Applications of Accelerated Molecular Dynamics in Materials Science

Blas Pedro Uberuaga

Los Alamos National Laboratory

UNCLASSIFIED

Acknowledgements

• Art Voter (LANL)

• Radiation damage in MgO:

- Kurt Sickafus (now at University of Tennessee)
- Robin Grimes and Antony Cleave (*Imperial*)
- Roger Smith and Pravesh Bacorisen (*Loughborough*)
- Francesco Montalenti (now at University of Milano)
- Graeme Henkelman (*now at* University of Texas, Austin)

• Void evolution:

 Steve Valone and Richard Hoagland (*LANL*)

Stretched nanostructures

- Steve Stuart (*Clemson*)
- Chun-Wei Pao (now at Academia Sinica)
- Danny Perez and Sriram Swaminarayan (LANL)

\wedge

Funding: BES, CMIME EFRC, LANL LDRD, Enhanced Surveillance

Brief Introduction to Accelerated Molecular Dynamics

- Many processes occur on much longer timescales than accessible via MD (ps-ns-μs)
 - e.g. surface growth
 - radiation damage annealing
 - mass transport
 - etc.
- Need method to reach experimentally relevant timescales
- Three accelerated dynamics methods developed at LANL (Art Voter's team)
 - Parallel-Replica Dynamics
 - Hyperdynamics
 - Temperature Accelerated Dynamics (TAD)

Parallel Replica Dynamics (1998)	Explore basin with many processors M such that $M \sim \tau_{rxn}/1$ ps

Parallel Replica Dynamics (1998)	Explore basin with many processors M such that $M \sim \tau_{rxn}/1$ ps
Hyperdynamics (1997)	Increase rate by reducing effective barriers

Parallel Replica Dynamics (1998)	Explore basin with many processors <i>M</i> such that <i>M</i> ~τ _{rxn} /1 ps
Hyperdynamics (1997)	Increase rate by reducing effective barriers
Temperature Accelerated Dynamics (2000)	Increase rate by raising temperature

Demonstrations of AMD methods

- Vacancy Void Annealing in Cu
- Defect Dynamics in MgO
- Strain-rate dependent behavior in wires and nanotubes

Demonstrations of AMD methods

- Vacancy Void Annealing in Cu
- Defect Dynamics in MgO
- Strain-rate dependent behavior in wires and nanotubes

Common Theme: Examples where achieving long times in atomistic simulations provided critical insight

UNCLASSIFIED

A Parallel-Replica Study

VACANCY VOID ANNEALING IN CU

LA-UR-12-20928

Beyond MD, Dresden, Germany -- 30-Apr-12 -- no. 10

Vacancy void annealing in Cu

- Goal:
 - Understand vacancy aggregation/void formation
 - Probe kinetics of vacancy voids
- Method:
 - Parallel-replica dynamics: explore long-time behavior of voids
 - Molecular dynamics: obtain statistics on possible pathways
 - Nudged elastic band (molecular statics): characterize pathways
- Reference:
 - Uberuaga, Voter, Hoagland, and Valone, PRL 99, 135501 (2007).

Long time annealing of 20 vacancy void in Cu

- EAM Cu
- Parallel-replica simulation of 20vacancy void annealing at 400 K
 20 vacancies is one tee many for
 - 20 vacancies is one too many for "perfect" void
- Total simulation is 7.82 μs
- At 1.69 μs, void transforms to SFT
- Run on 39 processors for 15 days
- Efficiency = 79%
- Equivalent single processor time: 1.3 years

Long time annealing of 20 vacancy void in Cu

- EAM Cu
- Parallel-replica simulation of 20vacancy void annealing at 400 K
 20 vacancies is one too many for
 - "perfect" void
- Total simulation is 7.82 μs
- At 1.69 μs, void transforms to SFT
- Run on 39 processors for 15 days
- Efficiency = 79%
- Equivalent single processor time: 1.3 years

New transformation pathway for the formation of stacking fault tetrahedra (SFTs)

Transformation pathway for 20 vacancy void

- Full path for transformation to SFT calculated with NEB
- Initial barrier is > 2 eV
 - Should have taken
 >10⁵ years at 400K
 to occur (assuming standard prefactor)
- Vineyard prefactor for first step between 10³⁶ and 10⁴³ Hz

Void to SFT transformation: 45 vacancy void in Cu

- Par-rep of 45 vacancy void at 475 K
 - 39 processors
 - 39% efficiency
 - 5.6 days
 - Effective 1 CPU time: 85 days
 - 0.24 μs
- Figure is minimum energy path at constant volume
- Overcomes a very large internal energy barrier (~4 eV) at 475 K
- Free energy barrier is much lower, as estimated by open symbols

Initial step in void to SFT transformation

- Barrier to initiate transformation accessible from a number of states
- Part of path is a ridge, minimizing along it can land to either lower energy state
 - Problem for ensuring connectivity of saddles
- Vineyard rate for 2.1 eV process very fast
 - 144 ns at 400 K
 - About 1 fs at 500 K
 - Harmonic TST valid?
 - TAD valid?

Prefactor for Transformation

- Barrier for 20-vacancy void is between 2.3 and 2.7 eV
 - Assuming a standard prefactor (~10¹³ Hz), would take 10⁶ years to occur at T=400 K
 - Observed waiting times are 1-15 ns
 - Prefactor observed from dynamics: 10³⁸ Hz; calculated with Vineyard: 10⁴³ Hz
 - Prefactor is anything but standard!
- Origin of Prefactor
 - View material containing void as partitioned into two regions
 - Region I: Cu
 - Region II: void
 - Before transition, volume of Cu is Region I volume
 - After, volume of Cu is Region I + Region II
 - Entropy change ΔS due to volume change $\Delta V: \Delta S = \alpha B \Delta V$
 - α =coefficient of thermal expansion, B=bulk modulus
 - Assuming ∆V=10 atomic volumes ⇒ ∆S=67.5/k_B ⇒ prefactor enhanced by factor of 10²⁹
 - Consistent with observed/calculated prefactor

Why long time simulations were needed?

