Deformation behaviour of nanocrystalline alloys simulated by *Hybrid MD/MC simulations*

<u>Karsten Albe</u>, Jonathan Schäfer, Alexander Stukowski¹, Yvonne Ritter

TU Darmstadt Institut für Materialwissenschaft FG Materialmodellierung

¹Lawrence Livermore National Laboratory

Funded by DFG "Forschergruppe 714"

Outline

Motivation: Deformation of nanocrystalline metals

Nanocrystalline Pd-Au:

- > Hybride MD-MC Scheme
- Method for dislocation detection: DXA
- Shortcutting diffusion
- Coupled motion

Strengthening metals and alloys

Nanocrystalline metals

- Grain size D < 100 nm
- Large fraction of grain boundaries

Special properties

- Increased strength
- High wear resistance
- Superplasticity

Linear Flow Splitting

Bohn et al., J Mater Sci 43 (2008) 7307

2 mm

60 mm

26 mm

nc-Metals: Insights and Puzzles

ADVANCED ENGINEERING MATERIALS 2005, 7, No. 4

Dislocation nucleation

GB sliding

Coupled GB motion

Thermal Activation: Stress Exponent

Orowan–Eq:
$$\dot{\gamma} = \rho b \langle v \rangle = \rho b \bar{l} v = \rho b l v_o e^{-\frac{\Delta G^*(\tau^*)}{k_B T}}$$

 $\dot{\gamma} = \dot{\gamma}_o e^{-\frac{\Delta G^*(\tau^*)}{k_B T}} \rightarrow -k_B T \ln\left(\frac{\dot{\gamma}}{\dot{\gamma}_o}\right) = \Delta G^* = \Delta F^* - \tau \Delta V^*$
Activation Volume: $\Delta V^* = -\left(\frac{\partial \Delta G^*}{\partial \tau^*}\right)_T = \frac{k_B T}{\tau^* \left(\frac{\partial \ln \gamma}{\partial \ln \tau^*}\right)_T}$
Stress Exponent: $m = \left(\frac{\partial \ln \dot{\gamma}}{\partial \ln \tau^*}\right)_T = \frac{k_B T}{\Delta V^* \tau^*}$

nc-Metals: Insights and puzzles

Weissmüller and Markmann, Advanced Engineering Materials, 202, 7 (2005)

Nanocrystalline Pd-Au: Experiments

K. Yang et al., Acta Materialia 58 (2010) 967–978

Modelling plasticity in nc alloys

Structure creation	Voronoi tesselation method
Grain size	5 to 15 nm
Annealing	Hybrid MD/MC method
miscible	PdAu
segregating	Cu + X X = Nb, Fe, Ag

Variance constrained semi-grandcanonical scheme

- The VCSGC-MC method imposes a constraint on the variance of the concentration, and allows for equilibration at arbitrary global concentrations.
- It allows to model the equilibrium properties of phase segregated multicomponent systems containing millions of particles.

A scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys

Babak Sadigh,^{1, *} Paul Erhart,^{1, †} Alexander Stukowski,¹ Alfredo Caro,^{1, 2} Enrique Martinez,^{1, 2} and Luis Zepeda-Ruiz¹

Acceptance Probabilities

Canonical

$$\mathcal{A}_{\mathrm{C}} = \min\left\{1, \exp\left[-\beta\Delta U\right]\right\}$$

Semi-Grandcanonical

$$\mathcal{A}_{S} = \min \left\{ 1, \exp \left[-\beta (\Delta U + \Delta \mu N \Delta c) \right] \right\}$$

Variance Constrained Semi-Grandcanonical

$$\mathcal{A}_{\mathrm{V}} = \min\left\{1, \exp\left[-\beta\left(\Delta U + N\Delta c(\phi + 2\kappa N\tilde{c})\right)\right]\right\}$$

Variance constrained semi-grandcanonical scheme: *Parallelization*

OVITO (Open Visualization Tool)

Visualization and analysis software for atomistic simulation data:

- Platform-independent
- Easy-to-use graphical user interface
- Extendable (plug-in architecture)
- Supports scripting / batch-processing
- >110.000 lines of code (C++)
- Freely available at http://ovito.org/

Annealing + Alloying: PdAu

PdAu: Tensile straining: $\dot{\epsilon}$ =10⁸ s⁻¹; T=300K

Dislocations extraction algorithm

Dislocation extraction algorithm

Automated dislocation detection

What can we do with it?

- Measure..
 - Dislocation density
 - Dislocation characters
 - Activation rate of slip systems
 - Types of dislocation junctions
 - ...
- Reduce output data size (by ~99.9 %)
- Link MD to other models...
 - Discrete dislocation dynamics (DD) models
 - Continuum plasticity models (via dislocation density tensor)

PdAu: Tensile straining, $\dot{\epsilon}$ =10⁸ s⁻¹; T=300K

PdAu: alloying effects

Role of GB equilibration and reloading

PdAu: equilibration effects

",Steady-State" of GB ?

PdAu: Equilibration effects ?

Deformation mechanisms: Variation of GB composition?

GB composition during straining

Shortcutting Diffusion

Shortcutting Diffusion

Altering the Balance: 300 K, $\dot{\varepsilon}$ =10⁸ s⁻¹

Jump tests

Coupled Motion vs. Sliding

Subset of grain boundaries aligned

Coupled Motion vs. Sliding: Pd

Coupled Motion vs. Sliding: Pd

Coupled Motion vs. Sliding: PdAu

Coupled Motion vs. Sliding: PdAu (with MC)

Coupled Motion vs. Sliding: Cu-Nb

Conclusions

The effect of miscible solutes

- The solute distribution in nc alloys is not necessarily homogeneous also for miscible solutes
- Miscible solutes increase the strength of the material for all studied grain sizes by decreasing the free volume in the GBs
- The GB composition is adjusting during deformation

The role of the local kinetics

- Diffusional processes can alter the effect of miscible solutes
- If local kinetics allow for a sufficiently fast redistribution of solutes, no strengthening is observed
- The effect on the deformation mechanism was demonstrated for coupled GB motion

Financial support: DFG714 Computing time: JuRoPA