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Abstract

We present in this work a numerical study of the dynamics of ensembles of point
particles within a polygonal billiard chain. This billiard is a system with no expo-
nential instability. Our numerical results suggest that some members of the family
exhibit normal diffusive behaviour while others present anomalous diffusion. Our
conclusions are drawn from the numerical evaluation of the mean square displace-
ment, the velocity autocorrelation function and its spectral analysis. Furthermore
we analyze the properties of the incoherent scattering function. The super Bur-
nett coefficient seems to be ill defined in all systems. The multifractal analysis of
the spectrum of the velocity autocorrelation functions is also reported. Finally we
study the heat conduction in our polygonal chain.
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1 Introduction

In the last years several works have shed light on our understanding of the
connections between transport and dynamical properties. The most relevant
results emphasize the role of dynamical chaos in the appearance of normal
transport in a dynamical system. In particular the relations between diffu-
sion and quantities as the Kolmogorov-Sinai entropy and the Lyapunov expo-
nents [1–5,?,7–9]. Furthermore, the Chaotic hypothesis, which describe non-
equilibrium phenomena, has been formulated for a class of hyperbolic systems,
the so called transitive Anosov [10]. The common conclusion in all these works
is that the stochasticity is required to describe irreversible phenomena and
also that relaxation comes from the exponential instability of the microscopic
dynamics.
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In general, it is a non trivial question to establish the necessary conditions
that a microscopic dynamics should have in order to observe normal trans-
port at macroscopic scale. In this respect, a series of recent works indicate
that dynamical systems with dynamical stochasticity weaker than in chaotic
systems may show normal transport [11–14]. Furthermore, there are numerical
evidences which show that a class of triangular billiards may be mixing [15,16].
All these results encourage a detail study of a class of dynamical systems which
may exhibit normal transport although no dynamical chaos is present.

In this paper we report our results on the dynamics of a particle confined in
a polygonal billiard table [17]. The main feature of this system is that there
is no exponential instability. Therefore it is interesting to study the transport
properties of such system. To this aim we shall numerically compute several
quantities related to transport such as the mean square displacement and
higher order spatial fluctuations. As it is well known in linear response theory,
the Green-Kubo formula gives a relation between the diffusion coefficient and
the integrated velocity autocorrelation function [18]. In this regard, we will pay
special attention to the behaviour of the velocity autocorrelation function and
its spectral function by analysing its correlation and information dimensions.
We continue with the analysis of the dispersion relation of the hydrodynamic
modes [19]. We will also evaluate the Fourier transform of the particle density
of the system for long wavelengths (the intermediate incoherent scattering
function [20]). Finally we investigate the heat conduction in these systems.

To summarize, we present in this work an analysis of the dynamics in a class
of irrational polygons. We are particularly concerned for the possible trans-
port properties that these billiards may exhibit, such as diffusion, correlation
decay and heat transport. We continue in this way our previous work on heat
conduction in the Lorentz channel [21].

2 The system

Since our main interest is to study transport properties and their relation to
specific dynamical properties we consider a point particle confined to move
inside a periodic chain. The fundamental cell D of the chain is a polygon in
the Euclidean plane (x, y) = <2. The border of the cell, ∂D, is composed of
straight lines. On the bottom, along the x-axis, there is a saw structure with
four equal lines forming two identical edges of angle π−2φ2. On the top there
are two equal segments forming an edge of angle π − 2φ1. The length of the
cell along the x-axis is 2d and h along the y-axis. Our billiard is constructed
by translations of D along the x-axis. In figure (1) we show an schematic
representation of the geometry of our system.
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Fig. 1. Schematic representation of the polygonal billiard chain and its parameters.
The fundamental cell D is also shown.

We will be mainly concerned for irrational polygons, in which at least one
angle is irrationally related to π. If all angles are rationally related to π then
the polygon it is said to be rational.

