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Abstract

We introduce and study a model of stochastic dynamics in a phase
space governed by Markovian laws of motion and filled with random traps.
The resulting (non-Markovian) stochastic trapped motion alternates inter-
mittently between periods of spatial gliding, where the motion ‘glides’ the
underlying Markovian dynamics, and periods of temporal trapping, where
the motion is halted in random traps.

We investigate the asymptotics and scaling limits of this model. We
prove that when the random trappings are heavy tailed then Mittag-Leffler
functions and probability laws emerge and govern the functional structure
and statistics of the system, and that the time flow has a random frac-
tal structure whose fractal exponent (dimension) is determined by the
‘heaviness’ of the trappings.

We study the effect of random trapping on general Lévy dynamics. We
prove that subjecting Lévy dynamics to heavy tailed trapping will always
result in: (i) sub-diffusive behavior - when the underlying Lévy dynamics
are of finite variance; and, (ii) space-time fractal behavior - when the
underlying Lévy dynamics are scale-invariant.



Furthermore, we explore the issue of first exit times. To that end, a
general Feynman-Kac framework for trapped processes is developed, and
a method of transforming ‘trapped’ Feynman-Kac equations to ‘standard’
ones is established. The study of first exit times enables us to quan-
titatively connect macroscopic observations to microscopic behavior in
general Markovian dynamics subjected to random trapping. In the case
of Lévy dynamics, first exit times from balls are computed, and the rela-
tionships between their statistics and the statistics of the trapped motion
are derived.

Keywords: Anomalous transport, temporal trapping, fractal time,
Mittag-Leffler functions and laws, Lévy dynamics.

1 Introduction

Anomalous transport has been reported in a large variety of systems both ex-
perimentally and theoretically [?]-[?]. The anomaly, defined relative to ordinary
diffusion, results in either sub-diffusive or super-diffusive behavior and is usually
related to flights and/or trapping events in the motion dynamics. The flights
and the trapping events appear intermittently in the trajectories of the mov-
ing particles. From these trajectories one can extract the basic motional rules
[?1[7).

Examples for anomalous transport include cases such as the motion of tracer
particles in rotating flows [?], turbulent diffusion [?], and motion of particles
subject to Hamiltonian dynamics [?] - where flights dominate; and cases such
as advection-diffusion of contaminants in water catchments [?], and transport
in amorphous semiconductors [?]-[?] - where the trapping dominates.

Of particular interest is the combined contribution of both flights and trap-
pings. This has been previously investigated using fractional kinetics equations
for Lévy flights and for heavy-tailed trapping events [?]-[?], and also within the
continuous time random walk framework for Lévy walks [?]. In [?]-][?] the flights
are instantaneous - i.e; the particle ‘jumps’ the Lévy flight in zero time, whereas
in [?] the particle has a finite (constant) velocity and ‘travels’ the Lévy walk in
this velocity [?],[?].

Here we revisit the problem from a different point of view: the transport al-
ternates between periods of motion - where the particle follows general Markov-
ian dynamics, and trapping events - where the motion is halted for a random
period of time (drawn from a general probability law). The transition from mo-
tion to halting is Markovian, i.e; it occurs randomly according to some trapping
rate. The underlying Markovian dynamics and the halting periods are hence-
forth referred to, respectively, as the ‘free motion’ and the ‘trapping durations’.
The combined transport is called the ‘trapped motion’. Although the free mo-
tion and the trapping are Markovian, the resulting trapped motion - due to the
arbitrarily-distributed trapping durations - is non-Markovian.

Pictorially, one can imagine stochastic motion in phase space governed, on
the one hand, by Markovian dynamics, but filled, on the other hand, by random



traps. The trajectories alternate intermittently between spatial gliding - ‘riding’
the Markovian dynamics - and temporal trapping.

We begin our exploration, in section 2, with a formal setting of the model
described above.

In section 3 we turn to investigate the free-time process - the time periods
in which the particle is in free motion, and derive its asymptotics and its scaling
limits. When scaling the free time process the Mittag-Leffler probability laws
emerge naturally, and turn out to govern the statistics of scaling limits. We prove
that there are, essentially, two trapping categories - each leading to dramatically
different limiting behavior: (i) light trapping - where the trapping durations are
of finite mean; and, (ii) heavy trapping - where the trapping durations are heavy-
tailed. In the ‘light category’ the behavior is highly regular, yielding a Law of
Large Numbers scaling limit, and Gaussian fluctuations around the limit. The
‘heavy category’, on the other hand, yields a much more interesting behavior:
the scaling limit is a random fractal time, whose fractal exponent (dimension)
is determined by the ‘heaviness’ of the trapping durations [?]. (There is yet
another, third, trapping category in which permanent trapping may occur. This
category, however, leads to a degenerate limiting behavior.)

