Uniform-acceptance force-biased Monte Carlo: A cheap way to boost MD

Barend Thijsse

Department of Materials Science and Engineering Delft University of Technology, The Netherlands

Erik Neyts

Department of Chemistry University of Antwerp, Belgium

Maarten Mees

Department of Physics Katholieke Universiteit Leuven, Belgium IMEC, Heverlee, Belgium

Barend Thijsse Department of Materials Science and Engineering Delft University of Technology, The Netherlands

Erik Neyts

Department of Chemistry University of Antwerp, Belgium

Maarten Mees

Department of Physics Katholieke Universiteit Leuven, Belgium IMEC, Heverlee, Belgium

MD: Good for fast mechanics

MD: Slow for thermal activation

Boosting MD by MC: the simple way

Force-biased Monte Carlo

- No need to detect "events" or "crossings"
- Works for small and big activation barriers
- Simple algorithm, 5 lines of code, no overhead
- No catalogue of transitions needed
- Detailed balance satisfied
- Can be combined with MD, taking turns or in parallel
- Time progress can be measured NEW

Mees, Pourtois, Neyts, Thijsse, Stesmans, Phys. Rev. B (2012), accepted

Force-biased Monte Carlo: history

- C. Pangali, M. Rao, B.J. Berne, Chem. Phys. Lett. 55 (1978) 413
 - Theory only
- S. Goldman, J. Comput. Phys. 62 (1986) 464
 - H₂O
- G. Dereli, Mol. Simul. 8 (1992) 351
 - Amorphous Si
- C.H. Grein, R. Benedek, and T. de la Rubia, Comput. Mater. Sci. 6 (1996) 123
 - Growth of Ge on Si(100)
- M. Timonova, J. Groenewegen, and B.J. Thijsse, Phys. Rev. B 81 (2010) 144107
 - Cu surface diffusion, Si phase transitions
- E.C. Neyts, Y. Shibuta, A.C.T. van Duin, A. Bogaerts, ACS Nano 4 (2010) 6665
 - C nanotube growth

MD and force-biased Monte Carlo

Early success

Recrystallization of ion-beam bombarded Si(100)

Uphill motion, detailed balance

Probability density of a displacement
$$p(\delta x) = K^{-1} e^{\frac{F_X \delta x}{2kT}} \approx K^{-1} e^{-\frac{\delta U}{2kT}}$$
 Why this factor 2 here?
Probability of an uphill move $P(\text{uphill}) = \frac{1}{2} - \frac{1}{4} \frac{|F_x|\Delta/2}{2kT}$ Why this factor 2 here?
RMS displacement in a move $\delta x_{\text{RMS}} = \frac{\Delta/2}{\sqrt{3}} \left(1 + \frac{1}{15} \left[\frac{|F_x|\Delta/2}{2kT} \right]^2 \right)$ (more agitation with greater $\Delta/2$ and smaller T)
Detailed balance $W(\mathbf{r}'|\mathbf{r})P(\mathbf{r}) = W(\mathbf{r}|\mathbf{r}')P(\mathbf{r}')$ Erik Neyts
Canonical $W(\mathbf{r}'|\mathbf{r})e^{-U(\mathbf{r})/kT} = W(\mathbf{r}|\mathbf{r}')e^{-U(\mathbf{r}')/kT}$

Transition probability (W) = Displacement (D) × acceptance (A) probabilities:

$$D(\mathbf{r}'|\mathbf{r})A(\mathbf{r}'|\mathbf{r})e^{-U(\mathbf{r})/kT} = D(\mathbf{r}|\mathbf{r}')A(\mathbf{r}|\mathbf{r}')e^{-U(\mathbf{r}')/kT}$$
$$A(\mathbf{r}'|\mathbf{r}) = \min\left[1, \frac{D(\mathbf{r}|\mathbf{r}')}{D(\mathbf{r}'|\mathbf{r})}e^{-(U(\mathbf{r}')-U(\mathbf{r}))/kT}\right] = \min\left[1, \frac{D(\mathbf{r}|\mathbf{r}')}{D(\mathbf{r}'|\mathbf{r})}e^{-\delta U/kT}\right]$$

Detailed balance, uniform acceptance

$$A(\mathbf{r}'|\mathbf{r}) = \min\left[1, \frac{D(\mathbf{r}|\mathbf{r}')}{D(\mathbf{r}'|\mathbf{r})} e^{-\delta U/kT}\right]$$

Metropolis: Trial move is uniformly sampled in its domain: $D(\mathbf{r}'|\mathbf{r}) = D(\mathbf{r}|\mathbf{r}')$

Therefore acceptance is $A(\mathbf{r}'|\mathbf{r}) = \min\left[1, e^{-\delta U/kT}\right]$

