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MD: Good for fast mechanics

300 K
10.7 m/s
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MD: Slow for thermal activation

Simulation time
for 5000 atoms
(one cpu)

 

30 y

10 d

15 min

1 s

 

Q ! =
1
"0

eQ/kTTime to first transition:

Surface Bulk

↑ relative time 30

↑ relative time 80000

→ difference 0.3 eV

ν0 Transition State Theory

System time

15 min

1 s

1 ms

1 µs

1 ns

1 ps

1 fs

1013 s–1
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Boosting MD by MC: the simple way

• No need to detect “events” or “crossings”
• Works for small and big activation barriers
• Simple algorithm, 5 lines of code, no overhead
• No catalogue of transitions needed
• Detailed balance satisfied
• Can be combined with MD, taking turns or in parallel
• Time progress can be measured    NEW

Force-biased Monte Carlo

Mees, Pourtois, Neyts, Thijsse, Stesmans,
Phys. Rev. B (2012), accepted
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Force-biased Monte Carlo: history

• C. Pangali, M. Rao, B.J. Berne, Chem. Phys. Lett. 55 (1978) 413
– Theory only

• S. Goldman, J. Comput. Phys. 62 (1986) 464
– H2O

• G. Dereli, Mol. Simul. 8 (1992) 351
– Amorphous Si

• C.H. Grein, R. Benedek, and T. de la Rubia, Comput. Mater. Sci. 6 (1996) 123
– Growth of Ge on Si(100)

• M. Timonova, J. Groenewegen, and B.J. Thijsse, Phys. Rev. B 81 (2010) 144107
– Cu surface diffusion, Si phase transitions

• E.C. Neyts, Y. Shibuta, A.C.T. van Duin, A. Bogaerts, ACS Nano 4 (2010) 6665
– C nanotube growth
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MD and force-biased Monte Carlo

ri
(n+1) = r

i
(n) + v

i
(n)!t (n) + 1

2

F
i
(n) !t (n)( )2

mi

Compute Fi
(n+1) from all ri

(n+1)

v
i
(n+1) = v

i
(n) +

1
2
F
i
(n)!t (n) +F

i
(n+1)!t (n+1)

mi

Compute Δt(n+1)  (optional)

Choose a maximum atomic displacement Δ/2
for the problem, then:
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In x-direction (y and z analogously), for each atom i:
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Choose a reasonable (first) timestep Δt(0)

for the problem, then:

(always accept)

Big F, cool

Small F, hot

(“effective force”)
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Early success

Start Molecular
Dynamics

Force-biased
Monte Carlo
Δ/2 = 0.075 Å

Monte Carlo
is more than

100 times
faster

Recrystallization of ion-beam bombarded Si(100)
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Uphill motion, detailed balance
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Probability of an uphill move

Detailed balance W ( !r r)P(r) =W (r !r )P( !r )

D( !r r)A( !r r)e"U (r)/kT = D(r !r )A(r !r )e"U ( !r )/kT

Canonical

Transition probability (W) = Displacement (D) × acceptance (A) probabilities:  
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(more agitation with
greater  Δ/2 and smaller T)

Erik Neyts
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Detailed balance, uniform acceptance
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Metropolis: Trial move is uniformly sampled in its domain:  D( !r r) = D(r !r )

Therefore acceptance is A( !r r) =min 1, e"#U /kT$
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If x and x’ are not too far apart: K = K’and F = F’
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This explains the factor 2.   Therefore: always acceptance and detailed balance

D(r !r )
D( !r r)

= e"U /kT

This UFMC is not unique.

If

always uniform acceptance.
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Metropolis vs UFMC
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Time

!t (n) "
#x(n)

v(n)

Which time interval Δt can be associated with iteration step n? Define as follows:

!t " ! / 6
2kT / #m

Next, Δ should be made mass-dependent to allow for several atomic masses being present and have
the same time interval for each species,   

! " !i # ! mmin /mi

!t " ! / 6
2kT / #mmin

40476098W

22263354Cu

13162033Si

0.81.01.22.0H

1800 K1300 K800 K300 K
mmin

Δt in fs for several mmin and Δ/2 = 0.1 Rnnb  

Maarten Mees

!x(n) ≈ Δ/6, a very slow function
of the effective force 

Larger Δ → more boost
but more deviation from
F = F’
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One particle in cosine potential
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Counting arrivals in 5% region around a new minimum