In section 4 we study the issue of the first ezit times of the trapped motion,
and derive asymptotic results regarding their behavior. We calculate explicitly
the relationships between the statistics of the trapping duration, the first exit
times of the free motion, and the first exit times of the trapped motion. These
relationships enable use to connect macroscopic observations - the exit times
of the trapped trajectories, to microscopic behavior - the characteristics of the
trapping mechanism (trapping rate and duration).

In section 5 we proceed to investigate the effect of heavy-tailed trapping
on general Lévy dynamics, and, in particular, on Wiener dynamics (Brownian
motion) and on scale invariant Lévy dynamics. We prove that the linear time
dependencies and exponential functional structure - which govern the statis-
tics of Lévy dynamics - change to non-linear power-law time dependencies and
Mittag-Leffler functional structures. Moreover, we prove that if the underlying
Lévy dynamics has finite variance, then heavy-tailed trapping will always result
in a sub-diffusive behavior with explicitly computable characteristics. In the
case of Wiener and scale invariant Lévy dynamics we calculate the relationships
between: (i) the moments of the displacement of the trapped motion (only in
the Wiener case); (ii) the statistics of its first exit times from balls; and, (iii)
the ‘heaviness’ of the trapping durations.

In section ?? we study the scaling limits of trapped Lévy dynamics. We
focus on the case where both the Lévy dynamics and the trapping durations
are heavy-tailed - yielding a fractal behavior in both the space and the time
coordinates (each with a different characteristic fractal exponent). We compute
the Fourier transforms and tail probabilities of the trapped motion, and the tail
probabilities of the first exit times from balls. For both the motion and its first
exit times, the space-time fractal behavior results in a space and time power-law
behavior of the tail probabilities.

The issue of first exit times is a very special case of the, so called, Feynman-



Kac framework. We conclude, in section 77, with the development of a Feynman-
Kac framework for a general trapped motion model: arbitrary Markovian free-
motion dynamics, and arbitrary state-dependent trapping rates and durations.
We establish an explicit mapping reducing ‘trapped’ Feynman-Kac equations
to standard, ‘free’, Feynman-Kac equations. This, in turn, enables us to trans-
form problems regarding hard non-Markovian trapped motions to analogous
problems regarding their underlying, simpler, Markovian free motions.

2 The model

Consider the stochastic trapped motion of a particle, taking place in the d-
dimensional Euclidean space R? (or, alternatively, in a general phase space),
alternating intermittently between periods of free motion - during which the
particle follows general Markovian-type dynamics, and trapping events - dur-
ing which the motion is halted. When in motion, trapping occurs randomly
according to a Markovian trapping rate r (r > 0). When trapped, the motion
is halted for a random period of time, called the trapping duration, and de-
noted by S. The motion and the trapping are independent (i.e; de-coupled),
and the trapping durations are independent and identically distributed. Hence,
the particle’s trajectory alternates between periods of free Markovian motion
of exponentially-distributed duration, and trapping periods of S-long duration.
The resulting trapped motion is, clearly, non-Markovian.

The trapping characteristic
The ‘trapping mechanism’ is characterized by the trapping characteristic
®(w), w > 0, defined by:

P(w) =7 (1 - Elexp{-wS}]) , (1)

where E[-] denotes the expectation functional. Note that the trapping character-
istic @ is identical to the Lévy characteristic of a compound Poisson process P =
(P(t));>( with jump-rate r and jump-size S: Elexp{—wP(t)}] = exp{—®(w)t},
w>0."

Subordination

Let £ = (£(t));>( denote the trajectory of the (underlying) free Markovian
motion, and let X = (X(t)),, denote the trajectory of the trapped motion.
The trapped motion can be represented as a subordination of the free motion.
Indeed, let T'(t) denote the free, un-halted, time the particle spent in motion
during the interval [0, ¢]. Then

X(t)=¢&(T) ; t=0, ()

where the subordinating process 7' = (T'(t)),~, and the free motion process
£ = (£(t)),>( are independent (de-coupled).

