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Storytelling

This story mixes physics and history

Can lead with physics (my PKS talk in
summer 2014-see my Slideshare page)

Can lead with history (my talk from January
this year-ditto)

Today will try and balance the two

Note: In interests of time have dropped the
“panorama” mentioned in abstract



1/f noise : why it matters, S( f ) —_ f —-p

Why it’s puzzling

Many solutions (or one) ?

Ergodic route

« Non-ergodic route

One solution: Long range
dependent kernel, non-
Markovian, fractional

Another: Long tailed waiting times
between switching-fractional renewal

Gaussian noise. Physics now

known to be the generalised

Langevin equation, fGn is its
noise term

process/continuous time random walk.
Motivated by physics of weak
ergodicity breaking.

S(f)~Q(T)f~” S(f)~f7




“Nothing can be more fatal to
progress than a too confident
reliance on mathematical symbols;
for the student is only too apt to ...
consider the formula and not the
fact as the physical reality”.
Thomson (Kelvin) & Tait, 1890
edition.

“Like the ear, the eye is very
sensitive to features that the
spectrum does not reflect. Seen
side by side, different 1/f noises,
Gaussian [i.e. fGn], dustborne [i.e.
fractional renewal] and multifractal,

obviously differ from one another’™
Mandelbrot, Selecta N, 1999.



THE ENIGMA OF “1/F”



“1/f” spectra

1/f noise-fractals in time
One explanation (c.f. Bak’s SOC) or several ?

SOC links 1/f in time to spatial correlation
functions in “avalanching” critical systems

But spectra and correlation functions based on
ergodicity-“misbehave” on non ergodic 1/f
signals
Will later show you that that Mandelbrot made
this last point in 1965-67, but mainly to
engineers |




1/f noise — fractals in time

“There Is ...[a] ... ubiquitous phenomenon which has
defied explanation for decades. ... a power spectrum
decaying with an exponent near unity at low
frequencies .... This type of behavior is known as “1/ "
no:se or fllcker no:se
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Fluctuating magnetic field in ionosphere



Why is 1/f puzzling ?

If spectral density S'(f)~ f 7 theni) itis singularasf — 0

and 1) if we define an acf via time average p(7) = x(t)x(t+ ¢
and use Wiener-Khinchine theorem to get p from Fourier transform of S'(f)

then p falls off as power law, and its summed lags "blow up" Z p(7) > ©



Why is 1/f puzzling ?

If cnectral dencitv S Y~ f 7 then i) it icginnnlaracsf >N
* So two odd features

* Infrared catastrophe in the psd
* Highly non-Markovian autocorrelation behaviour

The cutoffs that would be needed to tame these are often not seen

7 I D T T - 1 b T ] \" 7



1/f: a single origin ?

“The importance of Mandelbrot's discovery that fractals occur widespread in
nature can hardly be exaggerated. Many things which we used to think of as
messy and structureless are in fact characterized by well-defined power-law
spatial correlation functions. ... is it possible to construct a dynamical theory of

the physics of fractals ?”

“There is another ubiquitous phenomenon which has defied explanation for

decades. ... a power spectrum decaying with an exponent near unity at low
frequencies .... This type of behavior is known as “1/f" noise, or flicker noise.”

“We believe that those two phenomena are often two sides of the same coin:
they are the spatial and temporal manifestations of a self-organized critical

state.”

-Bak and Chen, “The physics of fractals” Physica D, 38(1-3), 1989.



Or several ...?

As a matter of fact, | started with one, a very simplified view of
the 1/f noise, which was lucky, because had | seen the whole
monster | would have been totally overwhelmed ... But very
soon | realised that ... in fact you could have a spectrum, 1/f,
while being of very many different kinds, ... a discovery that at
the same time is ... a shallow observation and at the same
time also very profound, because 1/f is a formula. The same
formula can be used as caption to all kinds of different
phenomena - Benoit Mandelbrot, Web of Stories, 1998.
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25 Years of Self-organized Criticality: Concepts
and Controversies

to any of the simple models known to Watkins and colleagues quote a
Nicholas W. Watkins!234 . Gunnar Pruessner - exhibit SOC. For example, schematic wonderful sentence from Philip Anderson,
Sandra C. Chapman® . Norma B. Crosby’ - models for the geometric spread of forest which perhaps best captures how the
Henrik J. Jensen® ) fires are essentially isomorphic to some SOC idea should be seen. It's not quite

of the archetypal SOC models. The SOC a specific theory, as one might consider

interpretation of power law distributions general relativity or the kinetic theory of

for such fires therefore carries more weight.  gases. Rather, it's a more generally scheme
Received: 24 January 2015 / Accepted: 4 May 2015 - T e ! - for thinking about many systems out of

© The Author(s) 2015. This article is published with o

equilibrium, which may come close to
: b colel .
» ‘Self-organized criticality seems to me to
th esIS be,” as Anderson put it, “not the right and
unique solution to these and other similar
problems, but to have paradigmatic value,
S O C T~ d as the kind of generalization which will
re V I S I te characterize the next stage of physics.”
That seems about right. AL times, 00
doubt, the importance of the idea has been
overstated. Much of the controversy and
confusion has been engendered by some
sloppy thinking and over-enthusiasm by
SOC supporters. But it remains an idea of
enduring value. )

The idea of self-organized criticality

(50C) has inspired physicists for more
than 25 years. It was born in 1987 as a
conjecture about the dynamics of a system
of coupled pendulums. Per Bak, Chao Tang
and Kurt Wiesenfeld were motivated by

the widespread existence of scale-invariant
fractal structures, both in space and time, in
hysical and biological phenomena. Their

MARK BUCHANAN

NATURE PHYSICS | VOL 11 | JUME 2015 | www.nature.com/naturephysics

Criticality
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Models for “1/f”

. MULTIFRACTALS ; ¢

9% 1/f NOISE _.

L

sl "

My models of both telephone errors and Nile floods involved spectra
of the form f ", Despite this common property, those processes were of

totally different character. That is, a common spectrum did not imply any
deeper commonality.



1/f noise : why it matters, S( f ) —_ f —-p

Why it’s puzzling

Many solutions (or one) ?

Ergodic route

« Non-ergodic route

One solution: Long range
dependent kernel, non-
Markovian, fractional

Another: Long tailed waiting times
between switching-fractional renewal

Gaussian noise. Physics now

known to be the generalised

Langevin equation, fGn is its
noise term

process/continuous time random walk.
Motivated by physics of weak
ergodicity breaking.

