Combining molecular dynamics and on-thefly kinetic Monte Carlo to investigate radiation damage in solids

Beyond Molecular Dynamics: Long Time Atomic-Scale Simulations March 26th - March 29th 2012

Overview

- Introduction into radiation damage.
 - Motivation.
 - ► Time-scale problem.
 - Requirement for atomistic simulation.
 - General methodology.
- Applications:
 - ► Simulating self-irradiation effects of plutonium¹⁻³.
 - Defect formation and migration in Ga-stabilised δ -Pu.
 - ► The effect of structure on radiation damage⁴.
 - Comparison of radiation response of the rutile, brookite and anatase polymorphs of TiO₂.

¹M Robinson, S D Kenny, R Smith, M T Storr, E McGee. Nucl. Inst. Meth. B **267** 18 (2009)

² M Robinson, S D Kenny, R Smith, M T Storr. Nucl. Inst. Meth. B **269** 21 (2011)

² M Robinson, S D Kenny, R Smith, M T Storr. J, Nuc. Mat. **423** 1-3 (2012)

4 M. Robinson, N. A. Marks, K. R. Whittle and G. R. Lumpkin Phys. Rev. B 85 10 (2012)

Introducti materials

 Materials for nuclear applications must all share one important property: *"The ability to maintain functionality during exposure to extreme levels of irradiation"*

- To develop new 'nuclear materials' for future reactors or waste forms.
- To determine the life expectancy and failure mechanisms of materials currently in service.
- Requires an in-depth understanding of the **atomistic processes** that attribute to macroscopic changes in properties.

¹ A Hirata, T Fujita, Y R Wen, J H Schneibel, C T Liu, and M W Chen, Nature Materials **10**, 922-926 (2011).

Time scale problem

Ballistic Phase

High Energy ~keV Collision Cascade Thermal Spike

Time scales:

up to ~20 ps

fs

Defect migration and recombination. Activated processes - "Rare Events"

Time scale

Curtin University

<u>Time scales:</u> ns up to seconds, d/w/y

but events may overlap...

ps

Ballistic Phase

- Recoil event from a Primary Knock-on Atom (PKA)
- High energies, typically ~keV (dependent on the simulated process)
- Requires dynamics
 - Ab initio methods unsuitable.
- Requires atomistic lattice effects
 - Phase field or continuum models inappropriate.
- Molecular dynamics is well suited to modelling the ballistic phase:
 - Time-scales: $\sim O(ns)$
 - Length scale: $\sim O(\text{nm})$
 - Ensembles (thermo/barostats)

Simulation: 5 keV cascade in fcc Pu @ 300 K. 1.1M atoms 15 ps

Molecular Dynamics

- Molecular Dynamics (MD) is a powerful tool that can be used to investigate the ballistic phase at the atomic level response.
- In addition, MD has allowed in depth studies into all areas of radiation damage
 - Self-irradiation effects (decay).
 - ► Ion implantation (e.g SWIFT heavy ion).
 - Sputtering.
 - Defect aggregation at grain boundaries or interfaces.
 - Dislocation dynamics and diffusion.
 - Bubble formation.
- Serves as an alternative to analytical models of defect production (KP, NRT) or models based on the binary collision approximation (SRIM)

Ballistic Phase

- Important requirements for modelling the ballistic phase using MD:
 - Interatomic potential
 - Must **depict nuclei-nuclei interactions** correctly i.e. ZBL screened coulomb potential. 500

- Variable time-step
- Due to the high atomic velocities.
- Sampling
 - Due to the chaotic nature of the atomic collisions, important to gain a high level of sampling of PKA energies, initial directions of impact, thermal vibrations, atomic specie.
- Defect analysis
 - Vacancy/Interstitial (Frenkel pairs), Anti-sites, Dislocations, Schottky defects

Recovery Phase

- Modelling the recovery phase is made significantly harder by the highly inhomogeneous nature of the residual lattice:
 - After the ballistic phase, the remaining lattice is potentially highly disordered.
 - Frenkel pairs, voids, dislocations.
 - The presence of **impurities** or **fission products**.
 - Bubble formation (H,He,Xe,Kr).
 - Nuclear materials and fuels are typically complex and multi-component
 - Structural vacancies, partial occupancy (i.e. disordered Pyrochlores/Fluorites).
 - Interfaces or grain boundaries (ODS steels, fuel cladding).
- Removes the possibility of using on-lattice KMC due to the variation in local environment surrounding each defect.

