
Stochastic foundations of movement ecology I:

Biological invasions are non-Markovian

reaction-transport processes
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What is a biological invasion?

1 Is one of the most important phenomena in Ecology

2 An invader is a new species (animal, plant, microorganism,...)
introduced in a new territory where it spreads and reproduce.
Invasion concludes when the new species drives the native
species to the extinction

3 It a↵ects Biodiversity and has important economical
consequences
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Well-known invasions

1

Plants: An estimated 18.6 km2 of public natural areas are
lost to invasive exotic plant species every day.

Or in our own garden
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Well-known invasions

1 Grey Squirrel invasion in Britain in 1900

2 Zebra mussel invasion in USA
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The physics behind BI

Assumption

A BI can be regarded as a Reaction-Transport process

Random Walk:

It needs to account for:

Dispersal process: Species do not di↵use but jump from one
to another point. Jump length’s are random variables

Waiting/rest phases: Jumps are interrupted by pauses of
random duration

Reproduction:

It takes place during the pauses

Obey the classical kinetics laws
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Old model

The Oldest model: Fisher’s model

Assumptions:

Animals move by di↵usion. There are no pauses, i.e., it is a
Markovian process

Reproduction obeys a logistic growth

The model obeys the Reaction-di↵usion equation:

@⇢

@t
= D

@2⇢

@x2
+ r⇢(1� ⇢)

where ⇢(x, t) is the number density of individuals.

Comment

We can sum up both rates because they are Markovian
(independent) processes
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Generalizations of the Fisher’s model

Reaction-Dispersal

Assumptions:

Animals jump according to a dispersal kernel �(x). Pause’s
duration are exponentially distributed, i.e., it is a Markovian
process

Reproduction obeys a logistic growth

The model obeys the Reaction-dispersal equation:

@⇢

@t
= �

Z 1

�1
⇢(x� z, t)�(z)dz � ⇢(x, t)

�
+ r⇢(1� ⇢)
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Long-distance dispersal

Dispersal kernels in biological invasions:

�(z) =

1

2↵
e�|z|/↵ (Laplace)

�(z) ⇠ |z|�2n�2 , 0 < n <
1

2

(Power law)

�(z) ⇠ e�(z/z0)c , c < 1 (Stretched exponential)

�(z) ⇠ e� ln2(z/z0)/↵

z
(Log-normal)
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Generalizations of the Fisher’s model

Di↵usion with memory

Assumptions:

Animals move by di↵usion but there is memory, inertia or
correlation between jumps. It is a non-Markovian process

Reproduction obeys a logistic growth

The di↵usion equation with memory, inertia or correlation between
jumps obeys the Telegrapher’s equation:

⌧
@2⇢

@t2
+

@⇢

@t
= D

@2⇢

@x2

How can it be obtained?

By combining continuity equation @⇢
@t +

@J
@x = 0 and the

Cattaneo equation for J , ⌧ @J
@t + J = �D @⇢

@x
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Di↵usion with memory

Following the derivation by Goldstein and Kac based on the
balance equations for particle moving to the right and to the
left and introducing a persistence probability.

From Continuous-Time Random Walk formalism by
considering a waiting-time PDF of the form '(t) = te�t/⌧/⌧2

and the di↵usion limit for the dispersal kernel.

More details in:

V. Méndez, S. Fedotov and W. Horsthemke, Reaction-Transport
Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities

(Springer-Verlag, Berlin, 2010)
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How to include reactions?

Some authors simply add the reaction rate term to the rhs of the
Telegrapher’s equation:

⌧
@2⇢

@t2
+

@⇢

@t
= D

@2⇢

@x2
+ r⇢(1� ⇢)

Comment

They ”forget” that di↵usion with memory is no longer a Markovian
processes. There is no macroscopic of mesoscopic derivation. It
exhibits a undesirable property: It does not reduce to the kinetic
equation in the homogeneous case: When ⇢(x, t) = ⇢(t) it follows

⌧
d2⇢

dt2
+

d⇢

dt
= r⇢(1� ⇢)
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How to include reactions?

Recently, some authors (N. Isern and J. Fort, Phys. Rev. E 80,
057103 (2009)) proposed the finite-time di↵erence equation

⇢(x, t+T )�⇢(x, t) = [⇢(x, t+T )�⇢(x, t)]m+[⇢(x, t+T )�⇢(x, t)]g

where m means migration and g growth.

