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Abstract

Using probability distributions obtained from periodic orbit expansions of steady
states of thermostatted particle systems, we introduce a quantity which character-
izes the distance of such steady states from equilibrium states. We call this property
the periodic orbit entropy.
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1 Introduction

For an equilibrium ensemble of systems the Gibbs entropy is a well-defined and
calculable property. In contrast, for a nonequilibrium ensemble of thermostat-
ted systems, starting from an equilibrium initial state, the Gibbs entropy
diverges with time towards minus infinity. Then, if an ensemble of systems
initially at equilibrium is perturbed by an external field and a thermostat for
a time T , and after that is left to relax by removing both the field and thermo-
stat (i.e. it is left to relax by Hamiltonian evolution), the Gibbs entropy does
not change from the value it had at T . If one believed that the Gibbs entropy
represented the real entropy of the system, this would lead to the absurd re-
sult that the final entropy of the relaxed system depends upon the length of
time T the field and thermostat were applied. Physically we expect that the
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nonequilibrium thermodynamic entropy can only depend on T if the system
did not reach a steady state in that time. For all longer values of T , after the
system has reached a steady state, we expect the relaxed system to have the
same entropy regardless of the value of T . Moreover the Gibbs entropy for
the relaxation to equilibrium remains constant rather than rising to the value
of the equilibrium entropy. From this and other considerations, one concludes
that the Gibbs entropy of thermostatted models cannot possibly represent the
real entropy of the systems described by such models.

Despite this difficulty, various quantities related to the Gibbs entropy are cur-
rently used in the Statistical Mechanics literature in order to characterize
nonequilibrium steady states of thermostatted systems, see, for instance [1,2].
Although it remains to be demonstrated that those quantities actually repre-
sent the thermodynamic entropy of nonequilibrium systems, we believe that
they may be used to measure how far from equilibrium a system might be.
In the same spirit, we use the idea of a periodic orbit measure to construct a
particular kind of coarse grained Gibbs entropy, which measures the deviation
of the phase space probability distribution of a nonequilibrium system in a
steady state from its equilibrium counterpart. A similar approach has been
used to calculate the configurational entropy of network-forming materials [3].
One could give a more detailed historical account of the well known debate
on the use of the Gibbs and coarse grained Gibbs entropies in nonequilibrium
statistical mechanics. However, we don’t find this account particularly useful
here, hence we refer the reader to the existing literature such as [1,2,4–7],
where different views are presented.

As an example to illustrate what we have in mind, consider the field de-
pendent thermostatted periodic Lorentz gas [8,9]. Although this example has
only one moving particle our approach should be applicable to systems with
more degrees of freedom, such as that in Ref [10]. The phase space for the
thermostatted Lorentz gas is three dimensional as the constraint of constant
kinetic energy eliminates one degree of freedom. One of these dimensions can
be eliminated by taking as a Poincaré section the points of phase space cor-
responding to collisions of the moving particle with the surface of the circular
scatterers (of radius r = 1). This way, a point on the Poincaré section is spec-
ified by the two angles (θ, φ) representing the direction of the velocity of the
moving particle and the point of impact on the scatterers surface, respectively
[9]. A periodic orbit representation of the steady state probability distribution
in this two dimensional phase space can be constructed by searching for peri-
odic points in the Poincaré section as done, for instance in [9]. In this context,
exploiting the periodicity of the system, it suffices to consider the probability
distribution in the elementary cell whose replicas tile the whole phase space.
Then, there are two kinds of orbits that contribute to the probability distrib-
ution in phase space: those that are really periodic, and those that appear to
be periodic in the elementary cell, being periodic only up to translation by an
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integer number of lattice vectors [11,12,6,13].

2 Periodic Orbit Measures

In the present paper we make one assumption which is empirically motivated
by numerical results such as those of Refs [9,12,13]: we assume that periodic
orbit (PO) expansions can be used to compute the averages of phase variables
for the periodic Lorentz gas. In particular, let ω be an unstable periodic orbit
of period τω in the attractor Ω of the system, and let the quantity Bω be
defined by:

Bω =
1

τω

τω∫

0

B(StΓω)dt (1)

where B is a function of phase, the integral is carried over one period of ω,
and StΓω is the point representing the state of the system at time t, if it was
Γω ∈ ω at t = 0. Then, our assumption is the following.

