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Overview

* Introduction into radiation damage.
> Motivation.
> Time-scale problem.
> Requirement for atomistic simulation.

> General methodology.

 Applications:
> Simulating self-irradiation effects of plutonium?1-3,

- Defect formation and migration in Ga-stabilised &-Pu.

> The effect of structure on radiation damage+.

- Comparison of radiation response of the rutile, brookite and anatase
polymorphs of TiOx.

1M Robinson, S D Kenny, R Smith, M T Storr, E McGee. Nucl. Inst. Meth. B 267 18 (2009)

2M Robinson, S D Kenny, R Smith, M T Storr. Nucl. Inst. Meth. B 269 21 (2011) _
2M Robinson, S D Kenny, R Smith, M T Storr. J, Nuc. Mat. 423 1-3 (2012) e ) . .
4 M. Robinson, N. A. Marks, K. R. Whittle and G. R. Lumpkin Phys. Rev. B 8510 (2012) == Curtin University
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Introduction

« Materials for nuclear applications must all share one important property:

“The ability to maintain functionality during
exposure to extreme levels of irradiation™

Smm Graphite layer
W Coated particles imbedded
in Graphite Matrix
Diameter 60mm Pyrolytic Carbon
Fuel sphere Silicon Carbite Baerier Coating f
nner Pyrolytic Carbon
Half section s Porous Carbon Butfer

Diameter 0.92mm Q
Coated particle o

lameter 0,5mm

Fuels- T Waste forms - Reactor
\ TRISO/UO: J Synroc/ Oxide materials - egerr;lerr]\ittse-
Ceramics ODS Steels _p/

 Two key goals: \ /A :
- To develop new ‘nuclear materials’for future reactors or waste forms.

- To determine the life expectancy and failure mechanisms of materials currently
In service.

 Requires an in-depth understanding of the atomistic processes that
attribute to macroscopic changes in properties.

I A Hirata, T Fujita, Y R Wen, J H Schneibel, C T Liu, and M W Chen, Nature Materials 10, 922-926 (201 1)./ 15
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Time scale problem

Radiation event

Ballistic Phase Recovery Phase

High Energy ~keV Defect migration and recombination.

Collision Cascade Activated processes - “Rare Events™
Thermal Spike

0 < 0.0 0 o
o 6. 0 DOOITSIOD0
o OO TO 00

Time scales: Time scales:
up to ~20 ps ns up to seconds, d/wl/y

r .. 1 1° T T —T7T7/77/7™T™" "
0 ns days weeks  years

Time scale

but events may overlap...
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Ballistic Phase

 Recoll event from a Primary Knock-on Atom (PKA)

* High energies, typically ~keV (dependent on the simulated process)

Requires dynamics

0.000000 fs PKA Info’

. ) 1149984 -Atoms —Direction ;/<253>
> ADb Initio methods unsuitable. 0 Visible Energy : 5000.00 eV
Specie: FPu

 Requires atomistic lattice effects |

> Phase field or continuum models
iInappropriate.

 Molecular dynamics is well suited
to modelling the ballistic phase:

> Time-scales: ~O (ns)
> Length scale: ~O (nm)

>  Ensembles (thermo/barostats) — L

Simulation: 5 keV cascade in fcc Pu @ 300 K. 1.1M atoms 15 ps

Curtin University
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Molecular Dynamics

 Molecular Dynamics (MD) is a powerful tool that can be used to
investigate the ballistic phase at the atomic level response.

* In addition, MD has allowed in depth studies into all areas of radiation
damage

> Self-irradiation effects (decay).

> lon implantation (e.g SWIFT heavy ion).

> Sputtering.

> Defect aggregation at grain boundaries or interfaces.
> Dislocation dynamics and diffusion.

> Bubble formation.

