Accelerated Molecular Dynamics with the Bond Boost Method

Kristen A. Fichthorn The Pennsylvania State University University Park, PA 16802

Rare-Event Methods

Rare-Event Simulation

Kinetic Monte Carlo:

K. Fichthorn and W. Weinberg, J. Chem. Phys. **95**, 1090 (1991). Kinetic ART:

El-Mallouhi, N. Mousseau, Phys. Rev. B **78**,1532002 (2008). Master Equation

Search and Characterization

Nudged Elastic Band:

G. Henkelman, B.Uberuaga, and H. Jonsson,

J. Chem. Phys. 113, 9901 (2000).

Dimer Method:

G. Henkelman and H. Jonsson, J. Chem. Phys. **111**, 7010 (1999).

Transition Path Sampling:

P. Bolhuis, D. Chandler, et al. Ann. Rev. Phys. Chem. **53**, 291 (2002).

Forward-Flux Sampling:

R. J. Allen, D. Frenkel, P. R. ten Wolde, J. Chem. Phys. **124**, 194111 (2006). String Method:

W. E., W. Ren , E. Vanden-Eijnden, Phys. Rev. B **66**, 052301 (2002). AND.....

Molecular Dynamics Simulations Naturally Find Rare Events and Can Simulate Rare-Event Systems...

Accelerated Molecular Dynamics (Hyperdynamics)

*

A

Relative Rates

В

B

A. Voter, J. Chem. Phys. 106, 11 (1997).

$$k_{A\to B}^{TST} = \frac{1}{2} \frac{\int_A \delta_{AB}^* |v_{\perp,AB}| e^{-V(\mathbf{R})/k_B T}}{\int_A e^{-V(\mathbf{R})/k_B T}}$$

$$k_{A\to B}^{TST} = \nu \frac{\int \delta_{AB}^* W(\mathbf{R}) e^{-V(\mathbf{R})/k_B T} / W(\mathbf{R})}{\int W(\mathbf{R}) e^{-V(\mathbf{R})/k_B T} / W(\mathbf{R})}$$

$$W(\mathbf{R}) = \exp\left(\frac{V(\mathbf{R}) - V(\mathbf{R})}{k_B T}\right)$$

$$k_{A\to B}^{TST} = \nu \frac{\int \delta_{AB}^* e^{-V(\mathbf{R})/k_B T} / \int e^{-V(\mathbf{R})/k_B T}}{\int e^{-V(\mathbf{R})/k_B T} / W(\mathbf{R}) / \int e^{-V(\mathbf{R})/k_B T}}$$

Accelerated Molecular Dynamics (Hyperdynamics)

Accelerated Molecular Dynamics

R. Miron & K. Fichthorn, J. Chem. Phys. 119, 6210 (2003)

Define Local Minima by Bond Lengths

 $\{r_i^o\}_{i=1,N}$

Transitions Occur via Bond Breaking

$$\max_{i} \left| \frac{\delta r_{i}}{r_{i}^{o}} \right| > q$$
 Empirical Threshold

Boost the Bonds: Purely Geometric

Details of the Bond Boost Method

Boost Potential

$$\Delta V(\mathbf{r}) = \frac{\Delta V_{\max}}{N} A(\varepsilon_{\max}) \sum_{i=1}^{N} \delta V(\varepsilon_{i})$$

$$\varepsilon_i = \frac{\delta r_i}{r_i^0}$$

Nominal Boost per Bond

$$\delta V\left(\varepsilon_{i}\right) = 1 - \left(\frac{\varepsilon_{i}}{q}\right)^{2}$$

Envelope: Channels Boost into the Bond Most Ready to Break

$$A(\varepsilon_{\max}) = f \times \left[1 - \left(\frac{\varepsilon_{\max}}{q}\right)^2\right]$$

Overview of the Bond Boost Method R. Miron & K. Fichthorn, J. Chem. Phys. 119, 6210 (2003) find local minimum (conjugate-gradient minimization) detect transition ... MD on boosted PES $\delta t = \delta t_{simulation} e^{\beta \Delta V}$ MD on boosted PES detect transition , find new state

Diffusion on Cu(100): Elementary Processes

Adatom Hop

Adatom Exchange

Dimer Exchange

Dimer Hop

Vacancy Hop

R. Miron & K. Fichthorn, *J. Chem. Phys.* **119**, 6210 (2003)

The Bond-Boost Method: Diffusion on Cu(100)

$$k = \frac{N_{events}}{time} = \Gamma_0 e^{-\beta E_A}$$

R. Miron & K. Fichthorn, *J. Chem. Phys.* **119**, 6210 (2003)

Prefactors $\Gamma_0(\text{THz})$ and activation energies $E_A(\text{eV})$:

