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Objective of this presentation 

 

Show how the use of neural networks can be 

helpful to develop kMC models that are truly 

extensions of MD models 

 

 

Emphasise that neural networks are a powerful 

numerical tool which does not, however, replace (or 

worse, obliterate) physics 
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Which processes are we interested in? 
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Point-defect diffusion-driven processes occurring under irradiation 
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Class “1.5” processes:  

 

We do not know where the system will go …  

 

… but we hope it will end up sufficiently close to the experiment we want 

to simulate 

 

And we know the system will get there via elementary processes for 

each of which it is generally possible to know initial and final state 

 

Main problem: in alloys, the actual rates of these elementary processes 

depend on the combinatorially large number of possible local atomic 

configurations 
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Atomistic KMC simulations to extend MD 

Diffusion jumps are thermally 

activated processes / frequencies 

are used as probabilities 

Most physics is contained in the migration energies, Em
i 
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Point-defect diffusion-driven processes take too long for MD  

 Atomistic KMC simulations are widespread techniques to go beyond MD 

Example: BCC iron at 600 K 

Vacancy migration: 1 jump / 4 ns  SIA migration: 1 jump / 4 ps 

Fundamental equations: 
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Migration energy calculation takes time 
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Point-defect migration energies can be calculated very accurately: 

- DFT, interatomic potentials, … 

- Drag method, nudged elastic-band method, … 

 

Problem: kMC simulations require migration energy in chemically 

changing enviroments to be calculated for each possible point-defect 

jump, at each timestep, to choose the event  

 

 The more accurate the calculation, the less effective the timescale 

extension as compared to MD 

 Approximations are used to speed up on-the-fly calculation 

saddle-point (SP) 
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Problem: irrespective of how accurately E is computed, 

correlation between thermodynamics (initial & final states) and 

kinetics is implicitly assumed 

Em
i are functions of the local environment 

Frequent simplifying assumptions:  
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0 = constant, determined by 

chemical nature of jumping atom 
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ci = atomic configuration (positions 

& chemical nature) in state i  

E is typically calculated 

- As summation of pair energy constants extended to closest 

neighbours (1st & 2nd)  or as cluster expansion – parameters 

nowadays fitted to DFT 

- From interatomic potentials used on rigid lattice (relaxation is also 

possible, but computationally costly) 
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Em
i are functions of the local environment 

Frequent simplifying assumptions:  

Problems:  

- Medium-to-long range chemical interactions and strain field 

effects are disregarded (especially serious for ESP) 

- How reliable can a summation of close neighbour pair energy 

constants be to reproduce complex many-body interactions 

from DFT (think of concentrated alloys …)? 
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cX
nn = config. limited to 1st-2nd neighbour shell 

 

Typically f & g are sums of pair energy 

constants (nowadays fitted to DFT) 
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ci = atomic configuration (positions 

& chemical nature) in state i  
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Em
i are functions of the local environment 

Less frequent assumption:  
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i = on-site variable that takes a different value 

depending on the type of atom at site i of cluster  

= any cluster 

defined in lattice 

with atom at SP 
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Problem:  

- Choice of clusters, where to truncate expansion, …: 

convergence with cluster expansion is not easy matter! 

fitted coeff. 

fitted coeff. 
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Em
i are functions of the local environment 

Our assumption:  
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A= sufficiently large cluster including all 

atoms that define the local environment 

around the migrating defect 

Problem:  

- We do not know how this multivariable function looks like 

    A  ,

Solution:  

- Resort to powerful universal regression tool to build an 

approximation to this function: artificial neural network 
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AKMC simulation box -

rigid lattice 

Migration energy 

Artificial 

Neural 

Network 

1  1  2  1  2  1  1  2  1  1  1  2  2  1  1  1  2  1  2  1 

Local atomic environment as 

vector of on-site variables, i 

± 100 s 

± 100 ms 

How does it work in practice 

A 

A 

Accurate NEB calculation with 

interatomic potential in separate box 

allowing full relaxation 
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Database 

(104 points) 

Train
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Migration energy 

(if error committed by ANN is 

estimated to be large …) 
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How an ANN looks like 

Artificial neural networks are considered as universal approximation tools: in 

theory they can reproduce any mapping between input and output variables 

Network of simple 

processing units arranged 

in layers (signal propagated 

from top to bottom) 
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Network “synapses”  

to be found by training. 

Input signals (on-site 

variables) 

{xi, i=1, …, N} 

{oj, j=1, …, n} 

1 in our case 

Input layer 

Hidden layer(s) 

Output layer 
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How an ANN is trained 

I n p u t output 
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up to 600 variables 

Table of examples 

 

Divided in two non-

overlapping sets 

 

Training iterations 

continue until error 

commited on ref. 

set is minimum 

(above network 

becomes 

overspecialised)  

Number of training iterations 

 

 

 

Training set: used to design ANN 

 

 

 

Reference set: used to measure 

prediction error 

Crucial is how the set of examples is built ! 
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• Large number of examples to be calculated forces 

to use interatomic potentials (2b discussed) 

• Relaxation of initial and final states is performed 

with conjugate gradients 

• NEB is procedural and easily automatized, though 

SIAs are more delicate than vacs. 

• Outside A, matrix atoms are added as fillers; PBC 

are used 

• How big should A be to converge to a value that 

does not depend on system size? 

