METAGUI - A VMD EXTENSION TO ANALYZE AND VISUALIZE METADYNAMICS SIMULATIONS

Alessandro Laio SISSA \& DEMOCRITOS, Trieste

Coworkers: Xevi Biarnes
Fabio Pietrucci
Fabrizio Marinelli

Netadynannics (Laio A. and Parrinello M., 2002).

Filling the free energy wells with "computational sand"
Bias on x

- choose a collective variable $s(x)$ (in the example $s(x)=x$)
-Bias the dynamics with a potential of the form
$V_{G}(s(x), t)=w \int_{0}^{t} d t^{\prime} \exp \left(-\frac{\left\|s(x)-s\left(x\left(t^{\prime}\right)\right)\right\|^{2}}{2 \delta s^{2}}\right)$
- $V_{G}(s, t)$ for large t is an approximation of $-F(s)$

Other methods based on similar ideas: Taboo search: Cvijovic, D.; Klinowski, J.
Local elevation: T. Huber, A.E. Torda and W.F. van Gunsteren
Adaptive force bias: E. Darve and A. Pohorille

Limitations

It is difficult to "know" in advance all the relevant variables
If one is forgotten \rightarrow histeresis!!!
Even if you know all: the filling speed decreases exponentially with the dimensionality of the free energy.

Bias-exchange metadynamics

-Run several metadynamics each biasing a different collective variable:
Replica 1: collective variable "a", bias potential ${ }^{\text {a }}$ (x, t)
Replica 2: collective variable "b", bias potential $\mathrm{V}^{\mathrm{b}}(\mathrm{x}, \mathrm{t})$
Replica 3:
-Attempt swapping the coordinates between the two replicas.
-Accept the move with a probability
$P=\min \left[1, \exp \left(-\beta\left(V^{a}\left(x^{b}, t\right)+V^{b}\left(x^{a}, t\right)-V^{a}\left(x^{a}, t\right)+V^{b}\left(x^{b}, t\right)\right)\right]\right.$
-Parallelel reconstruction of $F(s)$ in a virtually unlimited number of CVs -The accuracy of each $F(s)$ is greatly enhanced by the jumps in CV space due to the exchanges.

S. Piana and AL, JPCB, 111, 4553 (2007)

Related works:
Replica exchange on proteins: Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 314, 141-151 (1999).
Replica exchange+ metadynamics: G. Bussi, F.L. Gervasio, AL and M. Parrinello, JACS 128, 13435 (2006)

Blas Exchange Metadynamics

From NR one-dimensional free energies

To an NR-dimensional free energy hypersurface

Select a subset of the biased CVs for the analysis

Divide the CV space in hypercubes

The structures belonging to each hypercube define a microstate

The structures belonging to each hypercube define a microstate

Structures belonging to a microstate MUST be similiar

BIASED POPULATIONS ($\boldsymbol{n}_{\boldsymbol{\alpha}}$)

to be corrected by the metadynamics bias $\left(V_{\alpha}\right)$

$$
p_{\alpha}^{i}=n_{\alpha}^{i} e^{\beta\left(V_{\alpha}^{i}-f^{i}\right)}
$$

Combine different estimates of \mathbf{p}_{α} by WHAM:

$$
p_{\alpha}=C \frac{\sum_{i} \frac{1}{\sigma^{2}\left(p_{\alpha}^{i}\right)} p_{\alpha}^{i}}{\sum_{i} \frac{1}{\sigma^{2}\left(p_{\alpha}^{i}\right)}}
$$

$$
F_{\alpha}=-k_{B} T \log p_{\alpha}
$$

Free energy of the microstates: test on 3ALA

- Cluster analysis in the 6dimensional CV space: ~ 10000 clusters.
- For each cluster we compute the free energy from the 1800 ns of normal MD and by the WHAM procedure on the biasexchange results

From MICROSTATES to kinetic basins

Transition Rate Matrix

$$
k_{\alpha \beta}=\chi_{\alpha \beta} k_{\alpha \beta}^{0} e^{-\frac{1}{2}\left(F_{\beta}-F_{\alpha}\right) / k_{B} T}
$$

Marinelli et al, PLOS Comp Biol 2009
> Eigenvalues How many relevant basins?
$>$ Eigenvectors Which microstates belong to a basin?

Analyzing Metadynamics Results

> Metadynamics output files
> Coordinates Trajectories (XYZ)

> Collective Variables Trajectories

> Time dependent Bias Potentials

1)Find the microstates

Collective variable 2

Analyzing Metadynamics Results

> Metadynamics output files
> Coordinates Trajectories (XYZ)

> Collective Variables Trajectories

> Time dependent Bias Potentials

2)Check their structural consistency

Analyzing Metadynamics Results

> Metadynamics output files
> Coordinates Trajectories (XYZ)

> Collective Variables Trajectories

> Time dependent Bias Potentials

3) Compute their free energy by WHAM

4) Find the kinetic basins

METAGUI - Unified Analysis Tool for Metadynamics

4) Interactively explore the structures of the system

Biarnés et al, CPC 2011

the main scope of METAGUI

> METAGUI simplifies the analysis of metadynamics simulations, and directly connects CV based results onto 3D structures.
> ex. 2D Free Energy Surface of an enzymatic reaction --> click at any point and show the structure.

bond 1 formation

Multidimensional View of Amyloid Fibril Nucleation in Atomistic Detail

Fahimeh Baftizadeh, ${ }^{\dagger}$ Xevi Biarnes, ${ }^{\#}$ Fabio Pietrucci, ${ }^{\text {II }}$ Fabio Affinito, ${ }^{\S}$ and Alessandro Laio*, ${ }^{\dagger}$

8 collective variables
 describing parallel and antiparallel packing, etc.

500 ns on 8 replicas

Folding free energy landscape of the GB3 protein Daniele Granata, Carlo Camilloni, Michele Vendruscolo

6 collective variables describing hydrophobic packing, alpha and beta fraction, etc. One CV describing the consistency with experimental chemical shifts.

400 ns on 7 replicas

Thanks: Xevi Biarnes
 Fabio Pietrucci Fabrizio Marinelli

Available at:

www.plumed-code.org