S(f)~Q(T)f~” S(f)~f7




ERGODICITY BREAKING



Ergodic

Y = Asin(wt + ¢)
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Non-Ergodic

Y = Asin(at + @)
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Non-ergodicity matters

* Physics can be non-ergodic

- Weak ergodicity breaking [Bouchaud,1992]
- Single particle tracking
- Blinking qguantum dots

 Also economics ?
- St Petersburg paradox [Bernoulli, 1713]



(Weak) ergodicity breaking [Bouchaud
! 1992]

LS
»

Wy

The most interesting property of these. d:stnbutmn laws 1s the fact that

—— - ——

ao
(T :J dr 74 (r) diverges, when x=1 for equation(2) and for all finite ¢ for
0

oI,
Hence, the time needed to explore an infinite system is infinite. This is however a non-
onventional scenario for r::rgudir.:ity breaking, since the phase space is @ priori not broken into
utual]},r inaccessible regmns in whmh local Equ;]lbnum ma}r be achmved ‘We shall call this

i.e. the existence nf many « pure sl,al,eﬁ » between which mﬁmte barmer btand We shall
carefully avoid this issue (the reader is referred to [19] for a recent experimental discussion),
since the dynamics is by definition restricted to only one pure state, and for which the concept
of « weak » ergodicity breaking is relevant.



Single particle tracking

PhysicCs

Physics 1, 8 (2008)

Viewpoint
Statistics and the single molecule

By Igor M. Sokolov

Institut fiir Physik, Humboldi-Universitit zu Berlin, Newtonstrasse 15, D-12489 Berlin, Germany

Published July 28, 2008

One hundred years ago, the atomic-molecular theory
of matter was having a hard time, and many physi-
cists considered it merely a kind of convenient short-
hand rather than a real description of nature; after
all, nobody had really seen a molecule, let alone an
atom. Today, developments in micromanipulation and
in single-molecule tracking have not only made individ-

ual molecules visible, but have led to real breakthroughs
. ) . . Thic

tems that rapidly relax to equilibrium or to a station-

ability to follow and to manipulate single molecules has
opened new perspectives in nanoscience and nanotech-
nology. Experts in single-molecule tracking often say
that observation of individual trajectories gives more in-
formation about the system than only looking at ensem-
ble averages, which is the approach taken in statistical
thermodynamics. The idea is that the closer one looks,
the more information one can get.

ary state, implying the system is ergodic. Systems
far from equilibrium or showing very slow relaxation
may be nonergodic, and subdiffusion as modeled by
CTREW may be one of the simplest theoretical examples.
One has to be cautious when applying our intuition
gained for the close-to-equilibrium cases to such pro+
cesses: the information contained in the time-averaged|
and ensemble-averaged results is different and is perti-
nent to different aspects of the system’s behavior. Un-

dergtanding this fact is necessary when interpreting the
results of existing experiments and when planning fu-
ture studies.



[Physics Today,2008]

Beyond quantum
jumps: Blinking nano-
2 scale light emitters

Clri'lde Fernando D. Stefani, Jacob P. Hoogenboom, and Eli Barkai

On the nanoscale, almost all light sources blink. Surprisingly, such blinking occurs on time scales much
larger than predicted by quantum mechanics and has statistics governed by nonergodicity.
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Figure 1. Fluorescence blinking i

of colloidal quantum dots.

(a) Confocal fluorescence image
of individual QDs. (b) Two-minute
fragment of a time trace of the
emission of a single QD. The
blinking can be readily observed.
(c) A two-second zoom-in. The
horizontal line marks the threshold used to discern the off state from the on state. (d) The distribution of times in the on and off
states. The line is a power law (equation 1) with an exponent a = 1.65.
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St Petersburg Paradox (Peters,2011)

The 5t Petershurg pardog was Arst pot forwoard by Nicolans Berpoall: io 1713

[1%, p. 402]. He considerad lodterses of ithe following type:
A Tar ooin is tossed.

(1) {]u heads, the lottery pays 51, and the game ends. On tailz, the oo is Eﬁﬁgmt':% PRI Srems. R Sec A [2011) 388, 403 8031
THE BEWAL el 10, DLEFS; swion 2011 1. (KIS0
() {]u hl"}:hﬁ ihe Ipitery pays 52, and the gape ends. On tails, the omn is SOCLETY
tossed again.
o The time resolution of the St Petersburg
(m} On beads, the lottery pays 2% and the game ands. On tails, the omn is paradax
tossed again.
. By O1E PETERS A5
"Depor mnenit of Mothemosics and Jrondam nsacue or Chimace Change,
] ] Imperial College London, London SW7 242 UK
In other words, the random muober of ooin oeses, n, follows 2 pEMDeiric 2[Jepartment of Atmospheric and Oeeanic Sciences, Universiy of California,
distributsom with parametar 172 and tha novoats increass axponentially with o Los Angeles, 7127 Mah '?tﬁf!r::-! i idin g Iﬂ[ﬁll?-'iﬁ'_'ilﬂrﬂ Avenue, Los Angeies,
We may call m 2 ‘waiting time’, although in this stody it i assumed that 3Sontn B Fsttnte m{,’w‘ﬂvﬁ‘:’fﬁﬂﬁum Ee, NM s7s01, USA
the koitery is performed instantanecusly, ie. a geometric Tandom variable is
drawn and po spnificant phyzscal time elapses. The expected payout froam A resclution of the 5t Petershurg paradox is prosenied. In conkrast to ibe standard
this pame is rsclution, wtility is oot required. lostead, the lime areage pecformance of the lotbery

L)oo i)

is oomputerd. The fnal resolt can be phrasd mathematically sdentically to Damic
Bernoulli s n=clwiion, which uses logarithmic utilivy, but & derived wsing a conceptually

(3.1% different argument. The sdvantage of the Bme remlution b= the climination of arhitrany
uiility funrisons

which is a divergiog sum. A ratsomal person, N, Bernoulli argued, should therafons
be willing to pay any price for a ticket in thi lottery. In reality, howaver, people
are rarely willing to pay more than $10, which constitutes the parados.

bt Patorsbury parndon relws for its existence on the nssnmption that

the gxpectad zain (or growih fGctor or exponential growih rate) is the relevani
quantity for an individoal deciding whether to take part in the lodtery. This
assumptzon can b shown o be implnsible by carsfully analysing the physical
meaning of the ensemble average. A quantity that is more direcily relevant to
the fnancial wallbeing of an individual = the growth of an investment over
time. Utility, which can ohsors risks, is not necessary o evahiate the situation
and resolve the parwdox. It is the actual wealth, in %, of a player, mot the
utility, that zrows with g (equation (6.10)). It is mamfestly nod true that cthe
ounmonly used ensemble-average performance of the lottery equals the time-
average parformance. Io ihis sense, the system @5 oot ergodic, and statements




Candidate models

Fractional renewal process (e.g. Lowen &
Teich,1993, who always use cutoffs !)

