2
− γ0

)
(21)

For sufficiently large values of q and d the friction function may have a zero
at

v2
0 =

q

γ0
− c

d
=
c

d
ζ; ζ =

qd

cγ0
− 1 (22)
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Here ζ is the bifurcation parameter. For ζ > 0 and |v| < v0, we have a free
energy input, the system is driven (self-propelling).
We now discuss a second variant of the depot model where the exponent is
n = 1/2. In this case we assume the following balance of the depot

de

dt
= q
√
e− ce− dv2

√
e (23)

In this second model we get assuming q > 0 and requiring that the internal
energy depot relaxes fast compared to the motion of the particle in adiabatic
approximation

F = v

(
d

c
(q − v2)− γ0

)
(24)

Now for dq > cγ0 a root v2
0 = (dq/c) − γ0 > 0 exists and we get a cubic

expression which corresponds to the Rayleigh friction law. Both friction forces
have qualitatively the same shape which is shown in Fig. 2. A common way
of writing both model laws is

F = −γ(v2)v.

Here the friction γ is velocity-dependent, containing as a rule a negative part
at small velocities. Negative friction provides energy input (pumping) and
allows self-organization [22].
It is interesting to notice that the second model has another important limit.
Introducing the variable γ(t) = γ0 − d

√
e we find the “dissipative force”

F = −γ(t)v (25)

with a time-dependent friction which satisfies the dynamic equation

dγ

dt
=
d

2

(
v2 − c

d
γ − q +

c

d
γ0

)
(26)

In the limit c = 0 this reduces to a Nose’-Hoover dynamics.
Let us consider now the stochastic distributions. With respect to the stochas-
tic term in the Langevin equation we assume that only the passive friction
generates noise D = γ0kT .

In the simplest case of force-free particles, the kinetic energy is a conserved
quantity : v2 = const.. This means the system is canonical-dissipative. Con-
sequently we are able to find exact solutions for the probability following the
schema described above. For the SET-model we find the stationary distribu-
tion:

ρ0(v1, v2) = C exp

[
− v2

2kT
+

q

2D
log

(
1 +

d

c
v2

)]
(27)
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Fig. 2.

Friction force driving active particles: (i) Passive friction force (dash-dotted
straight line). (ii) SET-model for different strength of driving ζ = 0.5 (dashed
line); ζ = 2 (full line); ζ = ∞ (dash-dotted line with a step at zero); (iii)
Second model, cubic law of Rayleigh type (dashed line, same curve as for SET
with ζ = 0.5).

This distribution corresponds to eq. (14) derived above for the simplest ex-
ample of a canonical-dissipative system. We notice also the close relation to
Lorentz gas distributions [26]. Driving by velocity-dependent dissipative forces
may have similar effects as driving by isokinetic thermostats [25]. We have to
emphasize, however, that we discussed here only dissipative thermostats.
So far we have not considered rotations. In order to create an angular momen-
tum we combine a driving to prescribed kinetic energies, as described above,
with a rotational-symmetric confinement [5].

4 Rotations in confined Coulomb systems

As an application we now consider clusters of highly charged grains confined
on a plane in a parabolic well. The theory of the ground state of 2-dimensional
clusters of charged particles in parabolic confinement is due to Lozovik, Be-
danov, Peeters and others [13,14]. These authors investigated the spectrum of
excitations, in particular the rotational modes and derived a Mendeleev table
N = 2-52. We mention also the experimental investigations by Melzer et al. [11]
and simulations by Bonitz et al. [15]. Here we concentrate on the question of
nonequilibrium excitations under conditions of negative friction. Trigger and
Zagorodny have shown [27], that charged grains embedded into a plasma be-
have according to negative friction which is due to the absorption of ions. The
friction function derived by Trigger and Zagorodny [27] is at least qualitatively
very similar the models discussed in the previous section. Therefore we will
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use the driving by negative friction of the SET-type described in section 3 as
a simple model for the difficult nonequilibrium situation of real plasmas. We
study here only a simplified situation with the following properties:

• N grains are confined on a plane by parabolic forces,
• the grains are driven be negative friction to a characteristic velocity v0.
• the particles repel each other by means of Coulombic interactions

We model the mechanism of driving v2
i → v2

0 by a velocity-dependent dissipa-
tive force. Since the friction function derived by Trigger and Zagorodny [27]
is rather complicated we will model it here by a SET-like friction function
with adapted parameters. Following Trigger and Zagorodny we consider grains
with radius a, mass mg and charge Z which are embedded into an electron-ion
plasma with ion density ni, the ions have the temperature Ti, the mass mi,
the thermal velocity vT i and the charge Zi. The parameter of nonideality is
defined as

Γ =
ZZie2

kBTia
(28)

We assume that Γ > 1 holds, but on the other side the nonideality is not too
large. With these assumptions and notations a reasonable approximation of
SET-type of the friction function derived by Trigger and Zagorodny [27] reads:

γ(v2) = 2A(Γ − 1)
v2 − v2

0

v2
0 + δv2

(29)

where

A =
mi

√
2π

3mg
nia

2vT (30)

The fit parameter δ is found to be

δ =
(3Γ − 1)v2

0

10(Γ − 1)vT i
− 1 (31)

and the target velocity is approximated by

v2
0 = v2

T i

10Γ + 15Γ2 − 25

15Γ − 7
(32)

We will assume further that the grains move on a plane and are confined
confined in a parabolic well

U(r) =
1

2
ω2(x2 + y2)

These assumptions reflect in some approximation the conditions in the exper-
iments of Melzer, Klindworth and Piel [11]. In order to determine the char-
acteristic features we first consider the case N = 2 i.e. 2 grains are confined
in a parabolic well. In the ground state v0 = 0 both particles are at rest and
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have the distance r0 and the energy E0 corresponding to equilibrium between
Coulomb repulsion and the attraction to the center. In the opposite case of
very large excitations mv2

0 � (Ze)2/r0 the two particles move on high orbits
with the radius

r0 '
v0

ω0

Under these conditions we have equipartition of kinetic and potential energy
and find

H =
1

2
(v2 + ω2

0r
2) ' 2v2 ' 2v2

0

Further we find for the angular momentum

L2 ' r2
0v

2 ' v4
0

ω2
0

We see that for strong excitations these systems have additional conserved
quantities: kinetic energies, potential energies and angular momenta are in
fixed relations. These relations are specific for parabolic forces. We will study
now N particles and assume that the oscillator energy v2

0 is very large in
comparison to the Coulomb energy. The N particles which are driven to the
kinetic energy v2

0/2 will move on circular orbits in the external parabolic po-
tential U(r). The deterministic motion is determined by a balance between
centrifugal and attracting forces

v2

r
= |U ′(r)| (33)

This conditions leads to two azimuthal modes corresponding to limit cycle
orbits with the radius r0 = v0/ω0 and the angular momenta

L+ = +
v2

0

ω0
; L− = −v

2
0

ω0
. (34)

The special solutions of the deterministic equations describing the rotational
modes reads

x = r0cos(ω0t+ φ); y = r0sin(ω0t+ φ) (35)

The second limit cycle with negative angular momentum follows by inversion
of the direction of motion. The 2 limit cycles of our problem were represented
in Fig. 1. On the limit cycle orbits the following relations are valid

H ' 2T ' Nv2; L = ±H/ω0; L2 ' Nr2
0v

2 (36)

In other words, we have additional invariants of motion and the system is
canonical-dissipative on the limit cycle and near to it. This gives us a chance
to find analytical solutions for the probability. In order to construct these
solutions we use the relations (valid on and near to the limit cycle)
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γ(v2) ' γ(H1) ' γ(L2
1/r