Associated with the billiard table there is a flow Φt(−∞ < t <∞) in the phase
space Γ̂ ≡ (x, y, px, py), where (px, py) is the momentum of the particle. The
conservation of energy confines the motion to a three dimensional restriction
of Γ̂, i.e. Γ ≡ (x, y, θ) = D×S1, where θ is the angle of the velocity measured
counterclockwise from the positive x-axis. The problem scales with energy
and therefore we can take the velocity such as |v| = 1. The flow Φt preserves
the measure dxdydθ. Within the billiard the particle moves freely and suffers
elastic collisions at ∂D. The boundary can be parametrized by the arclength s
with resp ect to some origin O. Each collision point is labelled by the impact
coordinate s and the projection of the velocity v with respect to the normal
unit vector at the boundary n, i.e. v · n = cos θ. The flow Φt induces a
mapping φ (Birkoff’s map) between pairs (s, cos θ) that preserves the measure
dsd(cos θ). 1

1 If the billiard is rational the dynamics takes place on a surface S of genus g(S) ≥ 1.
S has a non trivial topology, which is a consequence of the singular character of the
vector fields that can be constructed for the dynamics and that are derived from
the constants of motion that exist [22]. Such vector fields are singular for a rational
polygon and hence S is topologically equivalent to a multi-handled sphere. For a
simply connected billiard of n rational angles, αi = πpi/qi(i = 1, . . . , n), it is possible
to give an explicit formula for g(S). Let N be the least common multiple of qi, then
g(S) = 1 +N/2

∑n
i=1(pi− 1)/qi [23]. An example of multiply-connected billiard has

been studied in [37]. Trivially, the dynamics is non globally ergodic if g(S) > 1.
Nonetheless the flow Φt can be decomposed into one-parameter family of flows Φt

θ

on the surface S, with 0 < θ < π/N . The flows Φt
θ are called directional flows along

the direction θ. For almost all angles they are ergodic [23]. It is also known that for
a general polygon of n sides there exists a dense set of ergodic polygons. In fact, if a
polygon has an irrational angle such that it admits a superexponential fast rational
approximation then the dynamics is ergodic. In this sense it is possible to construct
irrational polygons that are ergodic [24].
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There is a wide mathematical literature related to rational polygons, in con-
trast to the much less amount of information available for irrational polygons.
However there are numerical studies, specially for triangles, that give some
insight into the properties of the dynamics in irrational polygons. Artuso [15]
has considered right triangles and shown numerically that these systems are
at least weakly mixing, whereas his numerical data is not incompatible with
mixing. Casati and Prosen [16] extensively studied general triangles in which
all three angles are irrational. Their numerical data strongly suggests that
irrational triangles are mixing, with correlation decay which appears to be
different to those in the triangular billards analyzed by Artuso. In fact, there
is no mathematical theorem that supports or precludes the possibility that
irrational triangles are mixing [25].

Our fundamental domain is taken an irrational polygon with φ1 = (
√

5−1)π/8,
φ2 = π/q(q = 3, 4, 5, 6, 7, 8, 9), h = 1 and d = h/(tan φ1 + tanφ2/2). With this
choice any particle can travel freely along the chain without colliding with the
boundaries of the billiard.

3 Particle diffusion

To study diffusion we consider a system with N (large) particles, such that is
possible to define a density n(x, t). The Fick’s law establishes a linear phenom-
enological relation between the small gradient ∇n(x, t) and the mass current
j(x, t), i.e.

D∇n(x, t) = j, (1)

where D is the phenomenological diffusion coefficient (independent of space
and time). In the case of large enough systems, and provided that there is
local conservation of mass, the density n(x, t) satisfies the diffusion equation

∂tn = D∇2n. (2)

If all particles are located at x = x0 at certain initial time t = 0, then the
solution of (2) is

n(x, t) =
1

(4πDt)1/2
e−(x−x0)2/4Dt. (3)

Assuming that all the particles are initially distributed in the system according
to their positions xi(t = 0)(i = 1, ...N) and because of the time evolution they
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are at positions xi(t) at later time t, the density n(x, t) can be written as the
average over the N particles

n(x, t) =
〈
δ(x− [xi(t)− xi(0)])

〉
, (4)

whereas its Fourier transform n̂(k, t) can be obtained as

n̂(k, t) =
∫
dkeikxn(x, t) =

〈
eik[xi(t)−xi(0)]

〉
. (5)