Continuous Time Random Walk (Montroll
&Weiss,1965)

Renewal reward process

Heavy tailed random telegraph (Niemann et al,
2013)

Common features
Discrete states
Heavy tailed switching time distribution



Alternating Fractional Renewal
Process (AFRP)
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FIG. 1. Sample functions of fractal renewal processes. In- FREQUENCY w (rad/sec)
terevent times are power-law distributed. (a) The standard FIG. 6. Double logarithmic plot of the normalized power
fractal renewal process (SFRP) consists of Dirac § functions spectral density for the AFRP, with an abrupt-cutoff power-
and is zero-valued elsewhere. (b) The alternating fractal re- law probability density. Three values of the exponent D are
newal process (AFRP) switches between values of zero and shown: 0.5, 1.0, and 1.5 (A = 10~3, B = 10%). Asymptotic
unity. The symmetric case is shown here. forms from Egs. (8), (9), and (29) are included for comparison.
The abrupt cutoff in the interevent-time probability density
. function gives rise to oscillations in the frequency domain,
Lowen and Te|Ch’ PRE’ 1993 especially for larger values of D.

Note cutoffs on inter event time

1 December 2015 26



Alternating Fractional Renewal
asmcess (AFRP)

WWILEY

! Fractal-Based -
Point Processes -~

POWER SPECTRAL DENSITY S, (w)

10" 1077 10° 10° 10°
FREQUENCY w (rad/sec)
te FIG. 6. Double logarithmic plot of the normalized power
fra spectral density for the AFRP, with an abrupt-cutoff power-
an Steven B radiey Lo law probability density. Three values of the exponent D are
ne ; Malvin Carl Teich shown: 0.5, 1.0, and 1.5 (A = 102, B = 10%). Asymptotic

forms from Egs. (8), (9), and (29) are included for comparison.
The abrupt cutoff in the interevent-time probability density
function gives rise to oscillations in the frequency domain,
especially for larger values of D.

L WILEY SERIES IN PROBABILITY AND STATISTICS

Note cutoffs on inter event time

1 December 2015 27



Continuous Time Random Walk
(CTRW )

\ - 96, 7)=AS)y(7)
“g}/ XM=Y &

Montroll and Weiss 1965

Figure from Sokolov et al, Physics Today, 2002
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Renewal reward process *

51 S 5y Sy Ss
W
T E"'l I
Ji I || Js J, Jy
! [-"-2 T [-L
Iw,

“An ... analogy is that we have a magic goose

which lays eggs at intervals (holding times).
Sometimes it lays golden eggs of random weight, and
sometimes it lays toxic eggs (also of random weight)
which require responsible (and costly) disposal. The
"rewards” are the successive (random) financial
losses/gains resulting from successive eggs
(i=1,2,3,...).”-Wikipedia

Here jumps at {J} become
rewards {W} and waiting times
become holding times {S}




Heavy tailed random telegraph
(Niemann et al, 2013)

Model —For simplicity, we consider a two-state model,
with a state up where I(t) = I; and down with I(1) = —I,.
The sojourn times in these states are independently iden-
tically distributed random variables with PDFs (7). Thus,
after waiting a random time in any state (called an epoch),
the particle chooses the next state to be up or down with
equal probability. The waiting time PDFs have long tails
g (7) = 7 ) with 0 < @ < 1; hence, the averages of
the up and down times are infinite. The Laplace r — A
transform of these PDFs is for small A: {ﬁr{ﬂ} =~ ] — (FA)“,

where 7T is a scaling constant. This is a simple stochastic
model of a blinking quantum dot, for which typicallv a =

1/2, although 1/2 < @ << 1 was also reported| o)

* Like Lowen & Teich AFRP H jU ]L

I 1 1 o al renewal I
but, crucially, without e et ) o i
fractal renewal process (SFRP) consists of Dirac é functions
and is zero-valued elsewhere. (b) The alternating fractal re-

newal process (AFRP) switches between values of zero and
C u to S unity. The symmetric case is shown here.




Nonergodic spectrum

Statement of the main resulis.—For a << 1, the expecta-
tion value of the spectrum is not constant but decreases
with measurement time (S,(w)) = t* 'o,(w). Expanding
the r-independent function o, (@) for small frequencies w,
one finds a typical nonintegrable 1/f noise

=1

(S, (@) = C—

-

(4)

o’

Spectra depend on observed
length of time series as well
as waiting time exponent alpha
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FIG. 1 (color online).  (a) S;(f) plotted for different realizations
(a = (.5, t = 107). Inside each realization one has fluctuations
following exponential distributions. Different realizations are
shifted with respect to each other due to the random prefactor
¥,. (b) Ensemble average of §,(f) plotted for different lengths ¢
of the time series. One sees the decay of the spectrum (S,(f)) =
0.10177 Y242 [Eq. (9] both in time and frequency. The cross-
over frequency is around f, = 0.51/t [Eq. (14)]. The simulations
perfectly match the theory [Egs. (9) and (13)].



Strong fluctuations

In general, the value §,(w) of the spectrum is a fluctuating

quantity even in the t — oo limit. The statistical behavior of ~ Many procedures for the estimation of the spectrum
the general class of processes for large ¢ (for pairwise from or}c‘ﬁmtc time Fcahzatmn are designed to suppress
disjoint @; # 0) is fully described by the convergence in thc.stahsm_:al fluctuations due to the uncorr?latcd random
distribution of ) variables &; [27.31]. These cannot account for the fluctua-
tions of ¥,, common to all estimators of a given realiza-

( S(w;) S(w,) LY. -y 5 tion. For these procedures, the prefactor affects all
(Slewy))’ (S,{w,,}}) alfieeor b () estimated values for the spectrum. However, being a com-

mon prefactor, it does not affect the shape of the estimated
spectrum so that such features as 1/ f noise can be detected
independently of the realization.

where ¥, is a random variable of normalized Mittag-
Leffler distribution with exponent & whose moments are
(¥oy = n'l'(1 + @)*/I'(1 + ne) [30]. The &; are indepen-
dent exponential random variables with a unit mean. For
a =1, the Mittag-Leffler random variable becomes
¥, = 1. so that the powers S,(w;) of different frequencies
become independent exponentially distributed random
variables—a result known for several ergodic random
processes [31]. In the case of weak ergodicity breaking
(e << 1), the whole spectrum has a common random pre-
factor ¥, which shifts the complete observed spectrum.

probability density of M

Strongly fluctuating estimates

of average quantities _ L s Slw)

i=1 <S.":wé}}l - value of M -

SUCh as power Spect ra_ FI1G. 2. Distributions of the frequency averaged spectra

[see Eq. (12)]. The lines are the analytic probability densi
of the Mittag-Leffler distributions (r = 10%).