« Serves as an alternative to analytical models of defect production (KP,
NRT) or models based on the binary collision approximation (SRIM)

Curtin University
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Ballistic Phase

* Important requirements for modelling the ballistic phase using MD:

> Interatomic potential

- Must depict nuclei-nuclei interactions correctly - i.e. ZBL screened coulomb
potential. sw

: 500 1 1 ‘
— 7BL 3 3 — ZBL

400F 4 ,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,, _ MA+elec 4001 7777777777777777777 — I\S/IA+eIec |
. 300¢ cT0 |1 USSR TS KRN S ]

s |
200 D00 M SO
100+ FOO oo ,,,,,,,,,,,,,,,,,,,,,,,,,,

0 0 Rl T
0 1 2 3 4

ij

> Variable time-step
- Due to the high atomic velocities.
> Sampling

- Due to the chaotic nature of the atomic collisions, important to gain a high level
of sampling of PKA energies, initial directions of impact, thermal vibrations,
atomic specie.

> Defect analysis

- Vacancy/Interstitial (Frenkel pairs), Anti-sites, Dislocations, Schottky defects
ez
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Recovery Phase

 Modelling the recovery phase is made significantly harder by the highly
Inhomogeneous nature of the residual lattice:

> After the ballistic phase, the remaining lattice is potentially highly
disordered.

- Frenkel pairs, voids, dislocations.
> The presence of impurities or fission products.
- Bubble formation (H,He,Xe,Kr).
> Nuclear materials and fuels are typically complex and multi-component
- Structural vacancies, partial occupancy (i.e. disordered Pyrochlores/Fluorites ).

- Interfaces or grain boundaries (ODS steels, fuel cladding).

 Removes the possibility of using on-lattice KMC due to the variation in
local environment surrounding each defect.

Curtin University
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Recovery Phase

 The recovery phase itself can be broken down into :

>  Transitions where the end state is known.

- Examples:
e Simple vacancy/interstitial hops.
e Direct recombination.

- Methods:
e (Climbing image NEB?, String methods

> Transitions where the end state is unknown

- Examples:

e Complex defect migration.
e | ong range recombination.

- Methods:
e Dimer2, ART3, RAT#

> These techniques can also be used in on-the-fly KMC methods.

e Migration and recombination pathways.

' G. Henkelman, B. P. Uberuaga, and H. Jonsson, The Journal of Chemical Physics 113, 9901-9904 (2000).
2 G. Henkelman and H. Jénsson, The Journal of Chemical Physics 111, 7010-7022 (1999).

3G.T.Barkema and N Mouseau. Comp. Mat. Sci. 20 3 (2001)
4L.J. Vernon, Modelling Growth of Rutile TiO2, Loughborough University, 2010,
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Application 1

Simulating radiation damage in
Ga-stabilised Pu.
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Application - Ga stabilised Pu

« Simulating radiation damage in Ga-stabilised 6-Pu.

> Understanding the aging due to self-irradiation in fcc plutonium.

v

FCC plutonium is unstable at RT so is alloyed with a small percentage of Ga
(Up to ~12%)

e Aim
> To study the radiation response of Ga-stabilised Pu.
- Cascade simulations, displacement threshold energy calculations
> To investigate the effect of Ga on defect diffusion.

- Transitions barrier calculations and OTF-KMC of defect migration.

B Curtin University
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Application - Ga stabilised Pu

 Methodology:

> MD cascades
- Modified Embedded Atom Method (MEAM) for PuGa'2 in LBOMD.
- 0.2-10 keV PKA energies.
- 10 lattices equilibrated to 300K for between 10-15 ps.
- 12 PKA directions chosen from the FCC irreducible volume.
- Thermal and periodic boundaries.
- MD runs of 20 ps.

> LTSD
- Simple transitions, manual setup, MEP defined using CNEB.
- Transition searches using Dimer/RAT methods
-  On-the-fly KMC - Dimer/RAT followed by CNEB

I M. I. Baskes, Physical Review B 62, 15532-15537 (2000).
2 M. I. Baskes, K. Muralidharan, M. Stan, S. M. Valone, and F. J. Cherne, JOM Journal of the Minerals, Metals and Materials Society 55, 41-50 (2003).

