Kinetic Monte Carlo Simulations at Spatiotemporal Scales of Experiments

Karl-Heinz Heinig

Helmholtz-Zentrum Dresden-Rossendorf, Germany

Outline 1. Motivation

- 2. Bit-coded, cellular automaton-based kMC code
- **3.** Applications, need for further acceleration of simulations
- 4. MPP with GPUs of conservative (Kawasaki) Ising models
- **5.** Tests and Applications
- 6. Outlook

Supported by DFG, BMBF, DAAD

Coworkers:

Bartosz Liedke,Satoshi Numazawa,Jeffrey Kelling,Lars Röntzsch,Torsten Müller,Andreas Kranz,Matthias Strobel, Geza Odor,,Henrik Schulz

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

BEDMOD Workshop, March 26 - 29, 2012, Dresden

mber of the Helmholtz Association

Karl-Heinz Heinig | Institute of Ion-Beam Physics and Materials Research | http://www.hzdr.de

Randrom valk pobrasse fin treestitication Si

MD, SW potential, 1200°C, ~ 10.000 atoms

Steven Wolfram: kinetic lattice MC = statistic probabilistic cellular automaton

wire consisting of "phase 1" embedded in "phase 0" (e.g. vacuum)

double book keeping (no NN-list needed)

Jump-pair i \rightarrow f has 18 NNs, i.e. there are 2¹⁸~256000 configurations.

Totalistic CA like Ising model or RGL potential: only ~ 100 different jump configurations.

Look-up table, i.e. energies calculated once.

non-volatile nanodot memory (FLASH)

Si dot formation by Si⁺ ion implantation into SiO₂ followed by phase separation target

Control of NC size by annealing conditions

 $E_{b}/kT = 2.0$ $E_{b}/kT = 3.0$ $E_{b}/kT = 4.0$ 10 kMCS 1000 kMCS 100 kMCS 10000 kMCS

increasing annealing time

<u>Application #1</u> (European FP6 project) : Energy-Filtered TEM (EFTEM) vs kMC

1 keV Si⁺ into 8nm SiO₂

Good agreement ? No ! Exp. & theory differ by a factor 5 !!

Theory predictive, Exp. "wrong" !!! (humidity)

kMC-based process simulations could identify a parasitic oxidation of ion implanted silicon

APL 85 (2004) 2373

<u>Application #2</u> (DFG priority programm): Synthesis of functional nanowires

<u>FIB</u>: 10¹⁷Co²⁺cm⁻² @70keV & 415 °C into (001)Si along <110>

Implantation of Co lines of 50 nm width

Expected CoSi₂ nanowire after annealing: ~10 nm

Annealing in N₂ for 60'@ 600 °C

and for 30'@ 1000 °C

<u>Application #2</u> (DFG priority programm): Synthesis of functional nanowires

Many interesting applications of nanocapillarity (tube = inverse wire)

simulation parameters:

Gaussian beam profile, Width = 50 nm= 60 keVE_{Co} $F_{Co}(r=0) = 8x10^{16} \text{ ions/cm}^2$ Cell = $(512 \times 512 \times 512) a^3$ #_{atoms} = 4,743,197

almost 2 years CPU time !

decay takes 100x longer !

BEDMOD Workshop, March 26 - 29, 2012, Dresden

16

Member of the Helmholtz Association | Institute Ion-Beam Physics and Materials Research | http://www.hzdr.de

Beyond standard lattice kMC ?

- a) Massively Parallel Programming
- b) Exploitation of the Cellular Automaton Concept

3 atomic layers along a <110> direction

Location of point defects is similar to MD results (even relaxation)

- atoms of the (110) lattice plane having self-interstitials
- (110) lattice plane above this defective plane
- (110) lattice plane below this defective plane
- hexagonal selfinterstitial between two (110) lattice planes

Amorphization of Si and Solid Phase Epitaxial (SPE) regrowth

Nanocrystal nucleation and growth from dissolved silicon

t=1000

t=10000

Massive Parallel Programing (MPP) of kMC

- a) with CPU cores (multi-core CPUs, LINUX clusters,...)
- b) with graphic cards (NVIDIAs Tesla and Fermi card, ATI,...)

Massive Parallel Programing (MPP) of kMC with CPU cores

"Dead borders" concept:

- Break the simulation cell (periodic BCs) into sub-domains
- Run kMC simulations of the sub-domains in parallel
- > Avoid "talking" between sub-domains by "dead borders" (small statistical error)
- > After a "short" time, shift the global origin randomly \rightarrow other dead borders

Massive Parallel Programing (MPP) of kMC with graphic cards (GPUs)

Schematic representation of the architecture of current GPUs.

Weigel, Int. J. of Mod. Phys. C (2011)

<u>Registers</u>: each multiprocessor is equipped with several thousand registers with local, zero-latency access;

Shared memory: processors of a multiprocessor have of on chip, small latency shared memory;

L1 and L2 caches: 16/48 kB L1 cache and 768 kB L2 cache;

Global memory: large amount (currently up to 6 GB) of memory on separate DRAM chips with access from every thread on each multiprocessor with a latency of several hundred clock cycles;

<u>Constant and texture memory</u>: read-only memories of the same speed as global memory, but cached;

Host memory: cannot be accessed from inside GPU functions, relatively slow transfers.

Parallel execution of a GPU program ("kernel") in a grid of thread blocks. Threads within a block work synchronously on the same data set. Different blocks are scheduled for execution independent of each other.

Block:

- Threads (max 512 for Tesla; 1024 for Fermi)
- Its threads access the same bank of shared memory concurrently
- Each thread should execute (exactly) the same instructions

<u>Grid</u>:

 The blocks of a grid (up to 65536 x 65536) are scheduled independently of each other and can only communicate via global memory accesses

hierarchical level 1: parallelisation of threads

Example:

- 512 Threads/block
- 32 sites/ thread cell
- \rightarrow 16000 sites/block

e.g. thread cells #1 treated parallel (no overlap), then cells #2, ...

hierarchical level 2: parallelisation of blocks

Example:

- 16000 sites/block
- 64 blocks/grid
- \rightarrow 1 mill. sites

e.g. thread blocks #1 treated parallel (no overlap), then blocks #2, ...

Application #3 (int. BMBF project): Synthesis Si/SiO₂ nanocomposite (sponge) for photovoltaics

Fabrication:

- SiO deposition
- heating (laser)
- > phase separation
- $> 2SiO \rightarrow Si + SiO_2$

Process optimisation:

- Which time/temperature is needed @ laser annealing?
- How can the structure size tuned (band gap engineering)?
- Phase separation at interfaces?

▶ ...

Morphology

Member of the Helmholtz Association Karkปูศมหะปหยามปฏาระโปลาสาชธรริกละอากุจากไปเหตุการและเรื่อง

Application #3 (int. BMBF project): Synthesis Si/SiO₂ nanocomposite (sponge) for photovoltaics

Application #3 (int. BMBF project): Synthesis Si/SiO₂ nanocomposite (sponge) for photovoltaics

Scaling of the structure size = coarsening during phase separation: <u>comparison CPU vs GPU</u>

Comparison E5530 @ 2.4 GHz vs NVIDIA C2070: ~70x

- CA-based, bit-coded lattice kMC is now an established method for process development/optimization in nanotechnologies.
- Using the CA concept and a fine grained lattice, a method in-between MD and kMC can be established.
- Using Massively Parallel Programming MPP on GPUs, kMC can be accelerated by about 2 orders of magnitude.