We call the subordinating process T the free-time. The subordinating process
is also referred to [?]-[?] as the operational time.



Note that 0 < T'(¢) < ¢, and that the derivative of T" - the free-time’s ‘speed’
- alternates between the values 0 and 1: spending exponentially distributed
durations at the value 1, and S-long durations at the value 0.

Heavy tailed trapping
A non-negative valued random variable Y is a-heavy tailed with amplitude
a if its distribution tails are, asymptotically, of the form

a 1

PO>9~ iy

(y — o), (3)

where 0 < o < 1 and a > 0 (« being the order, or the ‘heaviness’, of the tail,
and a being its amplitude).

In the sequel, we shall put much emphasis on the case where the trapping
durations are heavy tailed. In this case the following connection, between the
tail-structure of the trapping duration and the behavior of the trapping charac-
teristic near the origin, holds:

S is a-heavy tailed with amplitude a
= (4)
d(w)~ra-w* (w—0).

The proof of (4) follows immediately from the definition of the trapping char-
acteristic (1) and Karamata’s Tauberian theorem for random variables ([?],
corollary 8.1.7).

3 The free-time process and the Mittag-Leffler
scaling limits

The role the free-time 7' = (7'(t)),~, plays in the analysis of the trapped process

X = (X(t));> is of key importance. This section is devoted to the study of the

subordinating free-time process.
We begin our investigation with the analysis of the free-time’s moments:

and Moment Generating Function (MGF):
Elexp{0T(t)}] ; 0cR (6)

(note that, since 0 < T'(t) < t, both the moments and the MGF indeed converge
and are hence well defined).

A direct computation of (5) and (6) is hard. However, their Laplace trans-
forms, as functions of time, are given explicitly by the following theorem:



Theorem 1 The Laplace transform of the m*™ moment of the free-time is given
by (w>0):

m)!

—wtE[T#)™]dt = ——— - 7
| et Broma = ——r— 7)
The Laplace transform of the MGF of the free-time is given by (w > 0, 0 <
w~+ P(w)):

w+ P(w)

/O exp{—wt} Blexp(0T(0)}]dt = — ) s (8)

The proof of theorem 1 is brought in the appendix.

In the case where the trapping duration is heavy tailed, the asymptotic
behavior (as ¢ — o) of the free-time can be deduced from the Laplace trans-
forms of theorem 1. Indeed, set U,,(t) to be the primitive of E[T(¢)™] (i.e;
Un(t) = fot E[T(s)™] ds), and observe the following chain of equivalences:

S is a-heavy tailed with amplitude a
<= (using (4))

m! N m! 1
o @t O™ (ar) W

(w—0)

<= (applying Karamata’s Tauberian theorem for functions ( [?], theorem
1.7.1) to (7))

Un(t) ~ 2+ aZ') (ar)y™ trem (t — oo)

Hence, differentiating U,, (t), we can conclude that Ym = 1,2, - - the follow-
ing statements are equivalent:

(i) The trapping duration S is a-heavy tailed with amplitude a.
(i) The m'" moment of the free-time is given, asymptotically, by:

E[T(t)"] ~ F(%'am) . (g) (t — o0). (9)

The asymptotic structure of the moments of the free-time is of a special
form - it bears the “fingerprints” of the Mittag-Leffler probability laws. Before
dwelling into this matter, let us have a quick review of this special class of laws.



3.1 Mittag-Leffler functions and laws

The Mittag-Leffler function of order a, 0 < av < 1, is a generalization of the ex-
ponential function (see [?], chapter XVIII, or the more recent [?] and references
therein) and is defined by the power series:

m

Eo(z) = Z m : (10)

m=0

When « = 0 then the right hand side of (10) is a geometric progression and
hence Fy(z) = 1/(1 — 2). When o = 1 then I'(1 + am) = m! and hence the
exponential function is retrieved: E;(z) = exp{z}.

Both Ey(z) and E;(z) are MGFs of probability distributions. Indeed, if My
is a unit-mean exponential random variable, then:

1

E [exp{zMy}]| = 1= Eo(2) .

And, if M; is a degenerate random variable centered at 1 (i.e; M7 = 1), then:
E [exp{zM1}] = exp{z} = F1(z) .