Process	Γ_0^{boost}	Γ_0^{MD}	E_A^{boost}	E_A^{MD}	E_A^{static}	
	$(\times e^{\pm 0.7})$	$(\times e^{\pm 0.6})$	(± 0.05)	(± 0.04)		
Adatom hop	40	20	0.52	0.49	0.51	
Adatom exchange	270	437	0.73	0.70	0.71	
Vacancy hop	54	27	0.44	0.47	0.44	
Dimer hop	30	13	0.47	0.48	0.49	
Dimer exchange	190	320	0.71	0.73	0.69	

boost accelerated MD at T = 230 - 600 K

Rates :

 MD regular MD at T = 650 - 900 K \rightarrow Boisvert, Lewis *Phys.Rev.* B 65 (1997) static using Step-and-Slide method \rightarrow Miron, Fichthorn *J.Chem.Phys.* 115 (2001)

The Bond-Boost Method: Diffusion on Cu(100)

Boost = Physical Time / Simulation Time

Hut Formation in AI(110) Homoepitaxy

Accelerated AIMD (VASP): Diffusion on Al/Al(110)

Climbing-Image Nudged Elastic Band Method

VS. **Accelerated**

AIMD

 $E_{R} = 0.38 \text{ eV}$

Fichthorn *et al., J. Phys. Cond. Matt.* **21**, 084212 (2009).

 $E_{B} = 0.33 \, \mathrm{eV}$

The Boost in ab initio MD

Rare Events and the Small Barrier Problem

Co on Cu(100) surface with tight-binding (TBSMA) potential (Levanov *et al.*, *Phys. Rev.* B 61, 2000)

TST barriers: $\Delta E^{\dagger} = 0.66 \, eV$ for isolated adatom hop $\Delta E^{\dagger} = 0.86 \, eV$ for isolated adatom exchange

Annoyingly Small Barriers

 $\Delta E^{\dagger} = 0.2 \, eV$ 10^{6} faster (T = 350K)than isolated hop

State-Bridging Accelerated MD to Solve the Small-Barrier Problem

R. Miron, K. Fichthorn, Phys. Rev. Lett. 93, 2004.

Raise the

Co on Cu(001): Benefits of State Bridging

State-Bridging Accelerated MD Regular Accelerated MD

Thin Film Growth at 250 K, F = 0.1 ML/s

R. Miron, K. Fichthorn, Phys. Rev. Lett. 93, 2004.

Note Cluster Mobility

State-Bridging Accelerated MD of Co/Cu(001) Heteroepitaxy: T = 250 K, F = 0.1 ML/s, $\Theta = 0.54$ ML MD Simulations were run for 5.4 s

R. Miron and K. Fichthorn, *Phys. Rev. B* **72**, 115433 (2005). Mechanism of Bilayer Island Formation

Temperature-Programmed Desorption

K. Becker, M. Mignogna, K. Fichthorn, *PRL* **102**, 046101 (2009).

 $T = T_0 + \beta t$

12, 203 (1962).

Simulation of TPD

Large Molecules Don't Work in Lattice Models....

Goal: To Simulate TPD with Accelerated MD!!

Accelerated MD of Adsorbed Alkanes

OPLS All-Atom Force Field [1]

$$V_{intra} = V_b + V_t + V_{LJ}$$
$$V_b(\theta_i) = K_\theta (\theta_i - \theta_{eq})^2$$
$$V_t(\varphi_i) = \frac{1}{2} \sum_{j=1}^3 V_j [I + \cos(j\varphi_i)]$$

Constrained Bond Stretching: RATTLE [2]

Steele's Potential for Molecule-Surface Interaction [3]

Jorgensen et al., J. Am. Chem. Soc. 118, 11225 (1996)
 H.C. Andersen, J. Comput. Phys. 52, 24 (1983)
 W. A. Steele, Surf. Sci. 36, 317 (1973)

Many Local Minima, Fast Transitions But Desorption is the Slow Step

Accelerated MD of TPD with the Bond-Boost Method

$$\Delta V(\mathbf{R}) = \frac{A(\varepsilon_{\max})}{N} \sum_{i=1}^{N} \delta V_i(\mathbf{R}) ; \quad \delta V_i = (\alpha_1 - 1) V_{s,i} + (\alpha_2 - 1) V_{inter,i}; \quad \alpha_i < 1$$

Weaken Molecule-Molecule + Molecule-Surface Attraction

$$A = \left[1 - \left(\frac{\varepsilon_{\max}}{q} \right)^2 \right]; \qquad \varepsilon_i = \frac{z_{com,i} - z_{eq}}{z_{eq}}$$

Funnels Boost into Molecule Farthest from the Surface

$$t = \sum_{i} \exp\left(\frac{\Delta V(\mathbf{R}_{i})}{k_{B}T}\right) \Delta t$$

K. Becker, M. Mignogna, K. Fichthorn *PRL* **102**,046101 (2009).

Accelerated MD of TPD

K. Becker, M. Mignogna, K. Fichthorn, *PRL* **102**, 046101 (2009).

desorptions

TPD: Simulation vs. Experiment

PRL 102, 046101 (2009).