The function n(x, t) is known, after Van Hove [19], as self space-time corre-
lation function, and its Fourier transform n̂(k, t) is called incoherent interme-
diate scattering function. It is obvious that if the self space-time correlation
function satisfies the diffusion equation, then the incoherent intermediate scat-
tering function satisfies the diffusion equation in reciprocal space,

∂tn̂(k, t) = −k2Dn̂(k, t), (6)

with the initial condition n̂(k, 0) = 1. The resolution of this initial value
problem gives:

n̂(k, t) = e−k
2Dt. (7)

The diffusion equation can then be written, with the help of equation (5), as a
linear superposition of hydrodynamic modes spatially periodic with wavenum-
ber k. 2

nk(x, t) = eikxe−k
2Dt. (8)

It is convenient for our purposes to introduce, from the incoherent intermediate
scattering function, the dispersion relation for the hydrodynamic modes [26]

sk = lim
t→∞

1

t
ln n̂(k, t) = −k2D, (9)

in terms of which the hydrodynamic modes are expressed as [9]

nk(x, t) = eikxeskt. (10)

The term ∇2n in the diffusion equation is a consequence of a first approxima-
tion for the thermodynamic force conjugated to the mass current (Fick’s law).

2 We follow the notation of [9]
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If n(x, t) varies rapidly in space, new terms with higher spatial derivatives of
such function should be included in (2). The first term to add has the form
B∇4n, where B is the super Burnett coefficient. In this case a more general
expression for sk follows

sk = lim
t→∞

1

t
ln n̂(k, t) = −Dk2 +Bk4 + ϑ(k6). (11)

All this remains valid in the case that B is well defined. An interesting feature
of the incoherent intermediate scattering function is its relations to the spatial
fluctuations. In particular the relation between its first derivative and the
average value of the fluctuation ∆x = x(t)− x(0),

∂k n̂(k, t)|k=0 = 〈∆x〉, (12)

and also the relation between its second derivative and the mean square dis-
placement

∂2
kkn̂(k, t)|k=0 = −〈(∆x)2〉. (13)

If the diffusion equation holds it follows the Einstein relation for diffusion

〈(∆x)2〉 = 2Dt. (14)

In the same manner it is possible to derive relations involving higher order
fluctuations. A short calculation gives the explicit formula

〈(∆x)4〉 − 3〈(∆x)2〉2 = 24Bt, (15)

which is an Einstein relation for the super Burnett coefficient.

We speak of normal diffusion when the Einstein relation (14) is satified. Oth-
erwise, if the mean square displacement does not grow linearly in time we refer
to anomalous diffusion.

3.1 Numerical simulations

We start our analysis of the diffusive behavior of our systems by computing the
mean square displacement and studying its time variation in order to explore
the validity of the Einstein relation for diffusion. Due to the geometry of our
system the particles transport is restricted along the x-direction.
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Fig. 2. Mean square displacement of position for φ2 = π/q (q = 3, 4, 5, 6, 7, 8, 9). The
label on the right hand side of each curve indicates the value of q. The simulations
were done for 1.2 × 105 particles and up to time tf = 105. The value of the slope
for each curve is indicated in table (1).

We numerically integrated the motion for an ensemble of 1.2×105 particles up
to tf = 105 continuous time units. The mean square displacement was com-
puted from a Monte-Carlo average over the particles. We focused on the cases
φ2 = π/q, q = 3, 4, 5, 6, 7, 8, 9. Up to the maximum time we have considered,
the mean square displacement for the φ2 = π/3 system grows as ∼ t1.3, which
reflects a superdiffusive behavior. The case φ2 = π/4 behaves subdiffusively,
with < (∆x)2 >∼ t0.86. All the other systems have a power very close to one,
from this data we can infer that they satisfy the Einstein relation for diffusion.
These results are shown in figure (2) and table (1).

Our numerical results indicate then that the family of systems considered
presents both types of diffusive behavior, strange and normal, at least up to
the time we can reach in our simulations.

As we have previously discussed, an alternative way to characterize the nature
of the dynamics of an ensemble of particles is through the analysis of the sk
function (9), where k is the x-component of the wavevector. If the motion is
diffusive we should observe that for small values of k the results are compatible
with the equation (9).