B Curtin University

Tuesday, 27 March 2012



Application - Ga stabilised Pu

« Lattice Structure
- FCC phase Pu with arbitrary 5% substitutional Ga.

Substitutional Ga
lowers the PE of
surrounding Pu matrix

Total Energy per Afom (eV/Afom)
-5.00 -4.25 -3.50 -2.75

@Ga @ Py

 (a ordering determined using lattice Monte Carlo

Ga-Ga G(r)

- Results in no 1st nearest neighbour (1NN) Ga-Ga

bonds Ul A

2 3 4 5 6 7 8 9 10
Bond Length - A

Impact on LTSD techniques - resultant crystal
structure highly inhomogeneous
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Application - Ga stabilised Pu

 Afirst look at the ballistic phase

 The effect of Ga on: Threshold displacement
enerqgy E..
“Minimum energy required to displace at

atom as to create a Frenkel (vacancy-
interstitial) Pair”

> Low energy cascades (< 200 eV) initiated in a
irreducible volume.

500

D
o
o

- Overall increase in Eg4 for the
Ga PKA

W
o
o

200

100 1

Number of Simulations

00 10 20 30 40 50 60 70

Displacement Threshold Energy - (eV)
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Application - Ga stabilised Pu

« (Cascade Results

Pu 5 at. % Ga 5 keV Cascades Defect Analysis
Ga | Pu | Mixed | Total °
Constituents
Vacancies 1 298 | N/A | 299
Interstitials 2 303 | N/JA | 305
Anti-Sites 123 | 131 | N/A 254
Defect Categories

Lone Interstitials 0 246 | N/A
Lone Vacancies 0 250 | N/A
Lone Anti-Sites 8 19 | N/A
INN Di-Vacancies 0 1 0
2NN Di-Vacancies 0 2 0
Tri-Vacancies 0 1 0
INN Di-Interstitials 0 11 |0
2NN Di-Interstitials 0 2 0
Tri-Interstitials 0 0 0 .
NN Di-Anti-Sites 0 |0 |9 Large build up |
2NN Di-Anti-Sites 0 0 1 1 . |
Tri-Anti-Sites 0 |0 |0 0 of TNN mixed
Anti-site + Mono-Vacancies | 0 2 0 2 i 1-CQ] |
Anti-site + Mono-Interstitials | 2 0 0 2 SpeCIe antl Slte ’
Split-Interstitials 0 |1 |1 2 defects
Split-Vacancies 0 4 1 5
Vacancy-Interstitials 0 12 |0 12 A : -
Unclassified Tri-Defects 0 3 16 19 / ’
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Application - Ga stabilised Pu

« Simple Transition barrier results
- (~ 25 different transitions in 100 PuGa lattices)

Mono-vacancy <100> split-interstitials

initial

g0
-0
=0

. i i i i . 0.5 1.0 1.5 2;0 2:5 3.0
0 2 4 | 6 8 10 Barrier height (eV)
mage

final

O~ !
0!
O~ !

w
o

N
o

Y
o
T

o

W
o

N
o

Number of PuGa configurations
o

o

w
o
T

Energy (eV)

N
o

—_
o
T

(o=}
o

- Interstitial barriers << vacancy barriers

- The creation of vacancies by the displacement of Ga atoms
Is highly unfavourable.

B Curtin University
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Application - Ga stabilised Pu

* On-the-fly KMC of Pu split-interstitial

- Due to the low energy
barriers associated with
split-interstitials,
diffusion occurs
quickly ~ns.

- Defect migrates through
a succession of Pu
atomic replacements

- But what about the effect

of the substitutional
Ga? ...

Simulated time:; 842.24 ns

Curtin University
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Application - Ga stabilised Pu

* On-the-fly KMC of Pu split-interstitial

Simulated time:; 842.24 ns

- Due to the low energy
barriers associated with
split-interstitials,
diffusion occurs
quickly ~ns.

- Defect migrates through
a succession of Pu
atomic replacements

- But what about the effect

of the substitutional
Ga? ...