Comment

The premise that the growth and dispersal processes remain
uncoupled during a finite time interval and contribute simply
additively to the total change of the density holds only if the
dispersal process is Markovian
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How to include reactions?

However, the authors do the following:

[⇢(x, t+ T )� ⇢(x, t)]m =

Z 1

�1
⇢(x� z, t)�(z)dz � ⇢(x, t)

' �2

2!

@2⇢

@x2

and Taylor-expanding up to O(T 2
)

[⇢(x, t+ T )� ⇢(x, t)]g = T

✓
@⇢

@t

◆

g

+

T 2

2!

✓
@2⇢

@t2

◆

g

Identifying
⇣
@⇢
@t

⌘

g
= r⇢(1� ⇢) and Taylor-expanding the LHS up

to O(T 2
)

⇢(x, t+ T )� ⇢(x, t) = T
@⇢

@t
+

T 2

2!

@2⇢

@t2
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How to include reactions?

they obtain

⌧
@2⇢

@t2
+

@⇢

@t
= D

@2⇢

@x2
+ F (⇢) + ⌧F 0

(⇢)F (⇢)

where F (⇢) = r⇢(1� ⇢), D = �2/2T and ⌧ = T/2.

Comment

This equation has some undesirable behaviors:
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How to include reactions?

It does not reduce to the kinetic equation in the homogeneous
case

The kinetic term has extra equilibrium states corresponding
F 0

(⇢) = 0 without physical meaning

The density ⇢ can eventually take negative values for pure
death processes

For additional undesirable properties of this equation see: V.
Méndez, D. Campos and W. Horsthemke, Phys. Rev. E 90,
042114 (2014)
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How to include reactions?

CTRW

Generalized Master Equation for the mean field density ⇢(x, t)

@⇢

@t
=

Z t

0
K(t� t0)

Z 1

�1
⇢(x� x0, t� t0)�(x0)dx0 � ⇢(x, t0)

�
dt0

where K(t) is the memory kernel defined in the Laplace space as

K(s) = s'(s)
1�'(s) and '(t) is the waiting-time PDF

Markovian CTRW: '(t) is an exponential distribution

non-Markovian CTRW: '(t) is NOT an exponential
distribution
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Reaction-CTRW

Can we add a non-linear reaction kinetic to the RHS of the
non-Markovian ME?
In general, the answer is NO!!

Consider a reaction kinetics d⇢
dt = F (⇢) where F (⇢) is a positive

non-linear function of ⇢

Define
F (⇢) = r(⇢)⇢

with
r(⇢) = r+(⇢)� r�(⇢)

where r±(⇢) are the per-capita growth and death rates.
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Reaction-CTRW

Model A: the waiting-time of the newborn individuals is the
same as that of their progenitors. After the waiting time all of
them jump to new positions. The Reaction-CTRW equation
reads

@⇢

@t
=

Z t

0
K(t� t0)

Z 1

�1
⇢(x� x0, t0)e

R t
t0 r(⇢(x�x0,v))dv

�(x0)dx0

� ⇢(x, t0)e
R t
t0 r(⇢(x,v))dv

i
dt0 + F (⇢),

Model B: the waiting-time of the newborn individual is reset
to zero. So newborns and progenitors jump independently.
The Reaction-CTRW equation reads

@⇢

@t
=

Z t

0
K(t� t0)

Z 1

�1
⇢(x� x0, t0)e�

R t
t0 r�(⇢(x�x0,v))dv

�(x0)dx0

� ⇢(x, t0)e�
R t
t0 r�(⇢(x,v))dv

i
dt0 + F (⇢),
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Z t

0
K(t� t0)

Z 1

�1
⇢(x� x0, t0)e�

R t
t0 r�(⇢(x�x0,v))dv

�(x0)dx0

� ⇢(x, t0)e�
R t
t0 r�(⇢(x,v))dv

i
dt0 + F (⇢),
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Invasion velocity

For most populations F (⇢) is logistic, i.e, F (⇢) = r⇢(1� ⇢) with r
the intrinsic growth rate and r+(⇢) = r, r�(⇢) = r⇢.