Recovery Phase

- The recovery phase itself can be broken down into :
- Transitions where the end state is known.
 - **Examples**:
 - Simple vacancy/interstitial hops.
 - Direct recombination.
 - Methods:
 - Climbing image NEB¹, String methods
- Transitions where the end state is unknown
 - Examples:
 - Complex defect migration.
 - Long range recombination.
 - Methods:
 - Dimer², ART³, RAT⁴
- These techniques can also be used in on-the-fly KMC methods.
 - Migration and recombination pathways.

¹G. Henkelman, B. P. Uberuaga, and H. Jónsson, The Journal of Chemical Physics **113**, 9901-9904 (2000). ²G. Henkelman and H. Jónsson, The Journal of Chemical Physics **111**, 7010-7022 (1999).

- ³G.T.Barkema and N Mouseau. Comp. Mat. Sci. **20** 3 (2001)
- ⁴ L. J. Vernon, Modelling Growth of Rutile TiO2, Loughborough University, 2010

Application 1

Simulating radiation damage in Ga-stabilised Pu.

Simulating radiation damage in Ga-stabilised δ-Pu.

- Understanding the aging due to self-irradiation in fcc plutonium.
- FCC plutonium is unstable at RT so is alloyed with a small percentage of Ga (up to ~12%)
- Aim
 - To study the radiation response of Ga-stabilised Pu.
 - Cascade simulations, displacement threshold energy calculations
 - To investigate the effect of Ga on defect diffusion.
 - Transitions barrier calculations and OTF-KMC of defect migration.

- Methodology:
 - MD cascades
 - Modified Embedded Atom Method (MEAM) for PuGa^{1,2} in LBOMD.
 - 0.2 10 keV PKA energies.
 - 10 lattices equilibrated to **300K** for between 10-15 ps.
 - 12 PKA directions chosen from the FCC irreducible volume.
 - Thermal and periodic boundaries.
 - MD runs of 20 ps.
 - LTSD
 - Simple transitions, manual setup, MEP defined using CNEB.
 - Transition searches using Dimer/RAT methods
 - On-the-fly KMC Dimer/RAT followed by CNEB

¹ M. I. Baskes, Physical Review B **62**, 15532-15537 (2000).

² M. I. Baskes, K. Muralidharan, M. Stan, S. M. Valone, and F. J. Cherne, JOM Journal of the Minerals, Metals and Materials Society 55, 41-50 (2003).

Lattice Structure

- FCC phase Pu with arbitrary 5% substitutional Ga.

Substitutional Ga lowers the PE of surrounding Pu matrix

- Ga ordering determined using lattice Monte Carlo
 - Results in no 1st nearest neighbour (1NN) Ga-Ga bonds

Impact on LTSD techniques - resultant crystal structure highly inhomogeneous

- A first look at the ballistic phase
- The effect of Ga on: *Threshold displacement energy E*_d.

