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High-order harmonics from backscattering of delocalized electrons
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It is shown that electron backscattering can enhance high-order-harmonic generation in periodic systems with
broken translational symmetry. Paradigmatically, we derive for a finite chain of atoms the harmonic cutoff due
to electrons backscattered from the edges of the chain and demonstrate a maximum in the harmonic yield if
twice the quiver amplitude of the driven electrons equals the chain length. For an intuitive understanding of
our quantum results we develop a refined semiclassical trajectory model with finite electron-hole separation
after tunneling. We demonstrate that the same “tunnel exit” also holds for interband harmonics in conventional
periodic solid-state systems.
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Since the pioneering experiment by Ghimire et al. [1] high-
order-harmonic generation (HHG) with strong laser fields
applied to solids has been a focus of experimental and theoret-
ical research with first reviews available [2–4]. The so-called
three-step model [5] is key to understand the microscopic
electron dynamics of HHG in atoms and molecules semi-
classically in terms of classical trajectories [6]. It has been
adapted successfully for interband HHG in solids [7–9], sug-
gesting that fundamental properties of high-order harmonics
are ruled by the same basic principles from atoms to solids. On
the other hand, a solid-state environment should offer more
possibilities to influence these phenomena than an atom due
to the larger structural complexity and variability [10–14].
Indeed, under suitable conditions, a solid-state HHG spectrum
exhibits several cutoffs [10,15] due to the (band-)structured
continuum of electrons, in contrast to the single atomic
cutoff.

In an atomic context, cutoffs can be extended if the
laser-driven electron acquires a larger momentum through
backscattering from another atom or ion. This requires a large
distance of the order of the atomic quiver amplitude A0/ω0
between the backscattering and recombining ion, where A0 is
the peak vector potential and ω0 is the carrier frequency of
the laser. This can theoretically be achieved in laser-assisted
ion-atom collisions with a suitable impact parameter [16]
or for above-threshold ionization in rare-gas clusters with a
suitable size, as demonstrated recently in an experiment [17],
but not in molecules which are typically too small. Solid-like
systems, on the other hand, can easily match the spatial re-
quirements set by the quiver amplitude of conduction-band
electrons and any irregularity in their periodicity may give
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rise to backscattering. Indeed, we will analytically predict
and numerically demonstrate in the following significantly
extended HHG cutoffs through backscattering.

This Letter reveals a backscattering mechanism of delocal-
ized electrons in a solid-state context. Yet, as in the familiar
case of elastic backscattering of localized electrons from a
nucleus in atoms or molecules, this mechanism is character-
ized by a reversal of the electron momentum k → −k. To be
specific, we study backscattering for a finite chain of regularly
placed atoms, where the global potential causes backscatter-
ing of the delocalized electron wave packet near the end of
the chain with the driving laser field polarized along the chain.
This phenomenon should not be confused with backscattering
of localized electrons between two layers of a bilayer mate-
rial with laser polarization perpendicular to the layer planes
[18].

We will show that extended cutoffs through backscattering
from the edge can occur and that HHG is most efficient if
the full excursion of the excited laser-driven electron (twice
the quiver amplitude xq) matches the length of the chain,
i.e., if the number of atoms N ≈ Nq with the latter defined
by 2xq ≡ Nqd and d denoting the interatomic distance. Mo-
tivated by simple scaling arguments and the (semi)classical
trajectory picture for interband harmonics, the predicted cut-
off and maximal high-order-harmonic yield are accurately
reflected in the HHG spectra obtained from the laser-driven
current. Atomic units (a.u.) are used throughout unless stated
otherwise.

To keep the situation as simple as possible, we investi-
gate HHG from a chain of N atoms with a lattice constant
(interatomic distance) of d = 7 a.u. and four active elec-
trons per atom, as introduced before [19]. Apart from small
modifications we find the electron dynamics in a chain with
N ! 10 well described with the band structure of the periodic
system (see Supplemental Material [20].). This is consistent
with earlier work [21], in which the HHG response from a
finite chain was found to deviate from that of single atoms or
small molecules, revealing a solidlike behavior at rather small
system sizes.
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FIG. 1. HHG spectra as a function of harmonic order and system size N for wavelengths of 1600 nm (a), 2400 nm (b), and 3200 nm (c) and
for the same wavelengths but at fixed N = 16 (d), N = 24 (e), and N = 32 (f), indicated by horizontal dashed lines in panels (a)–(c). The spectra
of the periodic system are shown as shaded area for comparison. The dashed lines indicate the estimates of the first and second cutoff for
the periodic system at ω1 and ω2, specified in the text. (g) Sketch of the k-space dynamics in the periodic system, for an electron excited to
the bottom of C1 at A(t0) ≈ −A0. The maximal C1-V2 and C2-V2 band energy differences (i.e., the cutoffs ω1 and ω2) are achieved at k1 = 2A0

and k2 = 0. (h) Sketch of the k-space dynamics in the finite system, with an edge backscattering event in C1 at the vacuum level occurring at
A(ts ) = −A0. The horizontal dotted line represents the sign change of k(t ) due to backscattering. With a subsequent band-gap transition to C2,
this sketch corresponds to the maximally achievable harmonic energy in the backscattering case ω′

1 at k′
1 (see text).