NEB calculations 

r A 

Ei 

ESP
i-j 

Ej 
Em
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Example of single vacancy in Fe-Cr 
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1nn : 15 

2nn : 21 

3nn : 39 

4nn : 69 

Inputs Hidden layer 

5nn : 77 

6nn : 83 

7nn : 119 Gradually improving accuracy constructive algorithm: 

 Input variables are subdivided by neighbour shells 

 Hidden layer nodes are progressively connected to 

variables from further neighbour shells 

 Hidden layer nodes are added on-demand 

How many on-site variables need to be considered for the 

ANN to give a correct answer? 

We let the ANN itself decide … 

Incidentally, how big should A be for the ANN? 

Many advantages: 

 Optimal architecture of ANN 

spontaneously determined 

 Number of required input 

variables is minimised 

 Training time is reduced 

NB: Number is less than for 

NEB to converge … 
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Examples must be physically relevant ! 

Chosen migration events must be randomly generated but 
representative of physical configurations encountered in the 
AKMC simulation. 

 

One way is by performing AKMC simulations with simpler or 
preliminary Em description and extract examples of configs. 

Example: Types of configurations seen by single vacancy in 

the Fe-Cu system, where Cu is known to precipitate and 

vacancy can be strongly trapped by precipitates 

Vacancy in matrix 
Vacancy approaching 

precipitate 

Vacancy inside 

precipitate 
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How many examples? 

 A priori, not known 

 

 Several thousands guarantee good convergence and can be 

easily produced with interatomic potentials 

 

 “Experiment” using DFT data for training not performed yet – 

at least a few hundreds examples are likely to be needed for 

reliable interpolation 

 

 Great attention paid to evaluation of errors committed at all 

levels 
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Difficulty: rigid vs relaxed system 

NEB requires that initial and final state are known and at least metastable 

States that are “topologically” possible on rigid lattice might be unstable 

once relaxed 

Wigner-Seitz cell 

(bcc structure) 

Solution: 

• On-site variables associated with Wigner-Seitz cells around lattice 

positions, rather than to perfect positions: it does not matter if atoms 

move within WS cell (so long as they remain inside) 

 Stability of initial configuration is checked (if unstable, not 

considered for training) 

 Effect of (0 K) relaxation, thus elastic strain field, up to high 

order neighbour shell are implicitly accounted for 
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Difficulty: rigid vs relaxed system 

NEB requires that initial and final state are known and at least metastable 

States that are “topologically” possible on rigid lattice might be unstable 

once relaxed 

Wigner-Seitz cell 

(bcc structure) 

Solution: 

• On-site variables associated with Wigner-Seitz cells around lattice 

positions, rather than to perfect positions: it does not matter if atoms 

move within WS cell (so long as their remain inside) 

Still open problem 

• What if final state is unstable? (Especially delicate for SIAs) 

Here solution could be to train ANN to recognise unstable configurations: 

feasibility is demonstrated but method not yet applied 
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How well do ANN replace NEB ? 
Single vacancy in binary alloy 

10 / 17 
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Cu 
Ni 

Vacancy 

Up to 60 other 

vacancies in the 

environment 

How well do ANN replace NEB ? 
Many vacancies in ternary alloy 
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Cu 

Vacancy 

Up to 250 other vacancies in 

the environment 

How well do ANN replace NEB ? 
Even more vacancies in binary alloy 
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5 SIAs 

Pure Fe 

1 SIA 

Fe-Cr 

How well do ANN replace NEB ? 

Single self-interstitial 

migrating in binary alloy 

(FeCr) or in iron but with 

other SIAs around 
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Application: 500°C ageing in Fe20%Cr 

ANN 

Use of ANN provides simultaneously good prediction of ppt size and density 

2
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E
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Application: mobility of VacmCun clusters  

24 

Ri 

t=0 

t=ti 
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Further application of ANN: interpolate and extrapolate values of 

D(T,size,…), to be plugged in Object kMC models 



Hybrid O/AKMC 

Ageing of Fex%Cu at different temperatures 

Below a certain size ANN-

based AKMC is used. 

Above, Cu ppts treated as 

objects with pre-defined 

properties predicted by 

trained ANN 

• Mobility of Cu ppts crucial to explain experimental kinetics of pptation 

• Hybrid approach instrumental to reach sufficiently long timescales 

25 BEMOD12 – MPI-PKS, Dresden, 26-29 March, 20102 – L. Malerba 

Castin et al., JCP 135, 064502 (2011) 

“Pure” AKMC 
“Pure” AKMC 



Still open challenge: large strain fields 

SIA clusters: 

 Many initial and final configurations that are ‘topologically’ 

possible on rigid lattice are unstable  

 Likely that hybrid or simplified approach will have to be 

adopted 

 

Presence of grain boundaries or other interfaces; 

dislocations; phases with different crystallography: 

 These problems have not been attacked, yet 

 Simplified approaches might be necessary 

 Rigorous approaches may turn out to be possible but 

highly sophisticated 

Cost and benefit considerations will be the guide 
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Use of interatomic potentials as reference: 

is it a limiting factor? 

Quite obviously, model cannot do any better than interatomic 

potential used as reference  DFT reference would be better – 

but: 

- Different DFT approximations give different values 

- How big should box be for NEB with DFT to converge? 

- How large is error committed using pair energies or cluster 

expansion to predict DFT reference data? 

 

Use of interatomic potential provides consistency: 

- True extension of MD (besides high T vibrational entropy effects) 

- Results from different models and approaches can be combined 

or compared 
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Our global approach 
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• … 
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