Somewhat different UFMC version
Δ/2 = 0.10 Å
Q from straight line = 0.247 eV
ν0 = 0.9e13 Hz
Counting crossings (incl recrossings)

Q0 = 0.25 eV, L = 1 Å

n j = !0t e
"Q/kTTST: Number of jumps in time t:

UFMC

Metropolis
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Quasivacancies

i–ΔRi

ΔRi = ∑j(rj–ri), should be > 0.8 Rnnb

    “Missing neighbor” (MN) of atom i:
rMN = ri–ΔRi

Quasivacancy (QV)
QV concentration =
(MN concentration)/Z

Counting “vacancies” in crystals, amorphous, liquids in a consistent way
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Test: When UFMC should do nothing

 Potential energy during UFMC  

Silicon crystal, MEAM-potential (M. Timonova, B.J. Lee, BJT). Quite good, but Tm = 2990 K (too high)

Quasivacancy concentration during UFMC

Δ/2 values

As expected: more agitation with greater  Δ/2 and smaller (!) T. “Effective forces” are larger.

just MD

just MD

Robust: All UFMC results, followed by MD, return to a perfect crystal
(except o o o o  →  l l l l = violent UFMC, with Δ/2 = 0.17 Req).
More robust: each atom returns to its own position when UFMC in green area is followed
by MD. So: Δ/2 = 0.15 Req is safe. Also at surface (100), including dimerization.
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Si phase transformation where MD fails

 

MD: Cooling to amorphous (relaxed), heating to glass transition, xtallization, melting (liq: Z = 5.6).
UFMC with Δ/2 = 0.06 Req: Cooling to amorphous (relaxed), heating to liquid (Z = 5.5).

Potential energy during cooling+heating
MD: 1 ps/K (lines) -- much slower than UFMC

  

Δ/2 = 0.06 Req Δ/2 = 0.11 Req

Polycrystal formed at CC

UFMC with Δ/2 = 0.11 Req: Cooling to polycrystal, heating to liquid.
                                              The amorphous phase also crystallizes to a polycrystal at 300 K



VMM

Si recrystallization: UFMC faster than MD

 

 

UFMC++  MD 
∆/2 = 0.06 Req ∆/2 = 0.11 Req ∆/2 = 0.14 Req 

30
3 

K
  

0 % Ar evapor. 
17 % QV 

 
0 % Ar evapor. 

17 % QV 

 
2.5 % Ar evapor. 

2.5 % QV 

 
17 % Ar evapor. 

2.5 % QV 
15

18
 K

 

 
8.7 % Ar evapor. 

16 % QV 

 
3.6 % Ar evapor. 

11 % QV 

 
33 % Ar evapor. 

2 % QV 

 
15 % Ar evapor. 

4 % QV 

20
24

 K
 

 
12 % Ar evapor. 

8 % QV 

 
8,7 % Ar evapor. 

8 % QV 

 
71 % Ar evapor. 

1.8 % QV 

 
19 % Ar evapor. 

2.5 % QV 

25
30

 K
 

 
88 % Ar evapor. 

2 % QV 

 
60 % Ar evapor. 

1 % QV 

 
78 % Ar evapor. 

1 % QV 

 
89 % Ar evapor. 

1 % QV 
 

/105

/105
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Other successes

UFMC, well defined chirality

Also: Ni nanocluster melting, Neyts/Bogaerts JCP 2009

E.C. Neyts, Y. Shibuta, A.C.T. van Duin, A. Bogaerts, ACS Nano 4 (2010) 6665

MD
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Surprises

Fe: fcc → bcc transformation UFMC: A cheap method to construct
a polycrystal? Here bcc Fe

UFMC 1000 K → MD 1000 K → Quench 

UFMC 1000 K → Quench 

MD

Number of
fcc atoms
after 3 × 105

steps

UFMC

UFMC goes the wrong way!

bcc
fcc
bcc
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Conclusions

• UFMC has much potential as MD booster
• Very easy to handle
• Only 5 lines of program code
• No thermostat needed, T is built into the method
• Solid statistical basis
• Time can be implemented sensibly
• Mixture of atomic masses can be handled consistently
• Dynamic creation and annihilation of QV appears essential

• For further study
• Boost is not always spectacular
• Alternative displacement statistics may be better
• Does not work in close packed systems?
• Convenient method to generate polycrystals?


