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Abstract

We study the instantaneous and local energy injection in a turbulent shear flow
driven by volume forces. The energy injection can be both positive and negative.
Extremal events are related to coherent streaks. The probability distribution is
asymmetric, deviates slightly from a Gaussian shape and depends on the position
in shear direction. The probabilities for positive and negative injection are expo-
nentially related, but the prefactor in the exponent varies across the shear layer.

1 Introduction

Turbulent flows are a characteristic example for a dissipative macroscopic sys-
tem that is driven steadily far from equilibrium. Energy of motion is dissipated
continuously due to friction between the fluid parcels and has to be fed in by
some kind of stirring or a large scale shear gradient in order to sustain the
turbulent state [1]. Although this picture is as old as turbulence research itself,
not much is known about the interplay between the rates of energy dissipa-
tion and energy input. Several recent experimental efforts have focussed on
studies of the energy input rate into turbulent systems: Ciliberto and Laroche
[2] extracted the buoyant energy input in turbulent Rayleigh-Bénard convec-
tion, Goldburg et al. [3] measured the power transfered to a liquid crystal in
a chaotic regime above the electrohydrodynamic instability, Pinton et al. and
Cadot et al. studied the injection rate statistics with von Karman swirling
flow experiments [4–7].

On the level of a macroscopic description energy dissipation in a turbulent
flow is always positive, reflecting the irreversibiliy of the dynamics through a
direct relation between dissipation and entropy production. While in the mean
energy dissipation and energy uptake are equal, the fluctuations of energy
uptake are much less constraint and can take both signs.
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Fluctuations of the energy dissipation have recently attracted attention in
connection with the observation that in the case of reversible non-equilibrium
systems both signs for the entropy production are possible, but that the en-
tropy reduction is exponentially suppressed compared to entropy production
[8,9] (for a comprehensive review see [10]). For hydrodynamic systems these
ideas do not strictly apply, since the Navier-Stokes equation is not reversible.
But the study of Farago [11] shows that even in the absence of that symmetry,
as e.g. for a Brownian particle, interesting relations among fluctuations can
arise.

It is possible to modify the macroscopic equations, as in constrained Euler en-
sembles [12] or in isokinetic Navier-Stokes ensembles [13,14], in order to arrive
at a reversible macroscopic dynamics. However, we will in the following adopt
the traditional Navier-Stokes equation as our starting point, take the energy
uptake as observable, as in the experiments mentioned above, and embark on
a numerical study of the statistics of local energy input in a turbulent shear
flow and especially on the ratios of the probability density functions (PDF) for
negative and positive energy injection. We will also study the relation between
extremal injection events and coherent structures. The results presented here
connect to and complement studies of volume averaged fluctuation statistics
in hydrodynamic systems, including observations on thermal convection [2],
swirling flows [5,7], or GOY shell models [15].

The specific system we study here is a hydrodynamic shear flow driven by vol-
ume forces. The system is a macroscopic version of the microscopic molecular
dynamics simulations of shear flows in Evans et al. [8]. The main differences
between the microscopic and the macroscopic model are irreversibility and
the absence of a thermostat in the latter. The flow is incompressible and a
statistically stationary turbulent state is sustained by driving with a steady
volume force F = Fx(y)ex. The Navier-Stokes equation then reads

∂u

∂t
+ (u · ∇)u =−∇p+ ν∇2u + F , (1)

∇ · u = 0 . (2)

u(x, t) is the velocity field, p(x, t) the kinematic pressure, and ν the con-
stant kinematic viscosity. The equations of motion are solved by means of a
pseudospectral method in a volume V with periodic boundary conditions in
x (streamwise) and z (spanwise) directions and with free-slip boundary con-
ditions in shear direction y (for more details see [16]). The rectangular slab
has an aspect ratio of 2π : 1 : 2π. The spectral resolution is Nx ×Ny ×Nz =
256× 65× 256 for all runs and the number of degrees of freedom (or indepen-
dent Fourier modes) is about 2.5 · 106. With U0 the amplitude of the laminar
shear profile, u0 = U0 cos(πy/Ly)ex, and Ly the width of the slab, we can
define a Reynolds number Re = U0Ly/ν; for our simulations it takes values
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between 500 and 6000.

2 Energy balance

We want to study the changes in the total kinetic energy density of the fluid,
e(x, t) = u(x, t)2/2 . Its evolution is governed by

∂te+ ∂j(uje− νui∂jui + uipδij) = uiFi − ν(∂iuj)
2 . (3)

For the energy balance of the volume averaged kinetic energy, E(t) = 〈u2〉V /2
the second term on the left hand side of (3) does not contribute as it contains
a total divergence of a current whose surface integral vanishes for the given
boundary conditions. The balance for the volume averaged kinetic energy thus
reads

∂E

∂t
=

1

V

∫

V

uxFx dV − ν

V

∫

V

(∇u)2 dV = εin(t)− ε(t) . (4)

The energy dissipation rate ε(t), and its local version ε(x, t) = (ν/2)(∂iuj +
∂jui)2, are positive semi-definite (though zero values never occur in practice).
Thus, energy is steadily taken out of the system. In contrast to thermostatted
systems [8,13,14], the energy injection rate εin(t) is not synchronized to ε(t),
the system is able to store energy for intermediate time intervals and the
kinetic energy content, E(t), fluctuates in time.