"Minimum energy required to displace at atom as to create a Frenkel (vacancyinterstitial) Pair"

Low energy cascades (< 200 eV) initiated in a irreducible volume.</p>

Cascade Results

Pu 5 at. % Ga 5 keV Cascades Defect Analysis							
	Ga	Pu	Mixed	Total			
Constituents							
Vacancies	1	298	N/A	299			
Interstitials	2	303	N/A	305			
Anti-Sites	123	131	N/A	254			
Defect Categories							
Lone Interstitials	0	246	N/A	246			
Lone Vacancies	0	250	N/A	250			
Lone Anti-Sites	8	19	N/A	27			
1NN Di-Vacancies	0	1	0	1			
2NN Di-Vacancies	0	2	0	2			
Tri-Vacancies	0	1	0	1			
1NN Di-Interstitials	0	11	0	11			
2NN Di-Interstitials	0	2	0	2			
Tri-Interstitials	0	0	0	0			
1NN Di-Anti-Sites	0	0	95	95			
2NN Di-Anti-Sites	0	0	1	1			
Tri-Anti-Sites	0	0	0	0			
Anti-site + Mono-Vacancies	0	2	0	2			
Anti-site + Mono-Interstitials	2	0	0	2			
Split-Interstitials	0	1	1	2			
Split-Vacancies	0	4	1	5			
Vacancy-Interstitials	0	12	0	12			
Unclassified Tri-Defects	0	3	16	19			

Large build up of 1NN mixed specie anti-site defects

Curtin University

- Simple Transition barrier results
 - (~ 25 different transitions in 100 PuGa lattices)

Curtin University

- Interstitial barriers << vacancy barriers
- The creation of vacancies by the displacement of Ga atoms is highly unfavourable.

• On-the-fly KMC of Pu split-interstitial

- Due to the low energy barriers associated with split-interstitials, diffusion occurs quickly ~ns.
- Defect migrates through a succession of Pu atomic replacements
- But what about the effect
 of the substitutional
 Ga ? ...

Simulated time: 842.24 ns

On-the-fly KMC of Pu split-interstitial

- Due to the low energy barriers associated with split-interstitials, diffusion occurs quickly ~ns.
- Defect migrates through a succession of Pu atomic replacements
- But what about the effect
 of the substitutional
 Ga ? ...

Simulated time: 842.24 ns

On-the-fly KMC of Pu split-interstitial

- By rendering the Ga-Pu polyhedra, it becomes clear that the interstitial migration is confined to Pu rich regions.

On-the-fly KMC of Pu split-interstitial

- By rendering the Ga-Pu polyhedra, it becomes clear that the interstitial migration is confined to Pu rich regions.

• On-the-fly KMC of Pu mono-vacancy.

2 d 18 h 25 m 58.82 s

- Conclusions:
 - We have built up a picture of radiation damage in Ga-stabilised Pu, showing the effect of Ga on:
 - **–** Ballistic phase Threshold displacement energies.
 - Higher value of E_d for the Ga PKA.
 - Ballistic phase Cascade damage.
 - No outlying Ga defects
 - Build up of 1NN 'anti-sites' i.e. Pu-Ga switching during the cascade
 - Recovery phase Transition barriers.
 - High energy barriers associated with introducing vacancies and interstitials intro Ga rich regions.
 - Recovery phase Diffusion mechanisms.
 - Pu defect migrations is confined to Pu-rich zones, bounded by Ga-Pu polyhedra.
- TODO: Cascade overlap, effect of GB, varying at.% Ga, migration of complex defect structures. - requires robust LTSD methods!

Application 2

The effect of structure on radiation damage: A case study in TiO₂

tolerance to radiation damage.

g

The Anatase and Brookite polymorphs behave differently with Anatase exhibiting a much higher susceptibility to radiation damage.

G. R. Lumpkin, K. L. Smith, M. G. Blackford, B. S. Thomas, K. R. Whittle, N. A. Marks, and J. Z. Zaluzec, Physical Review B **77**, 1-9 (2008).

h

Tuesday, 27 March 2012

- Aim
 - To study the low energy radiation response of the low pressure polymorphs of TiO₂
 - Reproduce trends found in experiments.
 - Investigate the atomic level differences in radiation response.
 - A transferable and generalised method of simulation and analysis of low energy radiation events.
 - As a method of calculating the threshold displacement energy, E_d .
 - To determine defect production mechanisms and recovery processes.
 - Quantitative insight into resultant defect structures.
 - To generate comparable results between crystal structures and/or potentials.

