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 Transition state theory (TST) picture of rare events:
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Entropic (i.e. volume) effects matter, presence of dead-ends, dynamical traps, etc.

Example: a maze

Hard to understand by simple inspection even if the trajectory is given.
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Key concept: reactive trajectories, i.e. those trajectories by which the reaction occurs.

Conceptually, these reactive trajectories can be obtained by pruning a long ergodic 
trajectory which oscillates between A and B.

A B

Understanding the mechanism of the reaction 
= characterizing the statistical mechanics properties of the reactive trajectories 
(i.e. the red pieces in the figure)

Framework to understand general reactions:  Transition Path Theory (E, V.-E.)

Nothing special required about A and B at this point.
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Discrete set-up:     pij = probability that x(t+1) = j given that x(t) = i

Detailed balance:     πi  pij = πj  pji          (πi = equilibrium distribution)

Two key questions:

where qi is the committor function (aka pfold) which gives the probability that the 
trajectory starting from i will reach next the product rather than the reactant.

What is the equilibrium probability πiR  to find the trajectory at state 
i and that it be reactive?

⇡R
i = ⇡iqi(1� qi)

What is the probability current of reactive trajectories from state i to 
state j?

fR
ij = max{fij � fji, 0} where fij = (1� qi)⇡ipijqj
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NB:  The committor function qi satisfies a closed equation:

8
><

>:

P
j pijqj = qi if i 62 A [B

qi = 0 if i 2 A = reactant

qi = 1 if i 2 B = product

The committor function is the reaction coordinate because it permits (along with 
the equilibrium probability) to express all the statistical properties of the reactive 
trajectories.

The probability current, in particular, links concepts of reaction coordinate to that of 
transition pathway. 
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The maze example:
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Current concentrates on the  productive path across the maze (which is unique in this 
example but is NOT a reactive trajectory)

Committor function foliates the maze and separate deadends.
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Another maze with one entrance, two exits

Committor
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Automatically pick the most likely of the two exits.
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Can be generalized to continuous dynamics

Here too, current prunes out deadends and dynamical traps (e.g. small barriers).
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Finding most likely exit pathways in Myoglobin (with Masha Cameron)

Compute current of reactive trajectories using the free 
energy (FE) landscape obtained by single sweep and 
TAMD (cf JACS paper with L. Maragliano, G. Cottone 
and G. Ciccotti). 

Identify lines of current carrying most of the flux - 
number in the figures indicates ordering.

Here A and B are the region where the FE is 
respectively below and above certain values.
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Finding most likely transition pathways in LJ38 (with Masha Cameron)

Compute directly line of MaxFlux. 

Obtained by quenching 
temperature all the way down to 
kBT = 0.12.
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4 PHILIPP METZNER,ERIC VANDEN-EIJNDEN,CHRISTOF SCHTTE

rate (committor) 1.912·10°2

rate (volume integral) 1.924·10°2

rate (DNS) 2.079 · 10°2

var(DNS) 1.33·10°6

Table 2. Transition Rate(� = 0.6, 400⇥ 400Grid,N = 1000, ⇥ = 10°5)

3.2. Schulten-Potential. Now we consider the Smoluchowsky dynamics in a sim-
ple potential which exhibits metastability. This model system was first introduced
and studied in (?).

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2

0

2

4

6

8

10

12

Figure 5. Contour plot of the potential
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Figure 12. Streamlines colored according to the restricted inten-
sities on the committor at ”low temperature” � = 0.6.
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Figure 13. Here one can see the switching of the preferable tran-
sition tubes.
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Folding pathway of  the PinWW domain
F. Noe, Ch. Schuette E. V.-E., L. Reich, and T. Weikl , PNAS (2009)

A total of 180 MD simulations were started, 100 from near-native conformations 
and 80 from different denatured conformations and run for 115 ns each at a 
temperature of 360 K. The simulations were conducted with the GROMACS 
program by using explicit SPC solvent and the GROMOS96 force field.

The simulated structures were aligned onto the native structure and then 
clustered finely into 1734 kinetically connected and well-populated clusters.

Based on the MD data a stochastic matrix pij was constructed by likelihood 
maximization method to model the transitions between these clusters. 

Protein like a maze with 1734 positions.

This Markov State Model (MSM) was then analyzed using TPT.
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Cartoon picture of folding: motion in a maze
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Folding flux between macro-states Folded set B defined as the set of clusters with average 
backbone root mean square difference to the X-ray 
structure of less than 0.3 nm. 
Denatured set A defined as  the set of all clusters with 
little β-structure (having a mean of <3 h-bonds in 
hairpin 1, which has 6 h-bonds in the native state, and 
<1 h-bonds in hairpin 2, which has 3 h-bonds in the 
native state)
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Experimental value 13 μs

Number of native contacts is NOT the right reaction coordinate.
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Basic idea: evolve a curve rather than a point in your dynamical system.