& Curtin University
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Application - Ga stabilised Pu

* On-the-fly KMC of Pu split-interstitial

\ 4

- By rendering the Ga-
Pu polyhedra, it
becomes clear that the
interstitial migration
is confined to Pu rich
regions.

SRS

"
<] -
| e

s virrdH

Curtin University

o
==
nel
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Application - Ga stabilised Pu

* On-the-fly KMC of Pu split-interstitial

‘J

Ed

|

\ 4

- By rendering the Ga-
Pu polyhedra, it
becomes clear that the
interstitial migration
is confined to Pu rich
regions.

== Curtin University
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Application - Ga stabilised Pu

* On-the-fly KMC of Pu mono-vacancy.

2d18h25m58.82s

Final mono- Initial mono-

vacancy
position

Ga rich regions
Regions containing atomic

- The same is also true for vacancy migration,
with the migration pathway avoiding Ga-rich
regions.

- As the lowest energy barriers for vacancy
transitions are higher than interstitial, the time
scale for migration is significantly
increased.

2d18h25m58.82s - 2d18h25m 58825

vacancy
position

displacements
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Application - Ga stabilised Pu

e Conclusions:

> We have built up a picture of radiation damage in Ga-stabilised Pu,
showing the effect of Ga on:

- Ballistic phase - Threshold displacement energies.

e Higher value of E4 for the Ga PKA.
- Ballistic phase - Cascade damage.

e No outlying Ga defects

e Build up of 1NN ‘anti-sites’ i.e. Pu-Ga switching during the cascade
- Recovery phase - Transition barriers.

e High energy barriers associated with introducing vacancies and
interstitials intro Ga rich regions.

- Recovery phase - Diffusion mechanisms.

e Pu defect migrations is confined to Pu-rich zones, bounded by Ga-Pu
polyhedra.

« TODO: Cascade overlap, effect of GB, varying at.% Ga, migration of
complex defect structures. - requires robust LTSD methods!

= Curtin University
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Application 2

The effect of structure on radiation
damage: A case study in TiO:

Curtin University




Application - TiO:

e Rutile application
as a nuclear waste a7

. NN NN N an

form, i.e. Synroc, |5 8 A R R R =

Brookite

SO0

and has a high 22222 % %" .0+0+0+0+0+0+f
tolerance to 22%2%2%% "% o0 0000

radiation damage. [[EoNg g g e

L W W
B B B3 | | |

TATATATATATA

1.9 10'* ions cm™

e The Anatase and
Brookite
polymorphs behave
differently with
Anatase exhibiting
a much higher
susceptibility to
radiation damage.

ﬁ
Increasing susceptibility to amorphisation

G. R. Lumpkin, K. L. Smith, M. G. Blackford, B. S. Thomas, K. R. Whittle, N. A. ®:
Marks., and J. Z. Zaluzec, Physical Review B 77, 1-9 (2008).
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Application - Ga stabilised Pu

e Aim

> To study the low energy radiation response of the low pressure polymorphs of
TiO2

- Reproduce trends found in experiments.

- Investigate the atomic level differences in radiation response.

> Atransferable and generalised method of simulation and analysis of low
energy radiation events.

- As a method of calculating the threshold displacement energy, E..
- To determine defect production mechanisms and recovery processes.
- Quantitative insight into resultant defect structures.

- To generate comparable results between crystal structures and/or potentials.

Tuesday, 27 March 2012



Application - TiO>

 Methodology:
> MD cascades

- Matsui-Akaogi (MA) buckingham potential® with ZBL in the DL_POLY3 MD
code.

- Low energy cascades <200 eV.
- 10 lattices equilibrated to 300K for between 10-15 ps.
- 100 PKA directions chosen from a uniform spherical distribution.
- Thermal and periodic boundaries.
- MD runs of 20 ps.
> LTSD
- Simple transitions, manual setup, MEP defined using CNEB.
- Transition searches using Dimer/RAT methods
- On-the-fly KMC - Dimer/RAT followed by CNEB

I M. Matsui and M. Akaogi, Molecular Simulation 6, 239-244 (1991). ?