Assumption: Consider the dynamical system describing the Lorentz gas sub-
jected to an electric field ε ≥ 0, and to a Gaussian thermostat. There is an
invariant measure µε such that

< B >ε≡ lim
T→∞

1

T

T∫

0

B(StΓ)dt =
∫

Ω

B(Γ0)µε(dΓ0) (2)

for (Lebesgue) almost all Γ ∈ Ω. Moreover, the following periodic orbit expan-
sion holds:

< B >ε= lim
τ→∞

∑
ω∈Pτ,δ(ε) τωΛ−1

ω,uBω
∑
ω∈Pτ,δ(ε) τωΛ−1

ω,u

, (3)

where Λω,u is the Jacobian of Sτω restricted to the unstable manifold of ω, Bω

is the average of B over ω and Pτ,δ(ε) is the set of unstable periodic orbits of
period within [τ, τ + δ) for any δ > 0, in the presence of the external field ε.

Equation (3), with B in the class of continuously differentiable functions, was
proved in Ref [14] to hold for axiom-A flows, and expresses the average of B
as a limit of weighted averages of orbital averages, where the weights have the
suggestive form
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τωΛ−1
ω,u = (time spent in ω)× (inverse instability of ω)

which attributes a higher weight to longer orbits with same instability, and
a lower weight to more unstable orbits of same period. In this sense, the
quantities τωΛ−1

ω,u can be used to define a probability density in phase space,
which could be used to define a sort of coarse grained Gibbs entropy for the
system under consideration. To do that, given any set Pτ,δ(ε) of finite period
orbits, let us imagine that the dynamics has been reduced to a Poincaré section
(which we also call Ω), and that this section can be partitioned into cells each
characterized by a constant probability density. We then take this constant to
be equal to zero if the cell contains no periodic points, and to be proportional to
τωΛ−1

ω,u, if the cell contains one point of the orbit ω. Because the periodic orbits
in Pτ,δ(ε) are at most a finite number for any τ, δ > 0, one can always find a
partition of Ω whose cells contain at most one periodic point. We assume that
in our construction the number nω will be the number of collisions which the
moving particle of the Lorentz gas undergoes along the orbit ω, and similarly
to [9,12,13], we will group orbits with same nω, to form Pτ,δ(ε) = Pn(ε), the
set of unstable periodic orbits with n collisions. This way, at any finite n one
obtains a non-singular probability distribution in Ω, of the following form:

f (n)
ε (Γ) =

∑
ω∈Pn(ε) Λ−1

ω,uτωχω(Γ)
∑
ω′∈Pn(ε) Λ−1

ω′,uτω′Vω′

=
1

Z
(n)
ε

∑

ω∈Pn(ε)

Λ−1
ω,uτωχω(Γ) (4)

where χω(Γ) is the characteristic function of the union of the n cells containing
the n periodic points of orbit ω, i.e. is one if Γ is in that set and zero otherwise,
and Vω is the area of that set.

3 The Gibbs Entropy

The Gibbs entropy of the state represented by a measure µε with a density fε,
where ε is a parameter characterizing the dynamics, is given by

Sε = −
∫
dΓfε(Γ) log fε(Γ). (5)

In the case that both µε and µ0 have densities fε and f0, the change in Gibbs
entropy between a state with ε = 0 and a state with parameter ε would be
given by
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∆Sε = −
∫
dΓfε log fε + k

∫
dΓf0 log f0. (6)

Unfortunately, this is not the case for the thermostatted Lorentz gas [15] if
ε represents the external field acting on the moving particles, and µε is the
corresponding natural measure. In fact, the dynamics of such a system is
dissipative, and its natural measure is singular for all ε > 0, hence Eq. (5,
6) do not make any sense in that context. Nevertheless, using the procedure
outlined in the previous section, one can consider approximate probability
distribution functions, which are not singular, by partitioning the phase space
into cells each containing one periodic point [11,16]. One can then ask what
are the changes undergone by these approximate probability distributions, as
the external field changes from 0 to ε > 0. For orbits of length n, these changes
are reflected in the quantity:

∆S(n)
ε = −

∫
dΓf (n)

ε log f (n)
ε +

∫
dΓf (n)