For the volume forces studied here the local energy injection rate becomes

εin(x, t) = ux(x, t)Fx(y) =
νπ2U0

L2
y

cos(πy/Ly)ux(x, t) , (5)

where ux(x, t) is the streamwise velocity component. Energy that is given back
to the source corresponds to negative values of εin.

The variances of the fluctuations in the kinetic energy are shown for different
values of the Reynolds number in Fig. 1. In addition to the volume aver-
age 〈·〉V we will also use averages over planes at fixed y and over time or
combinations of spatial and temporal averages which are thought as statis-
tical ensemble averages. Those averages will be indicated by 〈·〉A and 〈·〉T ,
respectively. The fluctuations of volume averaged kinetic energy (left panel
of Fig. 1) decrease with increasing Reynolds number. This is an indication
that the increasing number of degrees of freedom that become dynamically
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Fig. 1. Left: Ratio of standard deviation of the kinetic energy fluctuations, σE ,
and the time average, 〈E〉T = 〈u2〉V,T/2, versus Reynolds number, Re. Solid lines
indicate the power laws with the corresponding exponents. Right: Mean energy
injection rate averaged in planes A = [0, Lx]× [0, Lz] at fixed y and in time, 〈εin〉A,T ,
as a function of the shear direction y. Reynolds numbers are indicated in the legend.
The particular kind of steady forcing gives rise to a y-dependent profile for the mean
energy injection rate.

active with increasing Reynolds number tend to average out. In quantitative
terms the number of active Fourier modes outside the viscous subrange (i.e.
with wave lengths exceeding the Kolmorgorov scale ηK = (ν3/ε)1/4) is roughly
N ∼ (L/ηK)3 ∼ Re9/4 [17], so that, assuming a law of large numbers, we might
expect σE ∼ N−1/2 ∼ Re−9/8. Experiments in a closed swirling turbulent flow
indicated a slope ∼ Re−1/3 [5]. For the Reynolds number range accessible in
our simulations no definite conclusion on either scaling can be drawn.

For the applied volume forcing the flow is not homogeneous in the shear direc-
tion, as indicated by the variations of average energy uptake with position in
shear direction (right panel of Fig. 1). It is homogeneous in the downstream
and the spanwise direction, so that for all statistical measures we can collect
in one ensemble all points in the x-z-planes for fixed shear coordinate y.

The higher energy content of the largest scales and the prevalence of large
coherent structures in shear flows [18] suggest that the energy uptake is dom-
inated by large scale flows. In shear flows, the predominant structures are
downstream vortices and streamwise streaks. One such event that is connected
with a negative energy injection rate is shown in Fig. 2. We do observe fluid
moving coherently into the opposite direction to the mean flow 〈ux〉A,T (y)
which is plotted in the lower right panel of Fig. 2.
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Fig. 2. Snapshot of the velocity field and the corresponding energy injection rate
field at fixed position z0/Ly = π for the run with Re = 6000. The upper panel shows
εin and the lower left panel shows ux and uy in a vector plot. The mean flow profile
〈ux〉A,T (y) is indicated in the lower right. Clearly, the dark regions with negative
εin conincide with regions where the fluid moves coherently opposite to the mean
flow.

3 Statistical analysis of the energy injection rate

The energy input can be large, both positive and negative, but it cannot be
arbitrarily large. Its volume average, εin(t), can be related to the rms velocity
fluctuations by a Cauchy-Schwartz inequality

|〈εin(t)〉T | ≤
〈
〈u2

x〉1/2V 〈F 2
x 〉1/2V

〉
T

=
νπ2U0√

2L2
y

〈ux,rms〉 . (6)

Fluctuations exceeding the external velocity scale U0 are extremely unlikely,
so that εin is bounded by ∼ U 2

0 . The local energy injection rate can be esti-
mated using the maximum norm, with a similar bound ∼ U 2

0 , but a different
prefactor. For the numerical simulations both bounds turned out to be much
too crude and much larger than both the maximal and the rms fluctuations
of the downstream velocity. These bounds would thus become effective in the
far tails of the probability distribution only.

