On-the-fly, off-lattice KMC simulations on experimental time scales with k-ART

Peter Brommer

Département de Physique and Regroupment Québécois sur les Materiaux de Pointe (RQMP) Université de Montréal

Beyond Molecular Dynamics: Long Time Atomic-Scale Simulations 27 March 2012

Point defect complexes

Motivation

- Irradiation causes defect cascades.
- Leaves behind point defects:
 - self-interstitial atoms (SIA)
 - vacancies
 - and complexes:
 - dislocation loops
 - stacking fault tetrahedra
 - nanovoids
 - . . .
- Wealth of defect clusters and events: impossible to predict.
- Time scale is beyond MD (milliseconds hours).
- Complex energy landscape.

Outline

Kinetic Activation Relaxation Technique

- Kinetic Monte Carlo
- off-lattice
- self-learning
- Basin treatment

2 Applications

- Vacancies in α-iron
- Amorphous silicon

3 Conclusions

de Montréa

The kinetic Activation-Relaxation Technique

KMC method

Execute events according to KMC rules.

off-lattice

- Not constrained to lattice (more systems).
- Account for long-range elastic effects.

self-learning

- ART nouveau (fastest unbiased saddle point search) to generate events
 - on the fly
 - corrected for long-range effects.
- Store events: Build topology-based catalog.

El-Mellouhi, PRB 78, 153202 (2008). Béland PRE 84, 046704 (2011).

Kinetic Monte Carlo

Standard KMC

- Problem must be lattice based.
- List of possible events is constructed
- Rate r_i from transition state theory: $r_i = r_0 \exp(-\Delta E/k_B T)$.
- One event picked at random.
- Clock advanced by Δt = − ln μ/ ∑_i r_i, μ: Random number ∈ (0; 1].

A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comput. Phys. (1975).

Limitations

- Predefined, limited catalogue of known events at T = 0.
- Ignores long-range interactions between defects.

Topologies

Cluster centered on each atom

- Topological analysis: Which atoms are neighbours?
- Assign a key to each graph.
- \Rightarrow 1:1 relationship between keys and local structures.

Search for events for each topology.

Find saddle points with ART nouveau

Activation-relaxation technique

- Random displacement.
- Leave harmonic well: negative eigenvalue.
- Push up along corresponding eigendirection, minimize energy in perpendicular hyperplane.

- Converge to saddle point.
- Move configuration over the saddle point and relax to new minimum.

Barkema, Mousseau, PRL 77 (1996); Malek, Mousseau, PRE 62 (2000);

Events

Search for events

Find events centered on representative atom.

- Random displacement.
- Find saddle point (Lanczos, DIIS).

Expensive, but finds generic events for topology.

For lowest 99.99% of barrier weight:

Refine event for each specific atom.

- Few iterations to exact critical points.
- Takes into account specific local situation.

Tree of events

- Calculate rates $r_i = r_0 \exp(\Delta E_i / k_B T)$, $r_0 = 10^{13} \text{ s}^{-1}$.
- Use tree to select event with proper probability.

Reconstructing events

Geometric transformation

 Extract symmetry operation needed to transform stored event to configuration.

 \Rightarrow

 Apply same operation to final (saddle) state.

 \Leftarrow

Configuration

Remembering events

Generic events

- Kept, even though the topology might disappear, but removed from tree.
- Topology reappears: Events reinserted to tree.
- Generic events can be imported from previous runs.

Atom keeps topology	Atom changes topology		
Specific events:	Specific events:		
 refined. 	 Old ones removed. 		
	 New ones calculated. 		

Béland, Brommer, et al., Phys. Rev. E 84, 046704 (2011).

de Montréa

bac-MRM

Local configurations with low barriers

- k-ART might get trapped.
- Many events, no progress.

Requirements

- Correct distribution of exit states.
- Low overhead.
- ⇒ The basin auto-constructing Mean Rate Method MRM: Puchala *et al.*, *J. Chem. Phys.* **132**, 134104 (2010)

de montrea

The Mean Rate Method (MRM)

Transient states	\Leftrightarrow	Absorbing states
connected by low barriers.		connected to transient states by high barriers.

Basin exploration

- costly
- even unneccessary (early exit to absorbing state)
- ⇒ Explore/construct basins on the fly!

Relevant entities: events, no	t states		
basin event	\Leftrightarrow	exit event	
connects transient states.		connects transient state to absorbing state.	
		u	e montrea
		・ロト・四ト・ヨト・ヨト 三日	900
Peter Brommer (LI de Montréal)	kinetic ABT	BeMoD 2012	12/34

Start from State A

- Identify events.
- If any event could be a basin event (judge by barrier): activate basin method.

Pick an event:

- Ordinary event: Go on normally
- Potential basin event: Start basin:
 - Execute event
 - Block event
 - Keep all other events.

In the basin

Features

- Basin is built on the fly.
 - Basin explored only as far as needed.
 - Integrates seamlessly into k-ART.
- No state is visited twice.
- Correct distribution of absorbing states.
- However: Ignores correlation between basin residence time and absorbing state (short residence time: absorbing state closer to initial state).