To clarify this question we took an ensemble of 1.2 × 106 particles and inte-
grated their trajectories up to a time tf = 5 × 103. ¿From the data obtained
we constructed the histograms of x-positions as numerical approximation of
n(x, tf). In figure (3) we show the results for the systems π/3 and π/4, and in
figure (4) the data for the systems π/5 and π/6.
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φ2 B

π/3 1.30

π/4 0.86

π/5 1.03

π/6 1.04

π/7 1.06

π/8 1.01

π/9 1.01

Table 1
Diffusion with 1.2× 105 particles up to a continuous time 105. B was obtained from
the fitting < (∆x)2 >= AtB.

π/3 π/4

Fig. 3. Histograms of x coordinates for an ensemble of 1.2 × 106 particles at time
tf = 5 × 103, for φ2 = π/3 and for φ2 = π/4. The thick line (π/3) is the best
Gaussian fitting to the data.

π/5 π/6

Fig. 4. The same as figure (3) for the systems φ2 = π/5 and φ2 = π/6.
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Fig. 5. ln|n̂(k, t)| vs. time for φ2 = π/6, computed with an increasing number of
particles N and a fixed value of k = kx = 0.01, ky = 0.
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Fig. 6. The same as figure (5) for φ2 = π/3.

The figures also include the best Gaussian fitting (for comparison) of the data.
Clearly the π/4 system is far from a Gaussian shape, while the other systems
seem to be closer. The tails of the histograms are very well reproduced by
a Gaussian profile for φ2 = π/5 and π/6, but not for the φ2 = π/3 system,
which shows some deviations from the Gaussian bell.

We have computed n̂(k, t) from a series of numerical simulations with an
increasing number of particles and a fixed value of kx = k = 0.01, ky = 0. In
all cases it is observed (see figures 5,6,7) that the decay in time of sk is better
reproduced when the simulations involve a larger number of particles. It is not
however clear from these curves if such decay is really exponential. In order to
clarify this question we computed ln | ln(n̂(k, t))|, see figure (8). From the data
obtained it seems that the decay is not exponential for φ2 = π/3 and π/4, as
it seems to be in the cases φ2 = π/q, q = 5, 6, 7, 8, 9, at least up to the time
we are able to reach in our simulations. In these last systems our numerical
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Fig. 7. The same as figure (5) for φ2 = π/4.
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Fig. 8. ln | ln(n̂(k, t))| vs. lnt for φ2 = π/q (q = 3, 4, 5, 6, 7, 8, 9). The label on the
right hand side of each curve indicates the value of q. The dotted line has slope= 1.

simulations strongly suggest a diffusive behavior and a probable development
of hydrodynamic modes.

We could ask ourselves about the super Burnett coefficient in those systems
which show diffusive behavior. To analyze this point we considered the particu-
lar system φ2 = π/6 and computed 〈(∆x)4〉 and 3〈(∆x)2〉2 from single particle
simulations with an increasing length of time discrete series. If the Einstein
relation (14) holds and there is a well defined super Burnett coefficient, these
two quantities should have the same quadratic growth in time. For this reason,
if the curve obtained for 〈(∆x)4〉 is fitted to the function α1t2 + β1t+ γ1, and
the one corresponding to 3〈(∆x)2〉2 is fitted to the function α2t2 +β2t+γ2, the
condition α1 = α2 must be fulfilled in order to have a well defined Einstein
relation for the super Burnett coefficient (15). This would also imply that
the difference 〈(∆x)4〉−3〈(∆x)2〉2 should grow linearly in time. We proceeded
then to extract the coefficients α1 and α2 from the curves obtained for 〈(∆x)4〉
and 3〈(∆x)2〉2.
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Fig. 9. Schematic representation of a Lorentz channel.