Tuesday, 27 March 2012



Application - TiO>
* One of the goals was to produce a generalized and transferable

methodology to study initial defect formation and extracting quantities such
as threshold displacement energy Ea.

- Main area to automate: the determination of PKA directions

2N
irreducible X : %‘ unit sphere l

unit e.g. fcc Q ® | sampling

OGO

The Thomson Problem

“Minimum energy configuration of point
charges on the surface of a conducting
sphere”

No analytical solution for large N,
requires numerical constrained
minimisation.

= Curtin University
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Application - TiO:

* One of the goals was to produce a generalized and transferable
methodology to study initial defect formation and extracting quantities such
as threshold displacement energy Ea.

- Main area to automate: the determination of PKA directions

irreducible
unit e.g. fcc

unit sphere
sampling ‘/

The Thomson Problem

“Minimum energy configuration of point
charges on the surface of a conducting
sphere”

No analytical solution for large N,
requires numerical constrained
minimisation. energy

38.7 58.5 78.4 98.2 118.

s L i
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Application - TiO>

 Finding solutions to the Thomson Problem. s —N=100

[—sD

Steepest Decent o
MD 1 e LBFGS
Conjugate Gradient

Broyden—Fletcher—Goldfarb—Shanno (BFGS &
LBFGS)

energy (atomic units)

500
Force calls

 Exponential Increase in local minima as N increases
> Requires basin-hopping techniques to find global minima.

4449.6

>

= 444921

potential

energy (atomic units

1500 3000 4500 6000
Force calls

Curtin University

Tuesday, 27 March 2012



Application - TiO:

 Finding solutions to the Thomson Problem. s ~ N=100
»  Steepest Decent . ; — e
> MD E ooy 77777777777777777777777 t— I};I:zvcj:minimum
> Conjugate Gradient g ; ;
»  Broyden—Fletcher—Goldfarb—Shanno (BFGS & "\ o < - '
LBFGS)
4400 i i i

 Exponential Increase in local minima as N Increases
Erangy dMda TGP > Requires basin-hopping techniques to find global minima.

Gaussiars 0
4449.6
A
Tﬁ W 4449.21
* m— c
i) S
o
- =
Q S 4448.8}1
3= &S
O 5
(@] 2
O 4448.41
4448.0 i L i
0 1500 3000 4500 6000
Force calls

energy
44.4 444 44.5 44.5
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: f—?—?..——?—?? ReIaX and
thermalise N,
T lattices to T Kelvin.

U B U B E N |

" Determine unique
PKAs: (Ti, Or, On)

"Choose Emin, Emax
_and step size AE.

Generate N; PKA

directions from
solutions to the
Thomson Problem

In each lattice, for each unique m
PKA, energy and direction, run
MD collision cascades for ¢ ps.
G

Application - TiO:

Analysis of recovery
time as a function of
PKA energy/specie

)
>

potential

(

Transition searches /
OTF-KMC

rrrrr
DDDDDDDD
mmmmm

on
pang

probability \
o o =~
[e>] ©

Post analysis:
DFP,
FP separations ...

10 <1.1234 0.1234 0.543> 10 10 2

10 <1.12340.12340.543> 10102
20<1.12340.12340.543> 1 1 102
30<1.12340.12340.543> 10 14 2
40 <1.1234 0.12340.543> 10302
50 <1.1234 0.1234 0.543> |1 040 2
60 <1.1234 0.1234 0.543> |1 060 2
70 <1.12340.12340.543> 1076 2

N O U1 A WDN

10 <1.1234 0.1234 0.543> 1 0 10 2 On-th e-ﬂy anal)’SlS

Frenkel pairs,
replacements ...

__
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Application - TiO>

 The importance of high sampling to generate representative results

(1 PKA direction = 720 MD simulations ) g 10 PKA directions = 7200 MD simulations\
_ 0.7 ‘ ? ?