Differs from fGn

Two state random telegraph clearly non-ergodic

Strong contrast to long range dependent, fractional
Gaussian noise model (fGn) (Kolmogorov, 1940;
Mandelbrot, 1965) which is

ergodic [Mandelbrot & Van Ness, 1968]
"better" behaved [M 1967; M and van Ness, 1968]

at cost of assuming “unphysical”, fully non-Markovian,
memory kernel

fBm: X,, (0~ [ [t-9))""=(-9)}" ' |dL, (5)
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Fractional motions and noises

fBm: X,, (0~ [ [t-9))""=(-9)} ' |dL, (5)

Build a nonstationary, self
similar walk ... (used wfbm in

Matlab) Fractional Brownian motion, H=0.7
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Then differentiate to give a
stationary LRD noise
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1/f noise : why it matters, S( f ) —_ f —-p

Why it’s puzzling

Many solutions (or one) ?

Ergodic route

« Non-ergodic route

One solution: Long range
dependent kernel, non-
Markovian, fractional

Another: Long tailed waiting times
between switching-fractional renewal

Gaussian noise. Physics now

known to be the generalised

Langevin equation, fGn is its
noise term

process/continuous time random walk.
Motivated by physics of weak
ergodicity breaking.

S(f)~Q(T)f~” S(f)~f7




BACK TO THE 60S






Surprisingly, weak ergodicity foreshadowed by
Mandelbrot |

Will summarise his fractional renewal models
inspired by telephone errors ...

.. & results, especially those in remarkably far-
sighted paper [IEEE Trans 1967].

Why has it been almost totally overlooked in stats
and physics literatures since 60s ?

Has this affected history of complexity science and
way the subject is taught ? [Graves et al, 2014;
Watkins et al, 2015]

Epilogue: Where do fGn and fractional renewal
classes sit in wider modern context, as part “the
panorama of grid bound variability".



Famously hard to read ...

* At once a compendium of Mandelbrot’s pioneering
work and a sampling of new results, the presentation
seems modeled on the brilliant avant-garde movie
"Last Year in Marienbad", in which the usual flow of
time is suspended, and the plot is gradually revealed
by numerous but slightly different repetitions of a
few underlying events. As Mandelbrot himself admits
in the Preface, the presentation allows the reader
unusual freedom of choice in the order in which the
book is read. - Nigel Goldenfeld, “Last Year in
Mandelbrot ”



... but worthwhile ?

In fact, | enjoyed this work most when | read it in random order,
juxtaposing viewpoints and analyses separated in time by 3 decades,
and making clear the progression of ideas that Mandelbrot has
generated. These include:

* the classification of different forms of randomness,
* their manifestation in terms of distribution theory,
* their ability to be represented compactly,

* the notion of trading time,

* the importance of discontinuities,

* the relationship between financial time series and turbulent time
series,

* the pathologies of commonly abused distributions, particularly the
log-normal, and

* g catalogue of the methods used to derive scaling distributions



Berger & Mandelbrot, 1963

A New Model for Error Clustering
in Telephone Circuits

Abstract: This paper proposes a new mathematical model to describe the distribution of the occurrence of
arrors | alfn)fe - MISSION OF =] [z]= ¥ = B25. ¥V E UOaest: C

described in terms of an error probability depending solely on the time elapsed since the last occurrence
of an error; b) that the distribution of inter-error intervals can be well approximated by a law of Pareto
of exponent less than one; the relative number of errors and the equivocation tend, therefore, to zero as
the length of the message is increased. The validity of those concepts is demonstrated with the aid of ex-
perimental data obtained from the German telephone network. Further consequences, refinements, and
uses of the model are described in the body of the paper.

 |[BM J. Research & Development




Mandelbrot 1965

1965 IEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGY 71
Self-Similar Error Clusters in Communication Systems
and the Concept of Conditional Stationarity

BENOIT MANDELBROT, sENIOR MEMBER, IEEE

Abstract—The purpose of this paper is twofold. From the view- ) ; ’
point of cummunlutlom; anginenrmg. it prments a model of certain B. Frospect

The now classical technique of spectral analysis is in-
applicable to the processes examined in this paper but if is
sometimes unavoidable that otherwise excellent spectral
estimates be applied in this context. Another publication of
the author [18]is devoted to an examination of the expected
oufcomes of such operations. This will lead to fresh con-

This work 15 related to an earlier ‘‘new model’” due to J. M oepts that appear most promising indeed in Fhe Sl
Berger and the author; the logical structure of the theory has t.bee:; a statistical Et'UdF of turbulence, excess noise, and other

further streamlined and a number of fresh consequences have been phenomena when interesting events are intermittent and

derived ; the empirical fit has been further improved, while recourse bunched together (see also [19]).
to ad hoc corrective terms was made unnecessary.

This will be nchloud b;n,r mtro-dmmg the concept af “BE]f—Slml.lﬂ.
stochastic point process in continuous time.”” The resulting mech
anism presents fascinating peculiarities from the mathematics
viewpoint. In order to make them more palatable as well as to help
in the search for further developments, the basic concept of “condi
tional stationarity’ will be discussed in greater detail than woul
be strictly necessary from the viewpoint of the immediate enginee
ing problem of errors of transmission.

(18] Mandelbrot, B., Time-varying channels, 1/f noises, and the
infrared m'r:-mmph;r Cony. Ree., 13t IEEE Commimnication Conven-
I. IxTrODUCTION tion {In press).

(19] -, Belf-similar turbilence and non-Wienerian sonditioned
spectra, to be published.



(18] Mandelbrot, B., Time-varying channels, 1/f noises, and the

infrared mﬂmr{r[}h;, Cony. Rec., 1si {EEE Commamication Conven-
o e Mandelbrot 1967

e Sﬂlf—mmllﬂ.l‘ turbitlence and non-Wienerian conditioned
spectra, to be published.
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-la, NO, 2, APRIL 1967 . 289

Some Noises with 1/f Spectrum, a Bridge Between
Direct Current and White Noise

BENOIT MANDELBROT, sENIOR MEMBER, IEEE

[18] became 1965 IEEE
Boulder conference paper

[N8 in Selecta 1999]
& [19] the 1967 journal paper
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P(x,t)

Continuous Time Random Walk
(CTRW )
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Montroll and Weiss 1965,
Figure from Sokolov et al, Physics Today, 2002
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Renewal reward process *

“An alternative analogy is that we have a magic goose
which lays eggs at intervals (holding times).

* 54 S8, 5y Sy ~ Sometimes it lays golden eggs of random weight, and
‘_' 7Y sometimes it lays toxic eggs (also of random weight)
Wi which require responsible (and costly) disposal. The
W, "rewards" are the successive (random) financial
T . losses/gains resulting from successive eggs
Jy Jo || J5 Jy I (i=1,2,3,...) .”-Wikipedia
Wy W, MANDELBROT: NOISES WITH 1/f SPECTRUM
j Wit
Iw, | '
|
Wy
Here jumps at {J} become L : .
rewards {W} and waiting times R I A A A A AR
. . + g ]
become holding times {S} R
b 5 L B T B AR BN ]
_WE [ BN B B
i




Abstract—Noises in thin metallic films, semiconductors, nerve
tissues, and many other media, have measured spectral densities
proportional to f*%, with f the frequency and 0 a constant 0 < 0 < 2.