Desorption Energy And Prefactor

Large prefactors because of loss in rotational entropy on adsorption.

K. Fichthorn and R. Miron, *Phys. Rev. Lett.* **89**, 196103 (2002).
K. Becker and K. Fichthorn, *JCP* **125**, 184706 (2006).

Second-Layer Desorption Can Occur At (Sub) Monolayer Coverage

Rate Processes in Pentane Desorption

K. Becker, M. Mignogna, K. Fichthorn, *PRL* **102**, 046101 (2009).

What is the Structure of a Real GaAs(001)β2(2x4) Surface?

		(2x4)	••	•	••	•	•• ••	•	••	•	••	•	
		Unit Cell	••	•	••	•	•••	•	••	•	••	•	
	STM		••	•	•• ••	•	••	•	••	•	••	•	
			••	•	•• ••	•		•	•••	•	••	•	
			Нур	oot	hes	sis	: D	iso	orde	rir	ıg		
	D.W. Pashley, J.H. Neave, B.A.	Joyce,	Invo Dov		es	Sh പ	liftir From	ig (of L	١m	ner		
	Suit. Sci. 582, 189 (2005)		NOV	VS	an	uI	IEI	ICI	162				

How Does this Surface Disorder? What Does This Mean for Diffusion and Growth??

K. A. Fichthorn, et al., Phys. Rev. B, 83, 195328 (2011)

Regular MD of GaAs (001): T = 600 K

Minimum-Energy Path for Row Shift: Another Form of the Small-Barrier Problem

Accelerated MD Simulation at 800 K

Equilibrium Fraction of $\beta 2(2x4)$ and $c(2 \times 8)$ from 1 μ s - 4 s Accelerated MD

(a) $\gamma = 68.73 \text{ meV/Å}^2$ (b) $\gamma = 68.71 \text{ meV/Å}^2$ (a) and (b) $\beta 2(2 \times 4)$

900K 850K 800K 700K 600K β2(2×4) 0.43 ± 0.03 0.45 ± 0.03 0.44 ± 0.03 0.42 ± 0.15 0.46 ± 0.13 c(2×8) 0.52 ± 0.03 0.52 ± 0.03 0.54±0.03 0.58±0.15 0.53 ± 0.13 Others 0.053 ± 0.003 0.031±0.005 0.019 ± 0.002 0.007 ± 0.003 0.008 ± 0.008

Comparison with Experiment

STM (300K, UHV)

 $\beta^{2}(2 \times 4)$ **0.41**; c(2×8) **0.52**; Other **0.07**

RHEED (850 K As Over Pressure, 300 K Vacuum) No Difference

D. W. Pashley, J. H. Neave, and B. A. Joyce, Surf. Sci. **582**, 189 (2005)

(c) $\gamma = 68.68 \text{ meV}/\text{Å}^2$ (d) $\gamma = 68.67 \text{ meV}/\text{Å}^2$

(c) and (d) $c(2\times 8)$

Arrangement based on STM image

Conclusions: Progress in Accelerated MD

- The Bond-Boost Method is Useful for Modeling and/or Discovering Rare Events
- The Challenge is Dealing with the Small-Barrier Problem in a General Way
 - Consolidating Pools of Shallow States

 R. Miron & K. Fichthorn, Phys. Rev. Lett. 93, 2004;
 Phys. Rev. B72, 035415, 2005.

Conclusions: Progress in Accelerated MD

- Bond = Order Parameter
 K. Becker, M. Mignogna, K. Fichthorn, *PRL* 102, 046101 (2009)
- Pathway Boost for GaAs(001) Y. Lin and K. Fichthorn, in preparation.

The key to future progress is a general solution to the small barrier problem

Look for our **NEW SOLUTION** to the Small-Barrier Problem Using KMC+Master Equation!!!!

Collaborators

Shih-Hsien Liu Azar Shahraz Muralikrishna Raju Zifeng Li Lianfei Yan **Dr. Yangzheng Lin** Dr. Ya Zhou

Alumni Dr. Yogesh Tiwary Dr. Yushan Wang **Dr. Kelly Becker** Dr. Radu "Alex" Miron Dr. Jee-Ching Wang Dr. Som Pal Fritz Haber Institute Prof.-Dr. Matthias Scheffler Prof.-Dr. Peter Kratzer Dr. Thomas Hammerschmidt

Funding

NSF ECC-0085604, IGERT DGE-9987598, DMR-0514336, DMR-1006452 ACS PRF, DOE DE-FG0207ER46414