<0.6149 0.1663 -0.7709>

1.0

o
(o))
T

o

(0]

o

(&)
T

>

o
~

o
w

o
N

o
(V)

Defect formation probability
o
(@) ]
Defect formation probability

o
N

©
o
)
)
)

0 50 100 150 200

9 PKA energy (eV) y
The ‘noise’ generated | os——— )
‘S| from sampling 1 PKA . )|~ ors
direction is significantly|s .| R T i
reduced as sampling |2
increases. E
paf |- S g9 e e
- Defect formation probability (DFP) - g
The probability of defect formation at a - | |
given PKA energy over all directions 00 "% 100 50 200
and lattices. 100 PKA directionspéAlirl]eSy;QQOOO simulations,

*Error bars represent 95% confidence interval in SEM B Curtin University
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Application - TiO>

« Quantitative analysis of the ballistic phase:
- DFP as a function of PKA energy

Rutile
0.6 ! ;
| | 0 if By, < Ey
o9 DFP(E ,) = o o P
5056? ------------------- (Epa) { LBy~ Ef) i Byra > B
8 T Lli-
e O PKA| | 4 AR O PKA
c 88 Polymorph
E O3 et AR Eq Eos Eq Eos
202 , OOOOO ---------- — o ------------------ Rutile 19 201 69 186
L s 5 - -
Soql. 8 £ 1Ti PKA| L] Brookite 19 105 31 120
ol e R Anatase | 15 | 121 | 39 | 115
0+ 50 100 150 1 20D 250 .
Ed PKA energy (eV) Eo.s *Energies in eV

*Eos5 - the energy required to achieve 50% DFP

e Defect formation is probabilistic over a large energy range, up to at least 300-400 eV.

e Although the Eqis lower for O, defect formation is more probable from Ti displacements
at higher energies.

e Defect formation requires more energy in Rutile over the energy range studied -
particularly from Ti PKAs.

Curtin University
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Application -

Tio2

 Taking an in-depth look into Rutile - Defect cluster analysis
4 O mono- )
vacancy .
. R Utl Ie Ti split-vacancy
T T [
//,,,—””—‘[nﬂéh interstitia
S\tseprlsigtial
. .
intecl’)slt(i)t?zael Ic_laurgtee::isefect \15% \I\/A&;)c(:ﬂ;yn-
s
“lone di-vacancy
\_ interstitial -/
( . . 3\
) Mixed di-

O PKA _
vacancies

Ti mono-
vacancy

O mono-
vacancy O split-

interstitial

Ti PKA

O mono-
vacancy

Ti split-vacancy

Ti split-

interstitial
O split-
Ti lone interstitial
interstitial Mixed tri-
vacancy
Mixed di-
interstitial
interstital . clusters Large defect
\ ) \ di-vacancy y
— . . : clusters
e Highlights the differences in sublattice response. e/
e Provides a good foundation for studies of defect migration and FP recombination i.e.

KMC

ez
Sk
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Application - TiO:

 DFP categorised by the atomic specie

of the defects.

4 )
Across all polymorphs

| —e— (O Defects
' 5 o— Ti Defects

O defects from O

@ Predominantly O defects created by
O PKA:s.

@ Even proportion of Ti and O defects
from Ti PKAs

\- J

* Implications for TRCS (or other
methods that rely on anion vacancies)

| —v— (O Defects
1 : —— Ti Defects

O defects f
- Method traditionally only detects first elects rom

emission i.e. O defects from O PKAs

- Second emission relating to O defects
from Ti PKAs.

e *Only if energy gap is sufficiently large
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Application - TiO>

« Quantitative analysis of the ballistic phase - Comparison with
experiment:

> Experimental values of E4 for the O PKA are significantly lower than observed
from the MD simulations, for example:

- TEM
e ~33eV

- TRCS (Time-resolved Cathodoluminescence Spectroscopy)
o ~ 39 eV rutile 45-50 eV for other oxides?.