It turns out that also for 0 < a < 1 the Mittag-Leffler function F,(z) is
a MGF of a probability distribution and therefore: V0 < a < 1 there exists a
non-negative random variable M, such that

E [exp{zM,}] = Eo(2) , (11)

or, equivalently,

|
E[M™ o m=1,2- .

a]:m ; s 4y (12)

The probability law of the random variable M,, 0 < a < 1, is called Mittag-
Leffler of order .

Feller discovered (see [?]) that for 0 < o < 1 the following, remarkable,
representation holds: .
d

Mo, ;
(Ya)2

(13)

where £ denotes equality in distribution (law), and where Y7, is a non-negative
scale-invariant Lévy random variable of order a (0 < o < 1) with unit ampli-
tude: Elexp{—wY,}] = exp{—w*}, w > 0.

Now, returning back to the asymptotic behavior (as ¢t — o) of the free-time;

Combining (9) together with the moment characterization of the Mittag-
Leffler laws (12) we can conclude that the trapping duration S is a-heavy tailed



with amplitude a if and only if the MGF of the free-time is given, asymptotically,
by the Mittag-Leffler function:

E [exp{0T(t)}] ~ Eq (%:) (t — o0). (14)

This, in turn, implies a probabilistic limit theorem: if the trapping duration
S is a-heavy tailed with amplitude a then T'(t)/t* converges, in law, as ¢t — oo,
to the limit (1/ar) - M, where M, is Mittag-Leffler of order «.

The more ‘fundamental’ way to obtain and understand the asymptotic emer-
gence of the Mittag-Leffler limit laws is by the use of scaling, as we shall see in
the following subsection.

3.2 The Mittag-LefHer scaling limits

We categorize the trapping duration into trapping classes {Sa }o<a<1 defined as
follows:

Infinitely-heavy trapping (o = 0): S € Sy if and only if the trapping
duration has an atom at infinity: P(S = oc0) > 0;

Heavy trapping (0 < a < 1): S € S, if and only if the trapping duration is
a-heavy tailed;

Light trapping

(a =1): S € S if and only if the trapping duration has finite
mean: E[S] < oo;

and set:
rP (S = o0) a=0
Ca =14 Ta O<a<l 7 (15)
1+ rE[S] a=1

where, in the case 0 < a < 1, a stands for the trapping duration’s tail amplitude.

Having defined the trapping classes’ categorization, we are ready to state
the scaling limit theorem:

Theorem 2 Given that S € S,, introduce the scaled sequence

T.(t) = iT(nt) ;on=1,2,---. (16)

nol
Then; T, (t) converges, in law, to the scaling limit

at*

Ca

Two(t) Mo, (17)

where cq 1s given by (15) and M, is Mittag-Leffler of order c.

oo



The proof of theorem 2 is brought in the appendix.

The scaling limits
In the case @ = 0 we have obtained that Tw,(¢) is exponentially distributed
with rate ¢g = 7P(S = 00). The rate ¢y has a simple probabilistic meaning;:
while 7 is the rate of trapping, rP(S = o) is the rate of permanent trapping.
In the case @ = 1 we have obtained a deterministic, i.e; non-random, scaling
limit: 1
) =1 EmE !

That is, the scaled sequence {T'(nt)/n} , satisfies a Law of Large Numbers
(LLN). The LLN limit is nothing but a slowing down, by the factor ¢; = 1+
rE[S], of the standard ‘clock time’ ¢.

Both extremal trapping classes Sg and S; - corresponding, respectively, to
‘infinitely-heavy trapping’ and to ‘light trapping’ - have very wide basins of
attraction (in the space of distributions of the trapping durations). However
these classes yield trivial limiting behavior. On the other hand, the intermediate
trapping classes Sy, 0 < a < 1, yield non-trivial limiting behavior: the scaling
limits are random and fractal [?]. The fractal behavior of the scaling limit is
manifested in the power law ¢, and the fractal exponent (dimension) is the order
of ‘heaviness’ of the trapping tail . The basin of attraction of each intermediate
trapping class S, is, however, very narrow - consisting only of a-heavy tailed
distributions.