Outline

Kinetic Activation Relaxation Technique

- Kinetic Monte Carlo
- off-lattice
- self-learning
- Basin treatment

2 Applications

- Vacancies in α-iron
- Amorphous silicon

B) Conclusions

Université m de Montréa

Atomistic simulation of α -Fe: Challenges

Kinetic Monte Carlo simulations of α -Fe

Extremely rich in states and events:

e.g. 4-SIA cluster: more than 1500 distinct configurations.

Peter Brommer (U de Montréal)

Vacancies

Vacancy cluster agglomeration in bcc Fe

- Slower dynamics than interstitials.
- PAS results available.

The system: 2000 atoms

Remove 50 random atoms.

- Temperature 50°C.
- Display only vacancies, color code cluster size, green: monovacancies.
- Ackland-Mendelev potential (optimized).

Ackland JP:CM 16, S2629 (2004)

K-ART simulations at 50 °C.

K-ART simulations at 50 °C.

Peter Brommer (U de Montréal)

BeMoD 2012 19 / 34

50 vacancies in α Fe

Université de Montréal

Trajectory in detail

Experimental results

Positron Annihilation Spectroscopy

Iron irradiated at 50°C:^a

- Significant intensity from nanovoids as irradiated (nanovoids: clusters of 9–14 vacancies).
- Annealing over 150°C: Larger voids appear (40–50 V)
- ⇒ k-ART simulation agrees with experiment

^aEldrup and Singh, J. Nucl. Mater. **323**, 346–353, 2003.

Previous results: Autonomous Basin Climbing

- ABC^a always picks lowest new barrier.
- k-ART may pick higher barrier, accounts for multiplicity.

Complete catalog essential for material description.

^aFan et al., PRL **106**, 125501 (2011)

Accelerating simulation

Reasons

- Lower effective energy barriers die out.
- Basin acceleration threshold increased.

Peter Brommer (U de Montréal)

BeMoD 2012 23 / 34

イロト イポト イヨト イヨト

Executed event barrier

Basin acceleration with bac-MRM

Basin auto-constructing Mean Rate Method:

- "Low" barriers: Average over transitions.
- Expand basin on the fly.
- Correct distribution of exit states.
- Parameter: Basin threshold.

Optimal basin threshold

There is an optimal value for the basin threshold:

Too low: No progress.

Too high: Too many states in basin:

- Lose trajectory
- Memory requirements.

Gradual increase during simulation.

Basin Threshold

Vacancies in bcc iron

- Vacancies cluster in nanovoids on a sub-second timescale.
- Full event catalog essential.
- Efficiently accelerated by bac-MRM.

de Mont

Disordered metastable phase of Si

Defects in amorphous silicon:

- Are vacancies stable defects?
- Do vacancies diffuse?

No accelerated technique has been applied to disordered materials.

BeMoD 2012

28/34

Project of Jean-François Joly (Ph.D. student UdeM).

k-ART simulation of a vacancy in a-Si

The system

- 999 (= 1000 − 1) atoms.
- Mod. Stillinger-Weber potential.
- T = 300 K

Challenges

- Every atom: unique topology. Initial catalog: 32 120 events.
- Flickers on every energy scale. Basin threshold: 0.35 eV.

Results: Vacancies in a-Si

200+ kART runs

Most of them: Vacancy disappears

- in initial minimization
- or first few steps (ns).
- Rarely:
 - Vacancy stable over 1–100 μs.
- Even rarer: Vacancy diffusion.

Ongoing work: Longer/more simulations

Outline

Kinetic Activation Relaxation Technique

- Kinetic Monte Carlo
- off-lattice
- self-learning
- Basin treatment

2 Applications

- Vacancies in α-iron
- Amorphous silicon

3 Conclusions

・ 回 ト ・ ヨ ト ・ ヨ ト

Université m de Montréa

Kinetic Activation-Relaxation Technique (k-ART)

Versatile KMC simulation tool for complex systems:

- Off-lattice, self-learning: Few prerequisites.
- Fully account for long-range elastic effects.
- Can handle feature-rich defect systems.
- Basin treated with bac-MRM.
- Even fully amorphous systems.

El-Mellouhi *et al., Phys. Rev. B* **78**, 153202 (2008). Béland, Brommer, *et al., Phys. Rev. E* **84**, 046704 (2011).

4 3 5 4 3 5

Acknowledgements

- N. Mousseau, L. Lewis, J.-F. Joly, L.K. Béland (U de Montréal)
- F. El-Mellouhi (Texas A&M @ Qatar)
- M.-C. Marinica (CEA Saclay, France)

Funding							
Canada Research Chairs	NSERC CRSNG	Fonds de recherche Nature et technologies Québec 💀 🕫	Calcul Qu) ébec			
Thank you for your attention!							
		< = > < 🗗	> < ≣ > < ≣ >	Université de Montréa ≣ ∽ ९ ९ ९			
Peter Brommer (U de Montréal)	kineti	c ART	BeMoD 2012	33 / 34			

◆□▶ ◆舂▶ ★≧▶ ★≧▶ = のへで