The energy of these ‘7' ! noises” hehaves maore “erratically’ in
time, than expected from functions subject to the Wiener-Khinchin
spectral theory. Moreover, blind extrapolation of the *f*2 law" to
f = 0 incorrectly suggests, when 6 < 1, that the total energy is
infinite (“‘infrared catastrophe®). The problems thus raised are of
the greatest theoretical interesl, and of the grealeslt practical im-
portance in the design of electronic devices.

The present paper reinterprets these spectral measurements with-
out paradox, by introducing a concept to be called *‘conditional
spectrum.” Examples are given of functions ruled by chance, that
have the observed ‘‘erratic” behavior and cenditional spectral
density.

A conditional spectrum is obtained when a procedure, meant to
measure 4 sample Wiener-EKhinchin spectrum, is applied to a sample
conditioned to be nonconstant. The conditional spectrum is defined,
not only for nonconstant samples from all random functions of the
Wiener=Khinchin theory, but also for nonconstant samples from
certain nonstationary random functions, and for nonconstant
samples from a new generalization of random functions, called
Veporadiec funetione ™

— - -




The conditional spectrum:

 First key finding was that Wiener-Khinchine inspired measures like
periodogram would return a ~"1/f" shape for such models, but that a more
useful object was conditioned also on series length T. This conditional
spectrum S(f,T) would factor into two parts, one dependent on f and one on T.

» In the 1967 paper he describes it thus (theta is determined by exponent of
power law waiting time pdf = usual Levy alpha):

The properties of the corresponding functions V(i)

W(t), and X(f) can be summarized as follows:
If 1 <60 < 2, V() or W({) have Wiener—Khinchur
spectral densities S'(j) of the form " °L(f), where L(f
varies glowly near f = 0.
W (i) has a condilional spectrum S(f, T), such thai
S(, T) = " 'LHQT), where 5/ T K f <L If1 <8 <2
0 < Iimre Q(T) < o, If0 <0 < 1, HT)T° varies

slowly for T' — .




The conditional spectrum:

Fourier psd S ~ f“*L(f)
Cond.Spectrum S(f,T) ~ 7 L(f)Q(T)
Q(T)T* “varies slowly

SO ;_gs(f T)=S'(f, T)~ f T L(F)

T 0-1

f 2—6

L(T)

1.e.



The conditional spectrum:

 First key finding was that Wiener-Khinchine inspired measures like
periodogram would return a = 1/f" shape for such models, but that a more
useful object was conditioned also on series length T. This conditional
spectrum S(f,T) would factor into two parts, one dependent on f and one on T.

» In the 1967 paper he describes it thus (theta is determined by exponent of
power law waiting time distribution = usual Levy alpha):

* “Numerical ... 1/f ... spectrum ... need not ... estimate ... Wiener-
Khinchine spectrum”®. M67 reviewed in N2, Selecta, 1999
Instead “depends on conditioning length T".

Unlike the stationary LRD model, singularity is an artefact.



The infrared catastrophe as mirage:

* Rather than representing a true singularity in power at the
lowest frequencies, in this model he described the infrared
catastrophe in the power spectral density as a *"mirage”:

The infrared mirage. In a finite sample, the accessible frequencies do
not range down tO, only down to f=1/T. Therefore, an effect of letting
T—e0, is to modify this the accessible range, and force an unchanging total

energy to “flow along” toward increasingly low frequencies.

As a result, the threatened low frequency divergence or infrared catas-
tropne neoer materinlizes and the self-consistency of nature is preserved.
However, the interpretation of spectra is deeply affected. The fact that the
additional prefactor T'~" is not numerical but a function of T expresses
that the measured square Fourier moduli do not estimate a Wiener-
Khinchin spectral density, but something different. Thus, the differences in
geomelry have obvious practical consequences that one could not deduce

from the form of the spectrum alone. .. )
M67 revisited in N2, Selecta, 1999




Distinct from fBm and fGN:

Mandelbrot 1967 was prepared in the same period as Mandelbrot

and van Ness on fBm and fGn, which it cites as 'to be published".

In it contrast is clearly drawn between the sampling behaviour

of conditionally stationary, non-Gaussian renewal process as a 1/f model and
his stationary, Gaussian (fGn) model:

section VI showed that some jn_EL{f} nolses have a
very erratic sampling behavior. Some other [~ noises,
however, are Gaussian and, therefore, perfectly “well-
behaved;" an example is provided by “fractional white
noize” which is the formal derivative of the process of
Mandelbrot and Van Ness.'"® This difference in behavior



1 jump Is extreme case:
not Wiener-Khinchine

interval

L Wit

« M 1967 first illustrated non ergodicity with single jump in an infinite

o e T o O B U

Fig. 1.

The Nonergodic Charqcter of the Function W (1, T')

A function X(f) is ergodic if E(X) is defined and if
Bmyreerme @ — )7 Dot X(s) is nonrandom and
equals E(X) almost surely. When 7', is a proper random
variable, the function W (¢, T,) is nonergodic, being highly
nonstationary. When T, is uniformly distributed over
(—o, ®), W(t, To) is also nonergodic: it is “‘almost
surely” constant over any prescribed finite time span,
and its sample mean equals W (¢'), which is random and
independent of T,

Sampling Distribution of the Condilional Covariance

A corollary of nonergodicity is that, if ' — o« while
n/T remains constant, the expression

R = [01/1) 3 W@ TOW( +n, 1) | Toe (1, T)]

does not tend to the limit 1 — |n|/T of its expectation.

For example, when 0 < n < 1'/2, the span of variation
of H = T,/T is to be divided into three portions, 0 to
n/T, n/T to 1 — n/T, and 1 — /T to 1. In the first
span, R = (1 — h — o/T)W'"* 4+ hW'W"; in the second
span, R = (1 — o/T)W* + (1 — h — n/T)W"" +
RW'W"; in the third span, B = (h — n/T)W"” 4
(1 — BW’'W”. Thus, for every fixed couple (W', W"),
R is the mixture of three uniformly distributed random
variables,




Also explicitly discussed non-ergodicity
of divergent mean waiting time case

IEEE TRANSACTIONS ON INFORMATION THEORY, APRIL 1967
B. The Case 0 < 0 < 1

The ergodic theorem fails to apply to W(¢), for reasons
similar to those encountered for the function W(t, T,)
of Section II: As { — o, t'W°(t) tends in distribution

to a random limit. The ergodic theorem is trivial for V (¥),
because—the—sample—mear—almost—surely—tends—to—zero
as I' — o,

Thus, one cannot speak of the “de¢ component” of
processes such as W(t), with 0 < 8 < 1. For processes

MANDELBROT! NOISES WITH 1/f SPECTRUM
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Sowasit W.EB?

Yes and No.