We did the same evaluations for a Lorentz channel (figure 9) [21] in order
to have a case to compare with. In this system it is clear that the coeffi-
cients α1 and α2 get closer as soon as the statistics is improved (see figures
10(a),11). The results for the polygonal chain are drastically different (see fig-
ures 10(b),12) and drive us to the conclusion that there is not a well defined
super Burnett coefficient for these systems. So we conclude that the polyg-
onal chain has a well defined Einstein relation for diffusion, but not for the
super Burnett coefficient. These results were also observed in our ensemble
simulations. The fact that the higher moments of ∆x are not well defined in a
polygonal billiard has been previously studied by Dettmann et al [12]. Let us
point out that the disorder of the scatterers plays an important role in their
results, while in our case the scatterers are ordered [27].

In the escape-rate formalism [8,28] it is important to consider the escape dy-
namics of the particles from a given region, for instance taking absorbing
boundary conditions. The characterization of the escape dynamics can be
done by counting the number of particles, N(t), that remains at a given time
t inside the selected region. In hyperbolic systems this function decays ex-
ponentially in time and the rate of the decay is the so called escape-rate.
Let us point out that N(t) may present further structure, in the form of os-
cillations, which are characterized by the Pollicot-Ruelle resonances [29–31].
We have computed N(t) for the cases φ2 = π/3 and φ2 = π/6, propagating
105 particles in a system with 50 fundamental boxes, and they do not decay
exponentially (see figure (13)). To look closer to this decay we proceed as
follows. Let P (t) dt be the probability that a particle reaches the boundary
at a time within (t, t + dt). It follows that N(t) = N(0) − ∫ t0 P (τ )dτ , from
which P (t) = −dN(t)/dt. Thus if N(t) decays exponentially so does P (t). The
numerical results (see figure (14)) indicate that P (t) does not decay exponen-
tially, and the function c0tα exp(−γtβ) gives a good description of the data,
so we expect that N(t) does not decay exponentially in time.

A possible origin of the different diffusive behavior (normal and anomalous)
observed in the different members of the family of polygonal billiards could
be the set of periodic orbits and propagating modes which may be present in
the chain. We have preliminary found that in the case of φ = π/3 there is a
considerable number of families of propagating modes that contribute to the
superdiffusive behavior, these trajectories have a large horizontal component
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Fig. 10. Coefficients α1 and α2 for 3 < (∆x)2 >2 (t) = α2t
2 + β2t + γ2 and

< (∆x)4 > (t) = α1t
2 + β1t + γ1 .vs. n (collision time). Figure (a) for the

Lorentz-Channel and figure (b) for the polygonal chain.

and a small number of collisions within the cells (see figure (15)). On the other
hand in the case φ = π/4 it seems that the families of periodic orbits are
more abundant that in the case φ = π/3. This could explain the subdiffusive
behavior (see figure (16)). The system φ = π/6 is somehow intermediate, it
also has propagating modes (see for example figure (17)), as well as periodic
orbits but in small number of families, and furthermore these are propagating
modes that present a large number of collisions in the cells without horizontal
parts. Certainly this aspect deserves further research.
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Fig. 11. Comparison of the fluctuation < (∆x)4 > with 3 < (∆x)2 >2 for a single
particle simulation for the Lorentz channel. Figure (a) is for a time series up to
1.4× 107 and (b) up to 4.9× 107 collisions.
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Fig. 12. The same as figure (11) for the polygonal billiard. Figure (a) is for a time
series up to 3× 107 and (b) up to 4.9× 107 collisions.

4 Velocity autocorrelation function and spectral functions

The behaviour of correlations functions plays an important role in the un-
derstanding of transport properties. In particular the velocity autocorrelation
(VACF) function is linked to diffusion through the Green-Kubo formula [18].

The velocity autocorrelation function should decay fast enough in order to
have a well defined diffusion coefficient, it is then our aim to study the veloc-
ity autocorrelation function, in particular its decay and spectral properties.
With respect to transport, systems with real continuous spectrum and fast
enough decay of correlation functions may present Gaussian fluctuations in
their approach to equilibrium, in the sense of the Central Limit Theorem. For
such systems it is possible to have a well defined transport coefficient.