(18)

Fluctuations around the LLN limit

When the trapping duration has finite mean, i.e; when S € &7, then the
scaling limit is deterministic. Hence, in this case it is natural to study the
fluctuations of the scaled sequence {T'(nt)/n}52, around its LLN scaling limit
(18):

1 t
20(0) = VA (0 - Tolt) = Vi (370 - L) (a9

The scaling limit of the sequence of fluctuations {Z, (¢)}22, is given by the

following Central Limit Theorem:

Theorem 3 Assume that the trapping duration has finite variance. Then;
Zn(t) converges, in law, to the limit Z(t) which is Gaussian with mean 0
and variance

rE [52]

A1rES)° 20)

The proof of theorem 3 is brought in the appendix.



4 First exit times

Let D C R be an open and connected domain containing the origin, and let
7(X) and 7(§) denote, respectively, the first exit times, from the domain D, of
the trapped and free motions (starting at the origin).

The connection between the ‘free’ first exit time 7(€) and the ‘trapped’ first
exit time 7(X) is given by the following formula:

E [exp{—w - 7(X)}] = E [exp{—(w + ®(w)) - 7(£)}] - (21)

That is, the transformation 7(§) < 7(X) is equivalent, in Laplace space, to the
non-linear transformation
we— w+ d(w) . (22)
Formula (21) follows, as a corollary, from the general Feynman-Kac frame-
work which we shall develop in section ?77?.

An immediate consequence of formula (21) is that: (i) if both S and 7(£)
have finite mean then

E[r(X)] = (1+rE[S])-E[7(¢)] ; (23)
and, (ii) if both S and 7(£) have finite second moment then
E[r(X)*] =1 +rE[S)* E[r(&)*] + (FE[S?]) - E[r(6)] . (24)

Note that, when passing from free motion to trapped motion, the mean exit
time increases by the factor ¢; = 1 + rE[S] which we already encountered in
the Law of Large Numbers (18).as the factor slowing down the standard ‘clock
time’ ¢.

Combining formula (21) together with Karamata’s Tauberian theorem for
random variables ([?], corollary 8.1.7) yields:

Theorem 4

(a) Assume that E[7(£)] < oco. Then; the trapping duration S is a-heavy
tailed with amplitude a if and only if the ‘trapped’ exit time 7(X) is
a-heavy tailed with amplitude ra-E[r()].

(b) Assume that the ‘free’ exit time 7(&) is S-heavy tailed with amplitude b.
Then; the trapping duration S is a-heavy tailed with amplitude a if and
only if the ‘trapped’ exit time 7(X) is af-heavy tailed with amplitude
b(ra)”.

(c¢) Assume that E[S] < co. Then; the ‘free’ exit time 7(&) is S-heavy tailed
with amplitude b if and only if the ‘trapped’ exit time 7(X) is S-heavy
tailed with amplitude b (1 + rE [S])”.

10



(d) Assume that the trapping duration S is a-heavy tailed with amplitude a.
Then; the ‘free’ exit time 7(€) is S-heavy tailed with amplitude b if and
only if the ‘trapped’ exit time 7(X) is af-heavy tailed with amplitude
b(ra)”.

The proof of theorem 4 is brought in the appendix.

The relationships between the behavior of the trapping duration .S, the ‘free’
first exit time 7(£), and the ‘trapped’ first exit time 7(X), are summarized in
the following table (the constants ¢, are defined in (15), and Y ~ («;a) is a
shorthand for “Y is a-heavy tailed with amplitude a” (3)):

E[r(§)] < o0 7(§) ~ (8;b)
E[S] < oo | E[r(X)] = aE[r(§)] | 7(X) ~ (8:bc))
S~ (a;a) | 7(X) ~ (a5 caE[7()]) | 7(X) ~ (aB;beg)

This table is most helpful for deducing micro-behavior from macro-observations.
We explain; consider the case where the particle’s trajectory can not be observed
directly (hence making it unable to measure the trappings), but first exit times
can be detected. Comparing ‘free’ measurements to ‘trapped’ measurements,
and using the above table, immediately reveals the trapping structure.

For example; assume that measurements conclude that the ‘free’ exit time is
(-heavy tailed with amplitude b, while the ‘trapped’ exit time is y-heavy tailed
with amplitude ¢. Then, two cases are possible: (i) if 8 = v then the trapping
duration has finite mean and

E[S]=--1
B[S =5 -1
and, (ii) if 8 # ~ then the trapping duration is a-heavy tailed with amplitude
a, where
o ' _ (c)l/ﬂ
o= 5 ra=(y .