We assume the existence of a travelling wave from an initial
condition with compact support connecting the un-invaded
state (⇢ = 0) to the invaded state (⇢ = 1)

Since the invasion wave propagates into the unstable state we
can determine the invasion velocity by analyzing the motion of
the tail of ⇢(x, t).

V. Méndez Non-Markovian Reaction-Transport: Modelling BI



Invasion velocity

For most populations F (⇢) is logistic, i.e, F (⇢) = r⇢(1� ⇢) with r
the intrinsic growth rate and r+(⇢) = r, r�(⇢) = r⇢.

We assume the existence of a travelling wave from an initial
condition with compact support connecting the un-invaded
state (⇢ = 0) to the invaded state (⇢ = 1)

Since the invasion wave propagates into the unstable state we
can determine the invasion velocity by analyzing the motion of
the tail of ⇢(x, t).

V. Méndez Non-Markovian Reaction-Transport: Modelling BI



Invasion velocity

For most populations F (⇢) is logistic, i.e, F (⇢) = r⇢(1� ⇢) with r
the intrinsic growth rate and r+(⇢) = r, r�(⇢) = r⇢.

We assume the existence of a travelling wave from an initial
condition with compact support connecting the un-invaded
state (⇢ = 0) to the invaded state (⇢ = 1)

Since the invasion wave propagates into the unstable state we
can determine the invasion velocity by analyzing the motion of
the tail of ⇢(x, t).

⇢(x, t)

x

0

1

v

leading edge

t1 t2 t3 t1
t2
t3

x

V. Méndez Non-Markovian Reaction-Transport: Modelling BI



Invasion velocity

Introduce the hyperbolic scaling x ! x/✏, t ! t/✏ to analyze
the tail

Define the new field ⇢✏(x, t) ⌘ ⇢(x/✏, t/✏)
Consider the WKB ansatz ⇢✏(x, t) = exp[�G✏

(x, t)/✏]
The action function G(x, t) = lim✏!0G✏

(x, t) = 0 defines the
front position
For Model A

H � r
ˆK(H � r)

=

˜

�(p)� 1

For Model B
H � r
ˆK(H)

=

˜

�(p)� 1

with H = �@G/@t and p = @G/@x

ˆK(H) =

Z 1

0
e�HtK(t)dt, ˜

�(p) =

Z 1

0
exp�(x)dx
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Invasion velocity

The invasion velocity is finally obtained as

v = min

H,p

✓
H

p

◆

The invasion velocity depends on the dispersal kernel �(x),
the waiting-time PDF '(t) and the intrinsic growth rate r

The dispersal kernel �(x) can be obtained by fitting the
frequency histogram of jump distances from a mark-recapture
experiment

The waiting-time PDF '(t) and the intrinsic growth rate r
can be obtained from Life statistics
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Invasion velocity

Life Statistics:

Let a0 and af be the initial and final age of female’s fertility
period

Survival function : l(t) number density of newborn females
surviving to age t

Fertility function: m(t) rate of o↵spring produced by a female
at age t

Maternity function: l(t)m(t)

The intrinsic growth rate r is solution to the Euler’s equation
Z af

a0

e�rtl(t)m(t)dt = 1
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Invasion velocity

The waiting-time PDF is the time between two successive
generations

'(t) =
l(t)m(t)R af

a0
l(t)m(t)dt

'(t) cannot be an exponential distribution. It is peaked. The
invasion process is non-Markovian

For invasion in 2D

˜

�(p) = 2⇡

Z 1

0
r�(r)I0(rp)dr
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Example: Muskrat Invasion

Muskrats (Ondatra zibethica) were introduced in north
Europe in 1905

The observed invasion velocity was 11 km/yr between 1905
and 1930
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Example: Muskrat Invasion

Model A is adequate for species that take their brood with
them during the first stages of their life

From histograms of dispersal distances, fertility and survival
as function of the age we can estimate r, '(t) and �(r). The
invasion speed predicted by Model A is 8.74 km/yr.
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Conclusions

BI is a non-Markovian Reaction-Dispersal process

BI needs to be modeled with care

Some authors make use of non-physical models

The CTRW provides a good framework. There are two
possibilities

The invasion velocity of Model A is adequate to model BI
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Thank you!
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