0 log f (n)
0 (7)

where each term on the right hand side will be called the nth PO-entropy at
the corresponding field (ε or 0 respectively). This may help to characterize
in a more physically interesting fashion the changes undergone by the natural
measure. In fact, it has been observed in [17–19], among others, that the phase
space distribution function of the thermostatted Lorentz gas does not appear
very different from the equilibrium uniform distribution, up to relatively high
fields (of order O(1)), despite the fact that such a distribution is singular for
all ε > 0 (see, e.g., [20] for more general systems than ours). These apparently
contrasting facts can be reconciled considering that the singularity of µε for
small ε manifests itself only on scales which cannot be easily observed. Indeed,
in periodic orbit expansions such as Eq.(3), increasing the periods of the orbits
corresponds to better and better approximations of the real averages < B >ε,
but in practice orbits of relatively short period (orbits with 10− 12 collisions,
in the Lorentz gas) afford a good representation of the steady states, for what
concerns the most important physical observables, like the conductivity, the
pressure, the Lyapunov exponents, etc [9,12,13]. Therefore, rather than look-
ing at the change undergone by the real distribution, which collapses from
uniform to singular as soon as the external field is made nonvanishing, it may
be more interesting to look at the changes undergone by the approximate
probability distributions constructed as in Sect 2, which are effectively used
in the calculations of the physical observables.
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ε orbits ∆ log(Z
(4)
ε ) ∆S

(4)
ε

0.000 108 0.0000 0.0

0.001 99 −0.0156 −0.0103

0.005 90 −0.0370 −0.0905

0.010 84 −0.0457 −0.1226

0.100 73 −0.1777 −0.2388

Table 1
Variation of the PO properties with the field ε for PO’s of 4 collisions. Here ‘orbits’

is the number of different periodic orbits of length 4, ∆ log(Z
(4)
ε ) is the change

in the logarithm of the PO partition function, and ∆S
(4)
ε the total change in the

PO-entropy from all terms on the right-hand side of equation (8).

4 Changes in the Approximate Distributions

For the Lorentz gas the total (or internal) energy consists of only the kinetic
energy, which is constant, so the appropriate ensemble in this case is the
microcanonical one, the uniform distribution in the usual billiard coordinates
(φ, sin(θ − φ)). Using the distribution in Eq. (4), one obtains

∆S(n)
ε = log

(
Z(n)
ε

Z(n)
0

)
−

∑

ω∈Pn(ε)

Λ−1
ω,uτωVω

Z(n)
ε

log(Λ−1
ω,uτω)

+
∑

ω∈Pn(0)

Λ−1
ω,uτωVω

Z(n)
0

log(Λ−1
ω,uτω) (8)

The expression in equation (8) gives the change in the nth PO-entropy (ob-
tained from orbits containing a fixed number of collisions, n) which can also be
taken as a measure of the variation in f (n) when the external field is changed
from 0 to ε > 0.

5 Numerical Results

A detailed study of the periodic orbits of the Lorentz gas in an applied field
has been carried out by Lloyd et. al. [9,22]. As an initial feasibility calculation,
we consider orbits of length 4 as these provide a reasonable sampling of the
attractor. We calculate the contributions to various terms in equation (8), the
first involving changes in the partition function Z (4)

ε [21] alone and the others
reflecting changes due to the change in the dynamical weights τΛ−1

ω,u with field.
The results are given in the following table (1).
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The first noticeable effect is that the total number of periodic orbits decreases
as the field increases. This decrease in orbits is due to pruning as the effect
of an increase in the field changes the path of the periodic orbit and leads
to intersections with scatterers (and hence removal of the orbit from the ob-
servable set). However, this is not the only effect as the change in orbit path
may also allow new periodic orbits to arise. For example, for N = 4 and
ε = 0.1 there are 4 new orbits (in the 73) that do not appear at any other
values of field considered here. The overall effect is still a net loss of orbits
with increasing field. If we consider orbits of length 2 or 3 then the pruning
as a function of field is more dramatic with typically half of the orbits lost
at one change in field value. For N = 4 this pruning is more gradual, but
the total number of orbits is not so large as to require large amounts of com-
puter time to sample them accurately. For longer periodic orbits the sampling
problems were such that comparison between different fields was no longer
satisfactory with the available numerical data. ¿From equation (8) it is clear
that the second and third terms on the right-hand side are nearly equal and
opposite in sign. Therefore it is vital that the weights Λ−1

ω,u(ε) and the periods
τω(ε)) are sufficiently accurate to make the results meaningful. To that end
much more accurate numerical work has begun to check the accuracy of the
present results and to extend the calculations to longer orbits to explore the
convergence of the PO-entropy. These results will be reported separately. It is
anticipated that the PO-entropy may initially appear to converge to a limit
as the length of the orbit increases, but eventually diverge as finer and finer
length scales are probed. However, the exponential proliferation of orbits may
also lead to an apparent divergence, but importantly this problem will be the
same for equilibrium as it is for nonequilibrium, so it is not the effect of a
non-zero value of the field.