 Reasons for discrepancies
- TEM-

e Relies on observable defect structures (saturation of point defects)
e Always overestimate E..

- TRCS -

e Displaces O atoms with electron beam - observes decay of excited F-centers.

1 E. C. Buck, Radiation Effects and Defects in Solids 133, 141-152 (1995).
2 K. L. Smith, R. Cooper, M. Colella, and E. R. Vance, Materials Research Society Symposium B Curtin Universi tg
Proceedines 663. 373-380 (2001)
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Application - TiO>

 What can happen in 25 ns? (Rutile)

> Simple O Frenkel pair annihilation - separation around 4 A

<101

- At small separations O FP
recombination occurs on the ps
time scale.

- At what separation do we see a
marked increase in FP
recombination barrier?

energy (eV)

-0.25-

-0.50
0.

energy (eV)

0.0

-
=

g
()
T

—e— (O FP Recombination

20 3.0 4.0

Separation (A)

1.0

025~

0.00

—eo— (O FP Recombination

1.0 1.5 20

Separation (A)

0 0.5

Single
barrier
pProcess
0.07 eV

@ Curtin University
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Application - TiO:

 What can happen in 25 ns? (Rutile)

> Simple O Frenkel pair annihilation - separation around 4 A

- At small separations O FP
recombination occurs on the ps
time scale.

- At what separation do we see a
marked increase in FP
recombination barrier?
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Application - TiO>

> O Frenkel pair annihilation - separation of around 6 A.
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Application - TiO:

> O Frenkel palr annlhllatlon separation of around 6 A.
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Application - TiO:

> O Frenkel palr annlhllatlon separation of around 6 A.
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Application - TiO:

Mechanism of O split-interstitial
migration in rutile

> Migration through the shared edge of the
polyhedra along the c direction (z axis).

« TODO: Is this migration possible in anatase and brookite?

Tuesday, 27 March 2012



Application - TiO:

> In bulk the transition is a two stage process with barriers around 0.12 eV.

> In the presence of a local vacancy, the
mechanism has a very low single barrier for

annihilation.
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O

In bulk the transition is a two stage process with barriers around 0.12 eV.

Application - Ti
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In bulk the transition is a two stage process with barriers around 0.12 eV.

Application - Ti
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In bulk the transition is a two stage process with barriers around 0.12 eV.

Application - Ti
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Application - TiO:

* |n contrast, Ti octahedral interstitials migrate at much higher barrier down
the Z-axis channels.

> Migration passes through 2
symmetrically equivalent octahedral

sites with a barrier of 0.85 eV

* Unlike the O split-interstitials that migrate through a concerted motion, the
mechanism for the Ti interstitial is a simple linear transition.
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Application - TiO:

 Current conclusions:
- Ballistic phase - Displacement threshold energy
e Reiterates the probabilistic nature of defect formation at low energy

e (O values of Eyswere found to be lower than experimental, but can be attributed to low energy
recombination barriers.

- Ballistic phase - Quantitative defect cluster analysis

e Different response from each sublattice, O PKA generates strictly O defects, Ti PKA
produces a multitude of defects

e Representative defect proportions useful for future long time scale simulations

- Recovery phase - Transition barriers / Diffusion mechanisms

e Relatively long range and low barrier O FP recombination transitions.

e O split-interstitial migration along the rutile c-axis, with very low energy barriers.

« TODO:
> The effect of the connectivity of the TiOs polyhedra on defect migration:
- Is migration impeded by change from edge to corner sharing?

= Is the presence of the z-axis channel in rutile the main factor behind its increase in
tolerance ?

> Full scale OTF-KMC in each polymorph on the resultant defect clusters - particularly
the di-vacancies and di-interstitials.

Tuesday, 27 March 2012



Requirements for Future Work

 Arobust method of accessing time-scales beyond MD.
> Automated
> Handle multiple complex defect structures

> Highly disordered lattices

> Large systems (as PKA energy increases)

(Thanks to ... I\/ =%
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