Noted the consequences of naively interpreting a
periodogram as a spectrum even when Wiener-
Khinchine not satisfied, and the solution to “1/f
catastrophe”

Derived correct expression for periodogram and
dependence on T that Niemann et al confirmed
Noted that fluctuations in averages were “wild”
compared to those of f{Gn and had some results that |
have yet to decode

But saw it in a much more abstract context than the
modern physical one-but also more generic

Focus was signal processing rather than physics



A neglected paper ... ?

Mandelbrot 1967 received far less attention than either papers
on heavy tails in finance in early 1960s or the series with van
Ness and Wallis in 1968-69 on stationary fractional Gaussian
models for LRD. M & van Ness 1968 SIAM Review is alone
now ~2600 citations.

M 67 got about 20 citations in its first 20 years (c.f. M & van
Ness ~100) despite fact that the 1967 IEEE paper did cite the
1968 fGn paper and vice versa.

Was apparently unknown to Vit Klemes [Water Resources
Research, 1974], who essentially reinvented it to criticise fBm.
Still seems relatively little known. Citations in the 100s ... last
time | looked ... after 50 years.

Not cited by Beran et al [2013], and while listed in the citations
of Beran [1994] | haven’t found it in the text.

Some exceptions, e.g. Lenoir, Fluctuation and Noise Letters,
2013



... Whose time has come ?

« Should we pay more attention to this class of models ?
« Fortunately, as | showed you, we now are.

« Of course, the above workers going much further than Mandelbrot, in a
physics-driven context

« | think most direct value of looking back nearly 50 years to how
Mandelbrot saw these models is to see how they fit into “the panorama of
grid-bound self-affine variability” as he later put it [Selecta, 1999, N1].

« Helps link maths and physics, the formula & the
phenomenon, and inform future work.



Why neglected ?

Although he revisited the paper with new commentary in
Selecta Volume N [1999] dealing with multifractals and
1/f noise, Mandelbrot neglected to mention it explicitly in
his popular and historical accounts of the genesis of LRD
such as Mandelbrot and Hudson [2008].

Why ?

* Because it wasn't as popular as fBm/fGn ?

« Because it wasn't as “beautiful” as the self-similar LRD
kernel?

« Because he wanted to keep it for his “day job™ at IBM ?

« Or because it complicated the story of how he got from
heavy tails in finance to fGn too much ?



Why does this matter ?

While it is common that ideas don't flourish if they are far
ahead of their time-think of Ada Lovelace for just one of
many examples-it is perhaps not so common for such an
crucial step in a very famous person’s output to be
ignored. | think it does matter, because

« Almost all discussion of 1/f in stats tends to be either in
terms of fGn (or its relative ARFIMA) or conceptually
framed as breakpoints etc

« Almost all physics books or review papers on 1/f use
one of the CTRW or fGn as a paradigm, and few
compare them.

« This has affected geophysics, economics, neurology,



1/f noise : why it matters, S( f ) —_ f —-p

Why it’s puzzling

Many solutions (or one) ?

Ergodic route

« Non-ergodic route

One solution: Long range
dependent kernel, non-
Markovian, fractional

Another: Long tailed waiting times
between switching-fractional renewal

Gaussian noise. Physics now

known to be the generalised

Langevin equation, fGn is its
noise term

process/continuous time random walk.
Motivated by physics of weak
ergodicity breaking.

S(f)~Q(T)f~” S(f)~f7




EPILOGUE: MANDELBROT’S
PANORAMA



Fact: Wild Fluctuations

THE VARIATION OF CERTAIN SPECULATIVE PRICES*

BENOIT MANDELBROT |

=] T T T TTTTT T T T T T T 11717
1 Horizontal scale represents time in days, with two
different origins T°: on the upper graph, T° was
September 21, 1900; on the lower graph T° was
August 1, 1900. Vertical lines represent the value of
the function

t=1T
(T=T°)"1>7 [L(41)]2,
t=T0

Eelele )

T TTIir

where L(t, 1) = log, Z(t + 1) — log, Z(f) and Z(¢)

eaoez - 1 is the closing spot price of cotton on day #, as private-
i L e L ly reported by the United States Department of
] N 120 0o Agriculture,
ale]] T T T T T T T T T Ty

[ NN Lo gl L (AR
1

e 1900

-

Fi6. 2.—Both graphs are relative to the sequen-
tial sample second moment of cotton price changes.




Formula: Heavy tails

Pdf p(x). 10

1 10 X 100




Another fact: Hurst’s growth of range

21 . Nalwral phenomena

Bl < (W2)"
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0 Small figures denofe fhe experiments. '
03 1 LN 2 3 36

‘I heard about the ... Nile ... in '64, ... the variance doesn't draw like time span as
you take bigger and bigger integration intervals; it goes like time to a certain power
different from one. ... Hurst ... was getting results that were incomprehensible”.

— Mandelbrot, 1998, interviewed by Bernard Sapoval for Web of Stories



But what’s the fOrmuIa ?

“This was very much noticed and the literature
grew about it ... it was viewed as a major
puzzle,

this thing which didn't work out” -Mandelbrot,
1998.

In collected papers (Selecta) said he initially
thought could explain Hurst’s observations with
heavy tailed model like 1963 financial one.

But when_saw data realised wasn’'t heavy tailed
in amplitude ! Instead abstracted out property
of self similarity, but in spectral rather than
amplitude domain --- i.e. proposed a model with
a heavy tailed power spectrum ~ 1/f, even

down to lowest frequency. Advocated idea to
mathematicians with van Ness (68), and
hydrologists with Wallis (68-69).

Spectral
Density
S(f).

10
Frequency f.

S(f) ~ "

100



But what’s the fOrmuIa ?

“This was very much noticed and the literature

Spect I
grew about it ... it was viewed as a major Dgﬁ‘;{;
puzzle, S
this thing which didn't work out” -Mandelbrot,

1998.

* The leap of imagination and abstraction from long tails
in a pdf to long tails in an acf and thus a singular power
spectrum may seem very large ...

perhaps to large to make in one go ... juency f.

Hold that thought

amplitude domain - i.e. proposed a model with
a heavy tailed power spectrum ~ 1/f, even
down to lowest frequency. Advocated idea to
mathematicians with van Ness (68), and
hydrologists with Wallis (68-69).

O\I:) ~ f_ﬂ

100



Formula: fBm & fGn, 1965-
68

FRACTIONAL BROWNIAN MOTIONS, FRACTIONAL
NOISES AND APPLICATIONS*

BENOIT B. MANDELBROTY anp JOHN W. VAN NESS}

SIAM ReviEw
Vol. 10, No. 4, October 1968

1. Introduction. By “fractional Brownian motions” (fBm’s), we propose to
designate a family of Gaussian random functions defined as follows:! B(t) being
ordinary Brownian motion, and H a parameter satisfying 0 < H < 1, fBm
of exponent H is a moving average of dB (¢), in which past increments of B(t)
are weighted by the kernel (¢ — s)* "%, We believe fBm’s do provide useful
models for a host of natural time series and wish therefore to present their
curious properties to scientists, engineers and statisticians.