We focus on the fluctuations of the instantaneous, pointwise energy injection
εin(x, t). We expect that any kind of spatial or temporal average over regions
and times longer than the corresponding correlation lengths and times would
push the distributions closer to Gaussian shape. It is interesting to note that
this does not seem to be the case in [4,5]. But even there an instantaneous and
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Fig. 3. Statistics of energy uptake for different vertical positions in the shear layer.
Left: Probability density function (PDF) of the energy input rate. The statistics
is based on about 100 turbulent snapshots separated in time by 1.5 large eddy
turnover times; it contains about 6 × 108 data points. The PDF’s are shown for
three different Reynolds numbers, Re = 3000, 5000 and 6000 and the y0 values
of the fixed planes are indicated in the figure. Right: Normalized moments of εin
versus position y0/Ly of fixed plane. Values for a Gaussian distribution, M4 = 3
and M6 = 15, are indicated by solid lines. Reynolds number was 6000.

local distribution should provide a more sensitive measure of possible devia-
tions from a Gaussian shape. Since our system is invariant under translation in
downstream and spanwise direction, but not in the normal direction, we study
the distributions for planes parallel to the bounding surfaces separately. The
probability density functions of the energy input rate in units of its ensemble
average, 〈εin〉V,T , and for different positions between the plates are shown in
Fig. 3.

The collapse of the PDF’s for different Reynolds numbers, rescaled by the
volume averages, indicates a universality of the fluctuations of large scale
injection (left panel of Fig. 3), as also observed in experiment [5,7]. The PDF
we find is similar to the one measured in [7] and much closer to Gaussian shape
than the one in [5]. As a measure of deviations we determine the normalized
and centered moments Mn = 〈(p − 〈p〉A,T )n〉/〈(p − 〈p〉A,T )2〉n/2 where 〈(p −
〈p〉A,T )n〉 =

∫
(p− 〈p〉A,T )nπ(p) dp and p = εin/〈εin〉V,T . In particular, the ones

for n = 4 and n = 6 differ from the Gaussian values of 3 and 15 which
are indicated by solid lines in the right panel of Fig. 3. However, the PDF
also changes when going from the free-slip side planes at y0/Ly = 0 towards
the center at y0/Ly = 1/2: the odd moments are smaller near the center,
indicating a more symmetric PDF (see right panel of Fig. 3). The PDF is
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closest to Gaussian here.

We next turn to the logarithm of the ratio of the probabilities for positive and
negative injection rates, log[π(p)/π(−p)], where p is again a particular value
of the dimensionless instantaneous and local dissipation, εin(x, t)/〈εin〉V,T . In
Fig. 4 we show

C0(p) =
1

p
log

[
π(p)

π(−p)

]
. (7)

A constant C0 indicates a linear exponential relation between the probabilities
of positive and negative energy injection. As is well known the slope C0 can
be related to the mean and the variance in a Gaussian model for the fluctua-
tions. Clearly the logarithmic ratio of the probability density functions is then
automatically linear. If the distribution has the form

π(p) = N exp(−(p− p)2/2σ2) , (8)

with normalization factor N , then

C0 = 2
p

σ2
= 2

〈εin〉A,T 〈εin〉V,T
〈ε2in〉A,T − 〈εin〉2A,T

. (9)

In Fig. 4, we have also indicated the C0 value as given by (9) by dashed lines.
For the PDF close to the center of the flow this estimate agrees with the value
from the PDF of the data, but near the side planes deviations become visible.
Here the strength of energy input is largest on average and coherent flow
structures are most prominent. In all cases our C0 is larger than unity. A C0

larger than unity was also found in Farago’s model of Brownian particle motion
where probabilities of time averaged energy injection rates were considered
[11].

4 Concluding remarks

We have studied the fluctuations of the energy injection rate in a turbulent
shear flow for various Reynolds numbers. The mean value of the energy input
rate and the shape of its probability distribution varies across the shear flow.
The results do not depend much on the Reynolds number and the probability
density functions collapse when rescaled by the mean value of εin. The prob-
abilities for positive and negative energy injection are exponentially related
over a range of more than twice the mean values. However, the constant in
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Fig. 4. Test of the linearity of the logarithmic ratio as suggested by Eq. (7). The
stronger oscillations for very small p arise due to the amplification of small wiggles
on the PDF π(p) there. The linear slope is fairly independent of Re. Data are as
in Fig. 3. The dashed lines on the far right indicate the values of C0 obtained from
Eq. (9).

the exponent varies across the layer. Thus, while there are some indications
for an exponential relation between positive and negative energy uptake, the
quantitative behaviour depends on the position across the layer.

It is still an open, but interesting, question whether the energy injection rate
(smoothed in time or not) can be considered as a macroscopic substitute for
the entropy production rate, and whether fluctuation relations for it can be
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found. As mentioned in the introduction, the Navier-Stokes equation is per-
haps closest in its global features to the Brownian particle studied by Farago
[11]. That model predicts a crossover to another slope for large energy uptake,
but the statistical uncertainties in our numerical data are too large to study
this. Other systems that might provide guidance for what to expect in the
fluctuation statistics are thermostatted Lorentz gases where time reversibility
is broken by a magnetic field [19].

Further avenues worth exploring include the relation between coherent struc-
tures and energy uptake or energy blocking (as in Fig. 2), and the implications
for backscatter effects in turbulent flows, i.e., the phenomenon that locally en-
ergy does not cascade down to smaller but up to larger scales. This might be
important for subgrid-scale modelling within large-eddy simulations [20].
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