5 Trapped Lévy motion

In this section we study trapped Lévy motions, i.e; we investigate the effects
of random trapping in the case where the underlying stochastic motion follows
general Lévy dynamics. We assume that the free motion § = (£(t)),~, is a

d-dimensional Lévy process with Lévy characteristic ¥(6), § € R%
E exp(i6 - £(t)}] = exp{~W(0) - ¢} . (25)

Note that if the Lévy process £ has zero mean and finite variance, then it’s
mean square displacement is given by

E [|5(0)°] = tr (AW(0)) - ¢ (26)

11



where tr (+) is the trace operator and AW is the Laplacian of U.

We set 7(1) to be the first time the trapped motion X (starting at the origin)
exits a ball of radius [, [ > 0, centered at the origin:

T) =inf{t >0 ||| 1xw >1t.cn

For a general Lévy motion £ the following statements are equivalent:

(i) The trapping duration S is a-heavy tailed with amplitude a.
(ii) The Fourier transform of X is given, asymptotically, by:

E [exp{if - X(1)}] ~ Eq (-a—i\p(e)) -t“) (t—o0).  (28)

And, if € has zero mean and finite variance,
(iii) The mean square displacement of X is given, asymptotically, by:

_ tr(AV(0))

BIXOP] ~ Ciigay 1t o) (29)

This equivalence follows straightforwardly, using conditioning, from the sub-
ordination formula (2) and the asymptotic behavior of the free-time.

The effect of heavy-tailed trapping
It is illuminating to compare equations (25)-(26) with equations (28)-(29),
to see the effect of heavy-tailed trapping:

* The linear time dependence in (25)-(26) is replaced by the non-linear time
dependence t* in (28)-(29).

* In Fourier space the exponential functional structure exp (-) in (25) is
replaced by the Mittag-Leffler functional structure E,, (+) in (28).

Sub-diffusive behavior

A stochastic process whose mean square displacement displays a power law
asymptotic behavior of the type ¢-t* (as t — 0o, where ¢ is a positive constant),
is said to be sub-diffusive of order a (0 < a < 1). Hence, 29 enables us to assert
that:

Subjecting a Lévy process, with zero mean and finite variance,
to heavy tailed trapping yields a sub-diffusive behavior.

12



5.1 Wiener dynamics

We turn now to the case where the Lévy process is Wiener, i.e; when & =
(&(t));> is a d-dimensional Brownian Motion. In this case the following state-
ments are equivalent:

(i) The trapping duration S is a-heavy tailed with amplitude a.

(ii) The moments of the square displacement are given, asymptotically, by
(m=1,2,-):

B [|X(t)|2m} L L@d/2+m)  m! (E

T(d/2) T(+am) ) (t=c0). (30)

ar

(iii) The first exit times 7(I) are a-heavy tailed with amplitudes arl?/d (I > 0).

The proof of equivalence is brought in the appendix. Note that, taking
m =1 in (30), gives the mean square displacement:

B[XOP] ~ iy 7 (=) (31)

which, in turn, agrees with (29).

5.2 Symmetric scale-invariant Lévy dynamics

Brownian Motion is a special case of symmetric and scale-invariant Lévy dy-
namics. The class of a symmetric and scale invariant Lévy processes corresponds
to the class of Lévy characteristics of the form

U(0) =b(|02]” +---10a]") | (32)

where b > 0 and 0 < 8 < 2. The parameter (3 is the Lévy exponent of the
process, and b is its amplitude. A Lévy process with Lévy characteristic of the
form (32) is called symmetric B-stable with amplitude b.

When 3 =2 (and b = %) we return to the case of Brownian Motion. When
0 < B8 < 2 we are in the “pure Lévy” domain: the distributions are non-
Gaussian and heavy tailed, their variances diverge (and so do their means when
the Lévy exponent is in the range 0 < § < 1), and the trajectories are purely
discontinuous. The divergence of the variance of the free motion £ implies, in
turn, that the mean square displacement (let alone the higher order moments
of the square displacement) is not defined. However, the first exit times of
(centered) balls are well defined, and they even have finite means. Let us denote
by pa,s the mean time to exit of a symmetric B-stable Lévy process with unit
amplitude, from the unit ball. For a non-Gaussian symmetric g-stable Lévy
process with amplitude b the following statements are equivalent:

(i) The trapping duration S is a-heavy tailed with amplitude a.
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