

Long time scale simulations to determine accurate ab initio free energies

Jörg Neugebauer, Blazej Grabowski, and Tilmann Hickel

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Department of Computational Materials Design

Partition function

Phase diagram

Do we have to go beyond experiment?

Calorimetric measurements

fcc Al

fcc/bcc Mg

Fundamental input for all thermodynamic databases \rightarrow But: Scatter of ~0.3 … 1 k_B

Point defects (vacancies): Formation energies and entropies

	AI	
	Exp.	DFT
E _f (eV)	0.7	0.6
S (k _B)	2.4	0.2

MPIE, Dept. Computational Materials Design

Do we have to go beyond experiment?

Stacking fault energies (fcc Fe-Mn)

Key quantity to design novel high-strength steels

Additional complication \rightarrow magnetism

Even chemical trends are hard to derive from existing data

MPIE, Dept. Computational Materials Design

Accuracy

Ab initio Thermodynamics

$$(x) = \left\langle e^{-E^{BOS}\left(\left\{\vec{R}_{I}, Z_{I}, \sigma_{I}, f_{i}, \ldots\right\}\right)/k_{B}T} \right\rangle_{V, T, x}$$

$$= \sum_{\{\vec{R}_{I}, Z_{I}, \sigma_{I}, f_{i}, ...\}} e^{-E^{BOS}(\{\vec{R}_{I}, Z_{I}, \sigma_{I}, f_{i}, ...\})/k_{B}T} \Big|_{V}$$

Statistical averages over coordinates, magnetic moments, occupations, chemical compositions

$$= \sum_{\{\vec{R}_{I}\}} e^{-E^{BOS}\left(\{\vec{R}_{I}\}; \{Z_{I}, \sigma_{I}, f_{i}, ...\}_{fixed}\}/k_{B}T} \Big|_{V, T, x}$$

Adiabatic approximation

Z(V,T)

$$\times \sum_{\{f_i\}} e^{-E^{BOS}\left(\{f_i\}; \left\{\vec{R}_I, Z_I, \sigma_I, \ldots\right\}_{fixed}\right)/k_B T} \bigg|_{V, T, x}$$

Electronic excitations

e.g. electron-phonon interactions

MPIE, Dept. Computational Materials Design

+ cross terms

BEMOD, Dresden, March 26 - 29, 2012

T, x

Accuracy considerations

MPIE, Dept. Computational Materials Design

Are contributions beyond quasiharmonic approximation relevant?

MPIE, Dept. Computational Materials Design

Example: Bulk (fcc) Aluminum

How to sample over 10⁷ configurations with ab initio accuracy?

Can we use empirical potentials to describe anharmonic contributions

MPIE, Dept. Computational Materials Design

Heat capacity of bulk Aluminum

None of the available empirical potentials is able to describe the anharmonic contribution

[1] Y. Mishin, et al., Phys. Rev. B 59, 3393 (1999).

- [2] F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994).
- [3] J. Mei and J. Davenport, Phys. Rev. B 46, 21 (1992).

[4] D. A. Ditmars, et al., Int. J. of Thermophys. 6, 499 (1985).

MPIE, Dept. Computational Materials Design

Coarse graining configuration space

Main challenge:

Reduce number of (ab inition) configurations by several orders of magnitude

 π from MD or MC

$$\langle U(T)\rangle = \frac{1}{N} \sum_{i}^{N} E^{BOS}\left(\left\{\vec{R}_{I}(t_{i})\right\}\right)$$

MPIE, Dept. Computational Materials Design

Thermodynamic Integration

Key idea: Compute free energy change between reference system A and real system B

with

$$\Delta F(A \to B) = \int_{0}^{1} \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda} d\lambda$$

Application straightforward if good reference is available

Typically the number of configurations can be reduced by 1-2 orders of magnitude \rightarrow several 10⁴ configurations

 $(\lambda) = U_A + \lambda (U_B - U_A)$

Not affordable on highest ab initio level

Free energy perturbation

Key idea: Compute free energy change between reference system A and real system B

$$\Delta F(A \to B) = -k_B T \ln \left\langle \exp\left(-\frac{E_B - E_A}{k_B T}\right) \right\rangle_A$$

Performance increases with quality of reference

For large differences to reference the method becomes inefficient/ fails

For the targeted accuracy less efficient than thermodynamic integration

MPIE, Dept. Computational Materials Design

How to boost coarse graining?

Cycles in thermodynamic integration

$$\Delta F(A \to B) = \int_{0}^{1} \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda} d\lambda$$

MPIE, Dept. Computational Materials Design

Solution

λ integration (2-10 steps)

- \rightarrow Improved reference reduces step number
- \rightarrow Here: Quasiharmonic reference

Performance of the new approach

Benchmark against experiment

MPIE, Dept. Computational Materials Design

Thermal expansion coefficient

 \rightarrow Excellent agreement with experiment

→ Systematic trend: LDA and GGA provide approximate measure of error bars

Grabowski, Ismer, Hickel, Neugebauer, Phys. Rev. B 79, 134106 (2009)

MPIE, Dept. Computational Materials Design

Heat Capacity

Heat capacity of Al

 \rightarrow DFT gives lower bound to all recent experiments

MPIE, Dept. Computational Materials Design

Applications

MPIE, Dept. Computational Materials Design

Assessment of experimental data

MPIE, Dept. Computational Materials Design

Calcium: Heat capacity

Calcium: Heat capacity

Newly developed approaches allow to systematically improve performance of DFT to describe finite temperature properties

Accuracy often exceeds experimental data even of stable phases

 \rightarrow Provide excellent basis to compute thermodynamic data

MPIE, Dept. Computational Materials Design

Thanks to the department

MPIE, Dept. Computational Materials Design

Thanks for your attention

MPIE, Dept. Computational Materials Design