Let us consider then a dynamical system (Φt,Γ, µ), where Φt is a flow (t maybe
discrete) acting on a phase space Γ with an invariant measure µ [32]. To
study how statistical ensembles evolve in this system we consider correlation
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Fig. 13. Typical N(t) functions for the system φ2 = π/3 (figure (a)) and the system
φ2 = π/6 (figure (b)).
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Fig. 14. P(t) functions for the cases φ2 = π/3 (figure (a)) and φ2 = π/6 (figure (b)).
The thick line corresponds to the function c0t

α exp(−γtβ). In the case of φ2 = π/3
α = 3.42 and β = 0.30 and for φ2 = π/6 α = 2.39 and β = 0.44.

functions such as

CΓ
fg =

∫

Γ

dµ(x)f(Φtx)g(x)−
∫

Γ

dµ(x)f(x)
∫

Γ

dµ(x)g(x). (16)
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Fig. 15. Fast propagating mode in the system φ2 = π/3. This mode is characteristic
of this system.

Fig. 16. Typical continuous families of periodic orbits in the system φ2 = π/4.

Fig. 17. Typical propagating mode in the case φ2 = π/6.

If they decay to zero for any choice of f and g then we have a system with
the mixing property. It is relevant for our purposes to consider the Fourier
transform of the correlation function, i.e., the spectral function:

Sfg(ω) =

∞∫

−∞
dteiωtCΓ

fg(t). (17)

The spectral function contains information on how the system evolves in time
and which frequencies ω, real or complex, are important in such evolution
[33,34]. The complex frequencies are useful to deal with systems that show
decay, either exponential or algebraic, which can be characterized in terms of
the so called Pollicot-Ruelle resonances. They are also useful in the description
of decay properties in chaotic scattering [9,31]. In this article we only consider
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the real spectrum.

The spectral analysis of a system starts from the evolution operator Û t acting
on the Hilbert space H = L2(Γ, µ) of square integrable functions, with the
scalar product 〈f |g〉 =

∫
Γ f
∗(x)g(x)dµ(x). The evolution operator is defined

through the action of the flow Φt, as Û tf(x) = f(Φtx). Û t is unitary if Φt

is invertible and therefore its spectrum is on the unit circle. The properties
of the flow can be described in terms of the spectral properties of Û t. The
application of the spectral theorem gives a spectral decomposition of Û t in all
its components [32,35,36].

In general we have a spectral resolution of Û t with the form

Û t =
∫
dÊωe

−iωt (18)

where Êω is the spectral projector operator corresponding to the real eigen-
value ω. The decomposition is complete in the sense that

∫
dÊω is a resolution

of the identity.

The nature of the spectrum can be analyzed if we have a realization of a
spectral measure associated with a particular observable f within L2(Γ, µ).
The spectral measure associated with f is the inverse Fourier transform of the
autocorrelation function of f

CΓ
ff(t) = 〈f |Û tf〉 =

∫
〈f |dÊωf〉e−iωt =

∫
dµf (ω)e−iωt. (19)

The nature of the spectrum is contained in dµf (ω) or its cumulative function

ω∫

ωmin

dµf (ω′) = Ff(ω). (20)

If for any choice of f ∈ H the spectrum is continuous then the system is mix-
ing. However, if there is a point spectrum contribution the system cannot be
mixing or even weak-mixing. The presence of the weak-mixing property with-
out mixing has been studied and related to the existence of singular continuous
components in the spectrum [37].

As it has been mentioned before, a system with continuous spectrum, and for
which the autocorrelation function of some observable f decays fast enough,
may exhibit Gaussian fluctuations.

A generalized diffusion coefficient, Df , related to the autocorrelation function
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Fig. 18. Velocity autocorrelation functions for φ2 = π/6, π/4 and π/3.

of f by the Green-Kubo formula may be defined

Df =
1

2

∞∫

−∞
dτCΓ

ff(τ ) (21)

with the condition lim
T→∞

(1/T )
∫ T
−T dτ |τ |CΓ

ff(τ ) = 0. In terms of the spectral

function Sff(ω) it follows then

2Df = Sff(0). (22)

This equation links the behavior of the short frequency modes with transport,
encoded by the generalized diffusion constant Df at dynamical level.

In figure (18) it is shown the numerical VACF obtained for the systems
φ2 = π/3, π/4 and π/6 in numerical simulations with 106 particles, initially
distributed at random in one fundamental cell, and integrated their trajec-
tories over 215 time steps with ∆t = 10−2. The oscillatory behaviour of the
VACF in these systems contrast with the monotonous decay in the Lorentz
gas. In figure (19) it is represented the VACF in log-log scale.