We conclude by observing that ∆S(4)
ε is monotonically decreasing with the

field, like ∆ log(Z (4)
ε ) is. This indicates that both quantities ∆S (4)

ε and ∆ log(Z (4)
ε )

could be taken as measures of the distance of a nonequilibrium steady state
from the corresponding equilibrium state.

Acknowledgments

LR gratefully acknowledges support from GNFM-INDAM. GPM acknowl-
edges support from Politecnico di Torino where many of these ideas were
conceived.

7



References

[1] T. Gilbert and J. R. Dorfman, Entropy Production: From Open Volume-
Preserving to Dissipative Systems. J. Stat. Phys., 96, 225 (1999).

[2] T. Tel, J. Vollmer, and L. Matya, Shear flow, viscous heating, and entropy
balance from dynamical systems. Europhysics Letters, 53, 458 (2001).

[3] R. L. C. Vink and G. T. Barkema, (preprint arXiv:cond-mat/0204128)

[4] R. C. Tolman, The principles of statistical mechanics, (Oxford University Press,
1938).

[5] Boltzmann’s entropy and time arrow, Physics Today, September 1993.

[6] P. Gaspard, Chaos, Scattering and Statistical Mechanics. (Cambridge
University Press, 1998).

[7] E. G. D. Cohen and L. Rondoni, Physica A 306, 117 (2002).

[8] B. Moran and W. G. Hoover, J. Stat. Phys., 48, 709 (1987).

[9] J. Lloyd, M. Niemeyer, L. Rondoni, and G. P. Morriss, The Nonequilibrium
Lorentz Gas. Chaos, 5, 536 (1995).

[10] T. Taniguchi, C. P. Dettmann, and G. P. Morriss, Lyapunov spectra of periodic
orbits for a many particle system. J. Stat. Phys. 109, 747 (2002).

[11] P. Cvitanovic, The Power of Chaos, in Applied Chaos, J. Stringer, Editor. 1992,
Wiley.

[12] G. P. Morriss and L. Rondoni, Periodic Orbit Expansions for the Lorentz Gas.
J. Stat. Phys., 75, 553 (1994).

[13] P. Cvitanovic, P. Gaspard, and T. Schreiber, Chaos, 2, 85 (1992).

[14] W. Parry, Comm. Math. Phys., 106, 267 (1986).

[15] D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids,
(Academic Press, London, 1990), www.phys.unsw.edu.au/̃gary/book.html.

[16] P. Cvitanovic, R. Artuso, G. Mainieri, G. Tanner, and G. Vattay, Classical and
Quantum Chaos. 2001, www.nbi.dk/ChaosBook/.

[17] D. J. Evans and L. Rondoni, Comments on the entropy of nonequilibrium steady
states. J. Stat. Phys. 109, 895 (2002).

[18] C. P. Dettmann, G. P. Morriss, and L. Rondoni, Irreversibility, diffusion and
multifractal measures in thermostatted systems. Chaos Solitons and Fractals,
8, 783 (1997).

[19] G. P. Morriss, C. P. Dettmann, and L. Rondoni, Recent results for the
thermostatted Lorentz gas. Physica A, 240, 84 (1997).

8



[20] S. Goldstein, J. L. Lebowitz, and Y. Sinai, Remark on the (non)convergence of
ensemble densities in dynamical systems. Chaos, 8, 393 (1998).

[21] G. P. Morriss, L. Rondoni, and E. G. D. Cohen, A Dynamical Partition-Function
for the Lorentz Gas. J. Stat. Phys., 80, 35 (1995).

[22] C. P. Dettmann and G. P. Morriss, Phys. Rev. Lett., 78, 4201 (1997).

9