- Methodology:
 - MD cascades
 - Matsui-Akaogi (MA) buckingham potential¹ with ZBL in the DL_POLY3 MD code.
 - Low energy cascades < 200 eV.
 - 10 lattices equilibrated to **300K** for between 10-15 ps.
 - 100 PKA directions chosen from a **uniform spherical distribution**.
 - Thermal and periodic boundaries.
 - MD runs of **20 ps**.
 - LTSD
 - Simple transitions, manual setup, MEP defined using CNEB.
 - Transition searches using Dimer/RAT methods
 - On-the-fly KMC Dimer/RAT followed by CNEB

¹ M. Matsui and M. Akaogi, Molecular Simulation **6**, 239-244 (1991).

- One of the goals was to produce a **generalized and transferable** methodology to study initial defect formation and extracting quantities such as threshold displacement energy E_d .
 - Main area to automate: the determination of PKA directions

irreducible unit e.g. fcc

unit sphere sampling

The Thomson Problem

"Minimum energy configuration of point charges on the surface of a conducting sphere"

No analytical solution for large N, requires numerical constrained minimisation.

- One of the goals was to produce a **generalized and transferable** methodology to study initial defect formation and extracting quantities such as threshold displacement energy E_d .
 - Main area to automate: the determination of PKA directions

irreducible unit e.g. fcc

unit sphere sampling

The Thomson Problem

"Minimum energy configuration of point charges on the surface of a conducting sphere"

No analytical solution for large N, requires numerical constrained minimisation.

- Exponential Increase in local minima as N increases
 - Requires basin-hopping techniques to find global minima.

Tuesday, 27 March 2012

The importance of high sampling to generate representative results

• Quantitative analysis of the ballistic phase:

DFP as a function of PKA energy

$DFP(E_{pka}) = \begin{cases} 0 & \text{if } E_{pka} \leq E_d \\ \frac{1}{\beta} (E_{pka}^{\alpha} - E_d^{\alpha}) & \text{if } E_{pka} > E_d \end{cases}$							
Dohmorph	Ο ΡΚΑ		Ti PKA				
Polymorph	Ed	E _{0.5}	Ed	E _{0.5}			
Rutile	19	201	69	186			
Brookite	19	105	31	120			
Anatase	15	121	39	115			
*Enorgios in oV							

*Energies in eV

 $*E_{0.5}$ - the energy required to achieve 50% DFP

- Defect formation is **probabilistic over a large energy range**, up to at least **300-400 eV**.
- Although the *E_d* is lower for O, defect formation is more probable from Ti displacements at higher energies.
- **Defect formation requires more energy** in **Rutile** over the energy range studied particularly from Ti PKAs.

Application - TiO2

Taking an in-depth look into Rutile - Defect cluster analysis

Curtin University

• **DFP** categorised by the **atomic specie** of the defects.

Across all polymorphs

- Predominantly O defects created by O PKAs.
- Even proportion of Ti and O defects from Ti PKAs
- Implications for TRCS (or other methods that rely on anion vacancies)
 - Method traditionally only detects first emission i.e. O defects from O PKAs
 - Second emission relating to O defects from Ti PKAs.
 - *Only if energy gap is sufficiently large

- Quantitative analysis of the ballistic phase Comparison with experiment:
 - Experimental values of E_d for the O PKA are significantly lower than observed from the MD simulations, for example:
 - TEM
 - ~ 33 eV¹
 - **TRCS** (Time-resolved Cathodoluminescence Spectroscopy)
 - \sim 39 eV rutile 45-50 eV for other oxides².
- Reasons for discrepancies
 - TEM -
 - Relies on observable defect structures (saturation of point defects)
 - Always overestimate E_d .
 - TRCS -
 - Displaces O atoms with electron beam observes decay of excited F-centers.