As we have already emphasized, the VACF plays an important role in the
analysis of diffusion because of the Green-Kubo formula (21). If the VACF
decays in a convenient way there exists a well defined diffusion coefficient.
In any case, the decay of the VACF can be considered as an indication that
the systems treated are mixing. Nonetheless, mixing implies that correlation
functions decay for all observables and not just for the velocity.

The spectral functions corresponding to the VACF in figure (18) are repre-
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in figure (18).

sented in figure (20). In those systems in which correlations decay a good
agreement with equation (22) is observed.

The measure reconstructed from the spectral function may exhibit interesting
scaling properties [15,37], in particular the correlation and information dimen-
sions. The generalized dimensions of the measure dµf (ω), D1(µf ) and D2(µf ),
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are the scaling exponents defined by:

χ1,N =
2N∑

α=1

µf (IN,α) ln µf (IN,α) ∼ −ND1 ln 2 (23)

χ2,N = ln
2N∑

α=1

µ2
f (IN,α) ∼ −ND2 ln 2, (24)

where IN,α defines a partition of the spectral interval into α = 1, ..., 2N subin-
tervals.

It is known [37] that under certain assumptions D1 coincides with the Haus-
dorff dimension of the measure, meanwhile the D2 coefficient is related to the
integrated correlation function. In the case of continuos spectrum the inte-
grated correlation

C int
f (t) =

1

t

t∫

0

dτ |Cf (τ )|2 (25)

of an observable f is expected to decay to zero as:

C int
f (t) ∼ t−D2 (26)

with D2 defined in equation (24). The multifractal analysis of the spectral
measure obtained (see figures (21,22)) indicates that both, D1 and D2, are
almost one in all cases. This suggests again that the systems could be mixing.

5 Heat conduction

We also studied the heat conduction in the polygonal chain. In the case of the
Lorentz Channel normal heat conductivity is observed [38,21]. We will study
in this section in which cases (φ2 values) the heat conduction is normal in our
polygonal billiards. Some recent results, [13,14,17], suggest that it is possible
to have normal heat conduction in this type of systems. Let us point out that
another set of studies has been devoted to one dimensional chains of nonlinear
coupled oscillators [39–44].

To induce heat transport in our systems we put two heat reservoirs at the left
and right hand sides of the billiard chain (see figure (23)). The heat reservoirs
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T1T0

Fig. 23. Schematic representation of a polygonal billiard chain put in contact with
two heat reservoirs of temperature T0 and T1.

were modelled using stochastic kernels of Gaussian type,

P (v) = ±|v|
T
e−

v2

2T (27)
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where v is the x component of the velocity in the collision with the heat bath
at temperature T . The minus sign is taken at the right hand side and the plus
sign at the left reservoir. The Boltzmann’s constant is set to one.

Following Alonso et al [21] we computed the temperature field at the stationary
state. To achive this task we defined a grid of points in configuration space
(xi, yj), (i = 1, · · · , Nx, j = 1, · · · , Ny) around which there is a cell Cij. This
set of cells defines a partition of the configuration space. During the time
evolution the particle crosses the cell Cij in Nij occasions, let us call tα and
Eα(ij) the time spent by the particle and its energy during the α-visit to the
cell (α = 1, · · · , Nij). We define a coarse grained temperature field T (ij) as
the average

T (ij) = 〈E〉ij =

Nij∑
α=1

tαEα(ij)

Nij∑
α=1

tα

. (28)

This procedure defines a two-dimensional field. As we have mentioned the
transport takes place along the x direction, so we will focus on the x−T (x, y)
plane at some stages.

Another quantity of interest is the heat flux at the stationary state. The kinetic
energy is constant within the billiard and only changes when there is a collision
with a reservoir, in which case it suffers a change in energy

∆Ek = Ein − Eout, (29)

with k an index for the collision. If we sum over N of such events that take
place over a time tN we have for the heat flux

jn =
1

tN

N∑

k=1

∆Ek. (30)

The stationary state is reached if for long enough time tN the heat flux is
constant.