ẋ = b(x) ) �̇ = b(�) + ��

0

where b(x) is the velocity field, and the new term λ φ’ is added to control the 
parametrization of the curve: 

� = {�(s) : s 2 [0, 1], |�0| = cst.}

In practice, discretize the curve into N images φi , i = 1,...,N, and evolve them 
using a time-splitting algorithm:

1. Evolve every image independently using the original dynamics for a lag-time Δt

�̇i = b(�i) i = 1, . . . , N

2. Interpolate a curve thru the images, and redistribute these images to maintain 
the desired parametrization, e.g.

|�i+1 � �i| = cst. i = 1, . . . , N � 1

W. E, W. Ren & E. V.-E. Phys. Rev. B 66, 052301 (2002); J. Chem. Phys 126, 164103 (2007)String Method
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Example: motion by steepest descent in potential energy with end-points free.

In this case, the string method identify the Minimum Energy Path (MEP).

ẋ = �rV (x)

Similar to NEB but without projection of the force nor use of springs.
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Fairly robust e.g. to noise in the dynamics (more on this later)

ẋ = �rV (x) +
p

2kBT ⌘
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When the velocity field b(x) is the gradient of a potential, the method identifies MEPs.

a)

b)

Example: magnetization reversal in thin sub-micron ferro magnetic elements

W. E, W. Ren & E. V.-E. J. App. Phys.  93, 2275-2282 (2003);
G. D. Chaves-OFlynn, D. Bedau, E. V.-E., A. D. Kent, and D. L. Stein, IEEE Trans. Mag.46, 2272–2274 (2010). 
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When the velocity field b(x) is the mean-force (i.e. the gradient of the free energy or 
potential of mean force associated with some collective variables), the method identifies 
Minimum Free Energy Paths - MFEPs.

Example: hydrophobic collapse of polymeric chain

0.2 0.4 0.7 1.1 1.4Ref.

C

A

B

T.F. Miller III, E. V.-E. & D. Chandler, Proc. Nat. Acad. Sci. USA  104, 14459-14464 (2007)

L. Maragliano, A. Fischer, E. V.-E., G. Ciccotti, J. Chem. Phys. 125 024106 (2006);
L. Maragliano, E. V.-E., Chem. Phys. Lett. 446 182-190 (2007);
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Other generalization: Finite-temperature string method to identify principal curves 
(i.e. the curve that is its own expectation)

As `velocity field’, use a measure of the discrepancy between the image position 
and the expected value of the equilibrium distribution in the Voronoi cell 
associated with this image - that is, drag the former towards the latter.
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W. E, W. Ren & E. V.-E. J. Phys. Chem. B 109, 6688-6693 (2005)
E. V.-E. & M. Venturoli, J. Chem. Phys. 130, 194103 (2009)
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What if we play with the equation for the end points?

For example, in the direction parallel to the string, reverse the velocity (e.g. the gradient 
of the potential) of one end-point - this makes climb towards saddle point!

�̇ = �rV (�) ) �̇ = �rV (�) + 2[rV (�) · ⌧̂ ]⌧̂

Simple alternative to dimmer method, ART, gentle ascent dynamics, etc.
Give better control: one always knows if the string is still in the right basin, and what 
the energy barrier is along it.
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Another idea: make the end-point perform a (biased) random walk, but reject any move 
such that the energy along the string is not monotonic - this keeps the string in the 
basin, and permits to explore it without leaving it!
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Method to find all the saddle points around a minimum.
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What about non-gradient systems (i.e. activated processes arising out-of-equilibrium)?

Their pathway can be identified too in the low noise limit using the framework 
of Large Deviation Theory (LDT) as the Maximum Likelihood Path (MLP) which 
minimizes the LDT action.

Use the Minimum Action Method to identify this MLP.
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Simple illustrative example due to Maier and Stein:

W. E, W. Ren & E. V.-E., Comm. Pure App. Math 52, 637-656 (2004);
M. Heymann & E. V.-E., Comm. Pure App. Math 61, 1052-1117 (2008).
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More sophisticated example: phase-transition in the presence of a shear flow

M. Heymann & E. V.-E.  Phys. Rev. Lett. 100, 140601 (2008)

u̇ = �u+ u� u3
| {z }

�DE(u)

+c sin(y)@
x

u+ ⌘
E(u) =

Z

⌦

�
1
2|ru|2 + 1

4 (1� u

2)2
�
dx
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