¹ E. C. Buck, Radiation Effects and Defects in Solids **133**, 141-152 (1995). ² K. L. Smith, R. Cooper, M. Colella, and E. R. Vance, Materials Research Society Symposium Proceedings **663**. 373–380 (2001). Tuesday, 27 March 2012

- What can happen in 25 ns? (Rutile)
 - Simple O Frenkel pair annihilation separation around 4 Å

-0.50 L 0.0

0.5

1.0

Separation (Å)

1.5

2.0

Curtin University

- At what separation do we see a marked increase in FP recombination barrier?

- What can happen in 25 ns? (Rutile)
 - Simple O Frenkel pair annihilation separation around 4 Å

- At *small* separations O FP recombination occurs on the ps time scale.
- At what separation do we see a marked increase in FP recombination barrier?

Single barrier process 0.07 eV

O Frenkel pair annihilation - separation of around 6 Å.

O Frenkel pair annihilation - separation of around 6 Å.

O Frenkel pair annihilation - separation of around 6 Å.

b

IV

Mechanism of O split-interstitial migration in rutile

 Migration through the shared edge of the polyhedra along the c direction (z axis).

IV

III

Π

IV

- In bulk the transition is a two stage process with barriers around 0.12 eV.
- 0.12 eV
- In the presence of a local vacancy, the mechanism has a very low single barrier for annihilation.

In bulk the transition is a **two stage process** with barriers around 0.12 eV.

0.12 eV 0.12 eV In the presence of a local vacancy, the mechanism has a very low single barrier for annihilation. 0.50 CNEB 0.16 eV 0.00 energy (eV) -0.50

> -1.00 <u></u> 0.0

1.5

3.0

separation (Å)

4.5

6.0

Curtin University

In bulk the transition is a **two stage process** with barriers around 0.12 eV.

0.12 eV 0.12 eV In the presence of a local vacancy, the mechanism has a very low single barrier for annihilation. 0.50 CNEB 0.16 eV 0.00 energy (eV) -0.50

> -1.00 <u></u> 0.0

1.5

3.0

separation (Å)

4.5

6.0

Curtin University

In bulk the transition is a **two stage process** with barriers around 0.12 eV.

0.12 eV 0.12 eV In the presence of a local vacancy, the mechanism has a very low single barrier for annihilation. 0.50 CNEB 0.16 eV 0.00 energy (eV) -0.50

> -1.00 <u></u> 0.0

1.5

3.0

separation (Å)

4.5

6.0

Curtin University

• In contrast, Ti octahedral interstitials migrate at much higher barrier down the Z-axis channels.

• Unlike the O split-interstitials that migrate through a concerted motion, the mechanism for the Ti interstitial is a simple linear transition.

• Current conclusions:

- Ballistic phase Displacement threshold energy
 - Reiterates the probabilistic nature of defect formation at low energy
 - O values of *E*_d were found to be lower than experimental, but can be attributed to low energy recombination barriers.
- Ballistic phase Quantitative defect cluster analysis
 - Different response from each sublattice, O PKA generates strictly O defects, Ti PKA produces a multitude of defects
 - Representative defect proportions useful for future long time scale simulations
- Recovery phase Transition barriers / Diffusion mechanisms
 - Relatively long range and low barrier O FP recombination transitions.
 - O split-interstitial migration along the rutile c-axis, with very low energy barriers.
- TODO:
 - ► The effect of the connectivity of the TiO₆ polyhedra on defect migration:
 - Is migration impeded by change from edge to corner sharing?
 - Is the presence of the z-axis channel in rutile the main factor behind its increase in tolerance ?
 - Full scale OTF-KMC in each polymorph on the resultant defect clusters particularly the di-vacancies and di-interstitials.
 Curtin University

Requirements for Future Work

- A **robust method** of accessing time-scales beyond MD.
 - Automated
 - Handle multiple complex defect structures
 - Highly disordered lattices
 - Large systems (as PKA energy increases)