- Once system is in corner state, time scale for void → SFT transformation very quick, ns
- However, time to reach corner state can be very long, 1.7 μs at 400 K
- Parallel-replica was critical for reaching time scales for surface vacancy to sample surface configurations and discover corner state
- HTST-based methods may have failed to predict mechanism

UNCLASSIFIED

A Temperature Accelerated Dynamics Study

DEFECT DYNAMICS IN MGO

LA-UR-12-20928

Beyond MD, Dresden, Germany -- 30-Apr-12 -- no. 29

Defect Dynamics in MgO

- Goal:
 - Understand origin of radiation tolerance in complex oxides
 - Determine the relevance of metastable defects
- Methods:
 - Buckingham potential with long range electrostatics
 - MD: non-equilibrium production of damage due to irradiation
 - TAD: evolution of defects produced under irradiation
 - Rate theory: impact of atomistic defect properties on experimental observables
- References:
 - Uberuaga, Smith, Cleave, Henkelman, Grimes, Voter, and Sickafus,
 PRL 92, 115505 (2004); PRB 71, 104102 (2005); NIMB 28, 260 (2005).

TAD Simulation: Long-range Annihilation

- Begin with I₂ and two vacancies
- I₂ attracted to charged vacancies, annihilating by 81 ms
- Annihilation via long range, concerted events involving many atoms
- Red=oxygen, Blue=magnesium
- Dark=interstitial, Light=vacancy

Defect aggregation in MgO

- Begin with I₂ and I₄
 - Defects found at end of collision cascade
- I_2 attracted to I_4 , binds forming I_6
- Metastable I₆ diffuses very quickly
 - ns timescale at 300 K
 - diffusion is 1D along <110>
 - decay to ground state takes years
- Red=oxygen, Blue=magnesium
- Dark=interstitial, Light=vacancy

TAD simulation, Uberuaga et al, 2003

UNCLASSIFIED

Cluster dynamics: Kinetics of the pentamer cluster in MgO

- Two versions of pentamer:
 - $-Mg_2O_3$
 - $-Mg_3O_2$
- Both can exist in 3 forms
- Each has unique diffusive characteristics
 - A: diffuses quickly in <110> direction
 - B: diffuses more slowly, again in <110> direction
 - C: immobile at 300K
- A, B and C behave similarly for both pentamers
- But decay between forms is different

Encounters of MgO+MgO₂ can form any type of Mg₂O₃ – 10 simulations: 1 forms A, 7 form B, 2 form C

> Uberuaga, et. al., *PRL* **92**, 115505 (2004); *PRB* **72**, (2005); *NIMB* **28**, 260 (2005)

Interstitial cluster kinetics in MgO

- Diffusion barrier of ground state structures follow no clear pattern
- For clusters of size 5 and greater, there are metastable structures that diffuse faster than the ground state

Uberuaga, et. al., *PRL* **92**, 115505 (2004); *PRB* **72**, (2005); *NIMB* **28**, 260 (2005)

Effects of cluster mobility on observables

- 1-D reaction rate theory
 - Mobilities from TAD
 - Steady-state conditions
- Size of loops increases by more than 3 times when large clusters are mobile
 - "large" clusters contain more than 1 interstitial
- Enhanced defect mobility results in fewer, larger loops

Uberuaga, et. al., *PRL* **92**, 115505 (2004); *PRB* **72**, (2005); *NIMB* **28**, 260 (2005)

Why long time simulations were needed?

- TAD simulations revealed that aggregation of interstitials leads to metastable interstitial cluster structures with high mobilities
- Critical that evolution observed at low temperature as lifetime of metastable clusters at high temperature would be short and possibly missed if simply performed hightemperature MD
 - Decay barriers 0.5 2 eV
 - Migration barriers 0.3 2 eV

UNCLASSIFIED

Two Parallel-Replica Studies

STRAIN-RATE DEPENDENT BEHAVIOR

LA-UR-12-20928

Beyond MD, Dresden, Germany -- 30-Apr-12 -- no. 37

ParRep of stretching Ag nanowire

- Run on LANL Roadrunner (1 PFLOPS if using all 12,240 cell processors)
- Boost good at first; drops as events become more frequent.
- Outer edge atoms clamped, advanced 0.01A at regular intervals

Ag[110] nanowire, 1.d5 A/s, 1 us per frame

Pulling slower changes behavior

At stretching speeds below ~10⁶ Å/s, the system can thin down, coming back to perfect fcc. At higher speeds, it disorders or necks, never recovering perfect fcc.

Pulling slower changes behavior

At stretching speeds below ~10⁶ Å/s, the system can thin down, coming back to perfect fcc. At higher speeds, it disorders or necks, never recovering perfect fcc.

Structure of Nanotubes after Yield

LA-UR-12-20928

Beyond MD, Dresden, Germany -- 30-Apr-12 -- no. 45

Energy vs Strain for Nanotube with a Vacancy

Why long time simulations were needed?

- In both nanowire and nanotube, new processes occur as strain rate is decreased
- These processes relieve strain in a qualitatively differently manner than in over-driven cases
- Observation of these processes depends on reducing strain rates by reaching longer time scales

Summary

- AMD methods allow the study of processes not accessible to MD
- Often, results are very surprising
 - Many mechanisms that would be left out of e.g. KMC if intuition alone is used
 - New insights into kinetic processes, even in the simplest of materials

Probing long-time kinetics is crucial for understanding material evolution in complex environments