2
0)

where H1 and L1 are given per particle. Introducing this into the known so-
lution for the velocity distribution we get functions of H1 or L1 which solve
the Fokker-Planck equation. In order to find the physically correct solution we
have to fulfill the condition that L is perpendicular to the coordinate plane.
This way we find the approximate solution

ρ0(x1, x2, v1, v2) = C exp

[
− H

kT
+

q

2D
log

(
1 +

d

c
H

)]

[
exp

(
−δ (L +H/ω0)2

)
+ exp

(
−δ (L−H/ω0)2

)]
(37)

with a free parameter δ characterizing the dispersion of L2 around H/ω0. The
probability is concentrated on two tires (around the limit cycles) in the 4-d
phase space as demonstrated already in Fig. 1. The distribution of the angular
momentum is bistable and is shown in Fig. 3.
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Distribution of angular momentum P (L) for strongly driven particles distrib-
uted on a ring. SET-model with parameters v0 = r0 = c = d = γ0 = 1; q =
3;D = 1/2

Now we discuss in brief the effect of Coulombic forces. We begin again with
N = 2. The Hamiltonian reads

H =
1

2
(v2

1 + v2
2) +

1

2
ω2

0(r2
1 + r2

2) + Φ(r) (38)

Including screening we have

Φ(r) =
Z2e2

r
exp(−κr). (39)
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Here κ is the screening coefficient [11], which is zero for pure Coulomb inter-
actions. In the ground state v1 = v2 = 0 and for κ = 0 we find the stationary
distance

r0 =

[
(Ze)2

2ω2
0

]1/3

At finite velocities the situation is much more complicated since the Coulomb
interaction influences the excitations. We consider here only the modes of
azimuthal excitations, i.e. no radial oscillations are excited. For the stationary
orbits we get from the equilibrium condition

v2
0

r0
= ω2

0r0 + Φ′(r0) (40)

which yields a nonlinear equation for r0(v0). In the Coulomb κ = 0 case the
stationary Hamiltonian and the angular momentum

L = (x1v1y + x2v2y)− (y1v1x + y2v2x)

are given by
H0 = 2v2

0; L = ±H/ω0 (41)

Including noise, we may approximate the stationary distribution by Gaussian
functions

ρ0 ' exp
[
−α(H − 2v2

0)2
] [

exp
(
−δ(L+H/ω0)2

)
+ exp

(
−δ(L−H/ω0)2

)]

(42)
where α depends on the model for isokinetic driving and δ is a (still unknown)
parameter characterizing the dispersion of the relation between L and H. In
reality the excitations in excited Coulomb systems are extremely difficult, as
one can guess already from he spectrum of the ground state excitations [14].
Here we restricted our study to the azimuthal modes which are connected with
rotational excitations.

5 Discussion

The purpose of this paper is to contribute to the general theory of rotating
systems. We studied first a general phenomenological theory based on gener-
alized Gibbs distributions, in particular, systems which are driven to a given
kinetic energy by negative friction. We used two models of driving:

• negative friction derived from the depot model SET,
• dissipative thermostats which fix the average of individual kinetic energies.

Both these models have in common the feature that the individual particles
are driven to distributions centered around prescribed kinetic energies. In or-
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der to create an angular momentum we combined this driving mechanism with
an rotational-symmetric confinement. Due to internal relations between the
invariants of motion these systems typically show rotations. As an applica-
tion we studied a simple model of 2-dimensional Coulomb clusters confined
in parabolic fields. For the case of two particles and also for N particles on a
ring we see in the model similar rotation phenomena as observed in experi-
ments [11]. A more realistic model of these phenomena should include the full
friction function derived by Trigger and Zagorodny [27], screening phenomena
and the interaction of a larger number of grains, corresponding work is in
progress.

We thank M. Bonitz, W.G. Hoover, R. Klages, S. Trigger and F. Schweitzer
for discussions on these topics.
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