UFMC:
$$D(x'|x) \approx K^{-1} e^{-\frac{\delta U}{2kT}}$$

 $D(x|x') \approx K'^{-1} e^{+\frac{\delta U}{2kT}}$
If x and x' are not too far apart: $K = K'$ and $F = F'$
 $A(\mathbf{r}'|\mathbf{r}) = \min\left[1, \frac{e^{+\delta U/2kT}}{e^{-\delta U/2kT}}e^{-\delta U/kT}\right] = 1$
This UFMC is not unique.
If $\frac{D(\mathbf{r}|\mathbf{r}')}{D(\mathbf{r}'|\mathbf{r})} = e^{\delta U/kT}$
always uniform acceptance.

This explains the factor 2. Therefore: always acceptance *and* detailed balance

Metropolis vs UFMC

Metropolis

UFMC

Time

Which time interval Δt can be associated with iteration step *n*? Define as follows:

$$\Delta t^{(n)} = \frac{\left\langle \left| \delta x^{(n)} \right| \right\rangle}{\left\langle \left| v^{(n)} \right| \right\rangle} \qquad \left\langle \left| \delta x^{(n)} \right| \right\rangle \approx \Delta/6, \text{ a very slow function} \qquad \Delta t \approx \frac{\Delta/6}{\sqrt{2kT / \pi m}}$$

Next, Δ should be made mass-dependent to allow for several atomic masses being present and have the same time interval for each species,

$$\Delta \implies \Delta_i \equiv \Delta \sqrt{m_{\min} / m_i}$$
$$\Delta t \approx \frac{\Delta / 6}{\sqrt{2kT / \pi m_{\min}}}$$

Larger $\Delta \rightarrow$ more boost but more deviation from F = F'

Δt in fs for several m_{\min} and $\Delta/2 = 0.1 R_{\min}$				
m _{min}	300 K	800 K	1300 K	1800 K
Н	2.0	1.2	1.0	0.8
Si	33	20	16	13
Cu	54	33	26	22
W	98	60	47	40

TUDelft

One particle in cosine potential

Quasivacancies

Counting "vacancies" in crystals, amorphous, liquids in a consistent way

Test: When UFMC should do nothing

Silicon crystal, MEAM-potential (M. Timonova, B.J. Lee, BJT). Quite good, but $T_m = 2990$ K (too high)

- As expected: more agitation with greater $\Delta/2$ and smaller (!) *T*. "Effective forces" are larger.
- Robust: All UFMC results, followed by MD, return to a perfect crystal (except 0 0 0 $\rightarrow \bullet \bullet \bullet \bullet =$ violent UFMC, with $\Delta/2 = 0.17 R_{eq}$).

More robust: each atom returns to its own position when UFMC in green area is followed by MD. So: $\Delta/2 = 0.15 R_{eq}$ is safe. Also at surface (100), including dimerization.

Si phase transformation where MD fails

- MD: Cooling to amorphous (relaxed), heating to glass transition, xtallization, melting (liq: Z = 5.6).
- UFMC with $\Delta/2 = 0.06 R_{eq}$: Cooling to amorphous (relaxed), heating to liquid (Z = 5.5).
- UFMC with $\Delta/2 = 0.11 R_{eq}$: Cooling to polycrystal, heating to liquid.

The amorphous phase also crystallizes to a polycrystal at 300 K

Si recrystallization: UFMC faster than MD

VMM

Other successes

E.C. Neyts, Y. Shibuta, A.C.T. van Duin, A. Bogaerts, ACS Nano 4 (2010) 6665

UFMC, well defined chirality

MD

Also: Ni nanocluster melting, Neyts/Bogaerts JCP 2009

Surprises

Fe: fcc \rightarrow bcc transformation

28000

26000

24000

22000

20000

18000 ^ሺ 0

0.1

0.2

UFMC goes the wrong way!

Δ/2 (Å)

0.3

0.4


```
Rotationally invariant:

w^{(l)}(i) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} w^{(l)}_{(m)}
```

UFMC: A cheap method to construct a polycrystal? Here bcc Fe

UFMC 1000 K \rightarrow Quench

Number of

fcc atoms after 3×10^5

steps

Universiteit Antwerpen

Conclusions

• UFMC has much potential as MD booster

- Very easy to handle
- Only 5 lines of program code
- No thermostat needed, *T* is built into the method
- Solid statistical basis
- Time can be implemented sensibly
- Mixture of atomic masses can be handled consistently
- Dynamic creation and annihilation of QV appears essential
- For further study
 - Boost is not always spectacular
 - Alternative displacement statistics may be better
 - Does not work in close packed systems?
 - Convenient method to generate polycrystals?