The basic feature of fBm’s is that the ‘‘span of interdependence” between
their increments can be said to be infinite. By way of contrast, the study of

fBm: tz(t)/(Q

Memory
kernel

Gaussian

See also
Kolmogorov’s
“Wiener
Spirals and
some other
Interesting
curves in a
Hilbert space”
(1940).

And
Mandelbrot,
Comptes

) Rendus, 1965

L, (s,




Noises vs. motions........
p=2H+1

Bm: X, ,(t) ~ _[R L(t - S)T_% - (—S)T_%}dLZ () il

r r r r r r r r r
0 100 200 300 400 500 600 700 800 900 1000

 Mandelbrot and van Ness [1968] proposed 1
use of fractional Brownian motion. Non o B 2H L_1L
stationary, H-self similar model. Generalises
Wiener process, has spectral index between - o«
1 and -3. M *
- ... and its derivative, fractional Gaussian noise,
which is stationary, and long range dependent.

r r r r r r r r r
0 100 200 300 400 500 600 700 800 900 1000



So what did BBM think it
meant ?

[...], if infinite dependence is necessary it does not mean
that IBM's details of ten years ago influence IBM today,
because there's no mechanism within IBM for this
dependence. However, IBM is not alone. The River Nile is
[not] alone. They're just one-dimensional corners of
iImmensely big systems. The behaviour of IBM stock ten
years ago does not influence its stock today through IBM, but
IBM the enormous corporation has changed the environment
very strongly. The way its price varied, went up or went up
and fluctuated, had discontinuities, had effects upon all kinds
of other quantities, and they in turn affect us. —

Mandelbrot, interviewed in 1998 by B. Sapoval for Web of
Stories

In modern fractional Langevin models fGn is noise
term e.g. Metzler et al, PCCP, 2014; Watkins
GRL, 2013; Taloni et al, 2010; Kupferman, 2004,
Lutz, 2001.



So what did BBM think it
meant ?

[...], if infinite dependence is necessary it does not mean
that IBM's details of ten years ago influence IBM today,
because there's no mechanism within IBM for this
dependence. However, IBM is not alone. The River Nile is
[not] alone. They're just one-dimensional corners of

» Resolution of apparent paradox is that physical laws are
Markovian, the infinite memory is consequence of looking It

at a piece of world ? In spirit of Mori-Zwanzig. it
very strongly. 1 he way Its price varied, went up or went up

and fluctuated, had discontinuities, had effects upon all kinds
of other quantities, and they in turn affect us. —

Mandelbrot, interviewed in 1998 by B. Sapoval for Web of
Stories _ _ _ _
In modern fractional Langevin models fGn is noise

term e.g. Metzler et al, PCCP, 2014; Watkins
GRL, 2013; Taloni et al, 2010; Kupferman, 2004,
Lutz, 2001.



(Ohmic) Langevin equation

MG =-V (a)-n¢+ f(t)



Beyond the Ohmic case

In deriving Langevin equation can consider other types of reservoir oscillator
spectral function including but not limited to power laws :

J(w) c @’
where s >1 is super-Ohmic
and s<1issub-Ohmic

In the presence of a memory in the heat bath we then have generalised
Langevin equation of the form:

M q =V (q) =M [ dtp(t—t)a(t) + f (1)

Where memory kernel rho replaces constant eta [e.g. Kupferman, 2004;
Caldeira, 2010]




Fractional Langevin equation

If memory kernel has slowest decay p(z) ~ z~**%

then GLE: Mq=-V (g) - M [ dt'p(t ) q(t) + f (t)

2d

. ’ O oy
becomes FLE: M q=-V'(q) —M o, 4 8t—2dq(t )+ T (1)

where frac. derivative Is

0" F(t) _ 1 J'

tr o)t —7) A
ot* ['(-=A) deF(@t-7)

0



The many faces of “1/f”

(1

Late in his life, Mandelbrot re-emphasised that the formula
wasn’t the fact, and the property of self-similarity seen in his
most famous models wasn’t the whole story. “Reducing the
notion of “1/f noise" to self-affinity ... shows it to be very
severely underspecified”- Selecta volume N, 1999.

Why was he saying this ? Because his eyes told him to: “Like
the ear, the eye is very sensitive to features that the spectrum
does not reflect. Seen side by side, different 1/f noises,
Gaussian, dustborne and multifractal, obviously differ from
one another”- Selecta, op cit.



So what were these models ?

Additive, stable, models extending fGn like fractional
hyperbolic model of Mandelbrot & Wallis [1969].

Multiplicative, multifractal models exhibiting volatility
bunching as well as 1/f spectra and fat tails-1972
(turbulence), 1990s (finance).

And the class he referred to as “dustborne”: the least
known of his papers, from 1963-67, though closely
related to the Alternating Fractional Renewal Process,
the CTRW and modern work on weak ergodicity
breaking.

We'll very briefly recap first two, then dwell on last
one.



Additive fractional stable
H25
class

Robustness of R/S in measuring noncyclic
global statistical dependence (M & Wallis 1969c¢)

Water Resources Research: 5, 1969, 067-988

MILKTERAL TYFE |, Ha(hT, M= K000, 2217 K

Mandelbrot & Wallis [1969] first attempt to unify long range memory
kernel of fGn with heavy tailed amplitude fluctuations - called it
“fractional hyperbolic” model because of its power law tails.

Anticipated today’s versatile linear fractional stable noises, but it
didn’t satisfy him completely for problems he was looking at.



Multiplicative multifractal
cascades

A 7, MULTIFRACTALS | ¢
2 o~ 1/f NOISE .
p_:/ P P 2 i D » -
14 \H Selecta 2 *

WOV Volume N ’ e ‘;
" 1999 Y St
llollns llon n.. -...‘ ,.}',l

Many systems have aggregation, but not by an additive
route. Classic example is turbulence.

One indicator is a lognormal or stretched exponential
pdf



Multifractals and volatility clustering

another is correlations between the
absolute values of the time series-
or here, in |onospher|c data the
first dlfferences

ISP VEE! FAA AN

Watkins et al, in “Extreme Events and Natural Hazards”, 2012
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Will today distinguish

three things often taken
Hurst
as same

effect
* Observed growth of

range in time series:
“Hurst effect”



Theme

1/f

Hurst
effect

Will today distinguish
three things often taken
as same

* Observed growth of
range in time series:
“Hurst effect”

* Observation of a
singularity at zero in
Fourier spectra: “1/f”



Theme

Will today distinguish three
things often taken as same

* Observed growth of range

(SILRD in time series: “Hurst
effect”

1/f * Observation of a singularity

Hurst at zero in Fourier spectra:
111 f”

effect /

The long range dependence
seen in stationary 1/f case:
(S)LRD.