We numerically computed the temperature field (28), as well as the heat cur-
rent as a function of the system size. We analyzed how the heat flux scales
with the system size. For a single particle simulation and for a system with n
fundamental cells (not to be confused with the cells defined for the evaluation
of the temperature) we have a flux j1(n). In order to implement the thermo-
dynamic limit correctly we should study the current jn(n) = nj1(n) (for a
density of one particle per fundamental cell). In our numerical simulations we
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compatible with a well defined heat conductivity coefficient in the Thermodynamic
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five fundamental cells and T0 = 1, T1 = 1.2. The straight line is the ideal Fourier
profile.

found that jn(n) scales as γn−δ. We have to distinguish the cases φ2 = π/3
and φ2 = π/4 from φ2 = π/q (q = 5, 6, 7, 8, 9).

For φ2 = π/3 is clear that the heat flux is such that leads to an infinite heat
conductivity coefficient. In this case δ = 0.72. For φ2 = π/4 the heat current
scales with δ = 1.63, what yields a zero heat conductivity coefficient (see figure
(24)). All the other systems have scaling exponents very close to one, see [17].

The temperature field (see figure (25)) is linear for small temperature differ-
ences and shows some structure induced by the geometry of the boundaries.
We can conclude then that for φ2 = π/q (q = 5, 6, 7, 8, 9) the heat conduction
is normal, but not for the cases φ2 = π/3 and π/4, which are superdiffusive
and subdiffusive respectively.
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As notice in [21] the temperature field scales with length as T[0,L](x) = T[0,1](x/L).
Ifigure (26) we show the typical density plot of the two-dimensional tempera-
ture field. In all the systems we have a complete consistency with the results
of the diffusive properties of the billiard chain.

6 Conclusions

The different numerical simulations done indicate that the polygonal billiard
studied may present normal as well as anomalous diffusion. In any case there is
no exponential instability in the dynamics. In the case of the normal diffusive
behaviour there is a need to construct a theory in which the exponential
instability does not play a role, so another set of ideas are needed to contruct
such theory. Our aim in this work has been to compute different quantities to
make a careful analysis of the transport properties in the systems studied.

The mean square displacement seems to grow linearly in time for some mem-
bers of the family studied, but remarkably, for other members it grows either
in a subdiffusive or superdiffusive way. The analysis of the dispersion relation
for diffusion for long wavelengths has been also explored. We conclude from
the analysis of higher order fluctuations of position that the super Burnett
coefficient is not well defined in any system.
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The computation of the velocity autocorrelation functions and their spectral
functions reinforce our conclusion about the transport properties of the polyg-
onal chain. The multifractal analysis of the spectral functions reveals that the
Hausdorff dimension of the spectrum is probably one for all systems. The
numerical analysis also indicates that the correlation dimension is nearly one.

With regard to the properties of the escape dynamics of our billiards, the
number of particles that remain in a finite region in the system at a given
time, N(t), decays in time, but not exponentially. In fact the probability P (t)
that a particle escapes from the selected region at a given time t is found
numerically to be well represented by a function of the form c0tα exp(−γtβ),
where β is different from one.

The study of the periodic orbits and propagating modes in the systems studied
reveals that those systems that behave subdiffusively have a large number of
continuous families of periodic orbits. In contrast, those systems that behave
superdiffusively present an important set of families of propagating modes
that may be responsible for the supperdiffusive behaviour observed. The other
systems are somehow intermediate, notheless our results in this point can only
be consider as preliminar.

In the last section we studied the heat conduction in the chain. The temper-
atures were simulated by stochastic kernels. The conclusion is the expected
one, this is, the systems that are diffusive have normal heat transport, and
those for which the diffusion is anomalous develop anomalous heat transport.

It remains to study the nature of the non-equilibrium stationary states for
diffusion and heat transport, but the fact that the polygonal billiards do not
have exponential instability may complicate such analysis. The structure that
these non-equilibrium stationary states may develope is an interesting open
question.

Finally we would like to stress that we present in this work only numerical
results. It would be of great interest to have some conclusive mathematical
results on the questions studied in this paper.
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