* Using 1/f as a diagnostic of
LRD assumes stationarity




Fact: Anomalous growth of range
Hurst, Nature, 1057

Hurst
3/“‘3;‘ 3
21 . Nalvral pémamena L o
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‘I heard about the ... Nile ... in'64, ... the variance doesn't draw like
time span as you take bigger and bigger integration intervals;

It goes like time to a certain power different from one. ... Hurst ...
was aetting results that were incomprehensible”. — Mandelbrot. ‘98



Formula: Long Range Dependence

(S)LRD

Hurst
Effect

Mandelbrot, van Ness, and
Wallis, 1965-69

First [history in Graves et al,
arXiv, 2014a] demonstration
that Hurst effect could be
explained by stationary long
range dependent process

Model, fractional Gaussian
noise [see also Kolmogorov’s
“Wiener Spiral”], had singular
spectral density at lowest
frequencies.

S'(f)~f*



1/f without (S)LRD

S/

(S)LRD

1/f

Hurst
effect

Before (S)LRD models,
Mandelbrot [1963-67]
had proposed other 1/f
models which were not
stationary LRD in same
sense as fGn.

Solved 1/f paradox by a
different route. Still
little known in the
geosciences [but see
Klemes, WRR, 1974].



Berger & Mandelbrot, 1963

Figure 1 Record of Paul's winnings in a coin-tossing game, played with a fair coin. Zero-crossings appear
strongly clustered, although the intervals between them are obviously statistically independent. In order to
appreciate fully this Figure, one must note that the unit of time used on the second and third lines equals
20 plays. Hence, the second and third lines lack detail and each of the corresponding zero-crossings is ac-
tually a cluster or a cluster of clusters. For example, the details of the clusters around time 200 can be
clearly read on line 1, which uses a unit of time equal 2. The present graph is reproduced from Fig. 1115,

Ref. 13.
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e Motivation of the fundamental postulates by the random
walk process

Tha 1 e that &1
(C") is the striking qualitative resemblance which seemed
to us to exist between the empirical records of inter-error
intervals and the sequences of returns to the origin in the
classical game of tossing a fair coin. Let us restate the
rules of that game, The two celebrated old men Peter and
Paul began to play (circa 1700 A.D.) with infinite fortunes;
whenever their coin fell on “heads,” Peter paid a cent to
Paul, and whenever it fell on “tails,” it was Paul who paid
a cent to Peter. The behavior of G(m), Peter’s gain after
m coin tosses, is well known to mathematicians and to
some professional gamblers to be totally contrary to what
is sometimes referred to as “intuition.” Examine indeed our
Fig. 1 (which is reproduced from Fig. IIL 5 of Ref. 13).
By definition, the intervals between successive roots of the
equation G(m) = 0 are given by independent random
variables; there is no question, however, that they appear
to be grouped in clusters and that there are violent fluctu-
ations in the intervals between such roots (Footnote 3).
This suggests that error clustering and the violent fluctu-
ations in the bit-error rate of telephone lines need not be
due to dependence between the inter-error intervals; both
perhaps may be described by peculiarities of the distri-
bution of independent successive inter-error intervals.




Mandelbrot 1965

L0 Ury &l Drosadell unie exisung wneory, one may recall
that, in its most general and loosest sense, a random
function is simply an object chosen at random out of any
prescribed collection of ordinary functions. This means
that if the objects in that collection are labeled by an
appropriate parameter X, a random function is simply a
function of two variables ¢t and A. The labeled eollection is
stationary if, whenever it contains a function, it also con-
tains all its temporal translates, and if it attributes the
same probability to two functions that differ by trans-
lation.

To this excessively loose description, certain measur-
ability conditions are added solely in order to make it
manageable, and in order to distract attention from ir-
relevant complications that can only present themselves
on sets of N's of measure zero.

This viewpoint cannot be made into a universal pre-
scription. Indeed, for recurrent events with E(U) = =,
the interesting cases are thus thrown into the dustbin.
In these cases, to insist upon finite-dimensional distribu-
tions, and upon the usual measurability arguments, would
have the same effect as if one insisted upon using a three-
dimensional Euclidean measure to investigate problems in
which all the probability is concentrated upon a one-
dimensional line, or upon a surface. There is, however, a
very simple way to avoid any such degenerate but mean-
ingless answer, namely, to examine only the distributions

conditioned by the assumption that one finds oneself upon
the line or surface in question.

This suggests the following broader definition of a
slochastic process and the following conditional concept of
stationarity. Assume, not only that the value of the func-
tion V{t's, t'"s) 18 known for some interval (t'y, t'y), but
that it equals one rather than zero. The sequence {T';}
will then be defined by the conditional distribution of the
various finite sets of functions V(1's, {'"4).

Bxamples: t'y = 'y = "y = ¢''; means that the position
of one of the events T, is known; ¢y < min ¢/, and ¢/ =
max ', means that at least one of the events f; is located
within the interval (t'y, t''s).

Moreover, {7} will be called conditionally stationary
if the conditioned distribution of the V remains unchanged
when a nonvanishing increment is added to all the ¢, and
t',, while V remains constrained by the condition V(t’,
t'y) = 1.

Innocuous as its definition may seem, this conditional
concept may be the key to the necessary task of describing
the structure of many empirical intermittent phenomena.
It also suggests that various difficulties are likely to arise
in applying other probabilistic and statistical arguments
that were originally suggested by chance phenomena
which are continuing rather than intermitient.



For sporadically varying g.r.f.'s, on the contrary, y[B(u)] is unbounded
and G*(0) = co. In the asymptotically self-similar case,

(9.8) G*A)~A'"P asA—0.

In interpreting empirical spectral measurements, one may be tempted
to handle G* as if it were a Wiener-Khinchin spectrum. But G*(0) = o0
would then be interpreted as meaning that there is an infinite energy in
low frequencies, which is impossible physically and therefore
“catastrophic” for the identification of G* to a Wiener-Khinchin spectrum.
To distinguish this difficulty from high frequency divergences, it is called
an “infrared catastrophe.” As introduced in the theory of sporadically
varying g.r.f,s G* is not a spectrum and its divergence is not impossible
physically and hence not catastrophic for the theory.

More reasonable definitions of the spectrum will be proposed pres-
ently. They will show that, in order for |G*A") = G*(A")| /u[B(i7)] to be a
rough estimate of the energy in the frequency band (A’, A”), one must
assume that 1/ <A’'<A” <co. In particular, thz enzgy e e bund
(1/11, ) is roughly G*(1/i1)/p[B(i)]. If G*(0) = o0, then both numerator and
denominator increase as y* — oo, but their ratio may well tend to a finite
limit. The energy will seem to flow into ever lower frequencies, but the
total expected energy will remain fixed.

Mandelbrot, Fifth Berkeley Symposium on
Probability,1965.