For the chain of N atoms we compute the harmonic spec-
trum generated per atom:

SN (ω) ∝ N−2
∣∣∫dt Jtot(t )W (t ) exp(−iωt )

∣∣2
, (1)

where Jtot(t ) is the total current in the system and W (t ) is
a window function of the laser-pulse-envelope shape for im-
proving the signal-to-noise ratio. Details of the methods and
parameters used as well as the periodic treatment for the limit
N→∞ can be found elsewhere [22]. The finite chains are
treated with density-functional theory (DFT) on a real-space
grid much larger than the system extension Nd without us-
ing periodic boundary conditions; in this way we construct
effective (multiwell) potentials with edges self-consistently,
and also account for the escape of laser-driven electrons
from the system as in a realistic situation [19]. The laser
pulse with frequency ω0 is described in dipole approxima-
tion by a vector potential A(t ) = A0 sin2[ω0t/(2ncyc)] sin(ω0t )
for 0! t ! 2πncyc/ω0 and A(t ) = 0 otherwise. All presented
results are obtained with ncyc = 9 and A0 = 0.21, but backscat-
tering is not restricted to specific laser parameters as will
become clear.

An overview of the results is presented in Fig. 1 for the
three laser wavelengths λ = 1600, 2400, and 3200 nm. The
vertical structure in Figs. 1(a)–1(c) for large N signals that the
HHG spectra approach the periodic limit N→∞. However, in
the lower central part of Figs. 1(a)–1(c) one sees a stronger
HHG response which prevails for a certain range of systems
sizes. To see this more clearly, Figs. 1(d)–1(f) show (in dark
red lines) spectra at the system sizes N = 16, 24, and 32, where
the HHG response for midsize harmonic orders is enhanced.
These selected system sizes [marked by horizontal dashed
lines in Figs. 1(a)–1(c)] have the widest enhancement region.
The enhancement is particularly evident in comparison to the
periodic limit (gray areas). The latter is apparently reached in
the longest chains considered for each wavelength (N = 80,
120, and 160, respectively), which are presented in light blue
lines. All the spectra in Figs. 1(d)–1(f) exhibit a sharp rise

of intensity when the harmonic energy goes above the C1-V2
band gap. This indicates that the harmonics above this energy
gap are dominated by interband processes, since such a close
link between the emitted photon energy and the band energy
difference is a clear signature of interband harmonics. As we
will see below, the interband recombination picture indeed
provides a good interpretation of the spectral shape as well
as the time-frequency profile for the high-order harmonics.

The periodic spectra exhibit two clear steps correspond-
ing to the end (cutoff) of a first and second plateau marked
by dashed vertical lines. As one can see from the band
structures in Fig. 1(g), these cutoffs represent the maximally
possible recombination energies [15] with the valence band
V2(k): ω1 = C1(k1) − V2(k1) = 0.64 at k1 = 2A0 = 0.94 π/d
and ω2 = C2(k2) − V2(k2) = 1.28 at k2 = 0. The large gaps to
all other bands prevent V1 from actively participating in the
HHG processes, as discussed before [19]. An electron, excited
from the second valence band V2 at t0, preferentially enters the
first conduction band C1 at k0 ≈ 0 near the $ point (k = 0) and
subsequently moves with momentum:

k(t ) = A(t ) − A(t0) + k0. (2)

This time-dependent k-space motion always holds in the pe-
riodic limit, but can be modified by backscattering in finite
systems, as will be discussed below.

The enhanced spectra [dark red lines in Figs. 1(d)–1(f)]
exhibit a small dip at the first cutoff but the enhancement does
not extend to the second cutoff. This observation suggests that
the enhancement is not due to a more efficient mechanism
to enter C2 preserving the original k(t ). Rather, it must be a
process which changes k(t ). This can be achieved by elastic
scattering in the presence of a laser field. Indeed, as we will
see, the enhancement is due to electrons in C1, being backscat-
tered from the edge of the chain. To this end, we have to
understand how elastic scattering in real space manifests itself
in the band picture of reciprocal space.

When an electron wave packet approaches the system edge,
it can either be reflected from it (i.e., being backscattered) or
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leak out of the system (i.e., being ionized). Backscattering or
ionization will be dominant if its mean energy is lower or
higher, respectively, than the vacuum level. In the classical
three-step description, backscattering of a laser-driven local-
ized electron at a time ts is assumed to be elastic, resulting
in a sign change of the electron’s instantaneous momentum.
In a quasiperiodic system, the delocalized electron (and the
accompanying hole) suffer the analogous momentum kick
while moving on their respective band B with dispersion B(k),
i.e.,

k(t > ts) = A(t ) − 2A(ts) + A(t0) − k0. (3)

This is illustrated in Fig. 1(h) for the electron. Note that the
reversal of the momentum indicated by the horizontal dotted
line is an essential signature of elastic backscattering that is
distinct from normal intraband motions such as dynamical
Bloch oscillations [23] in which k(t ) does not jump. In gen-
eral, the band energy at backscattering must be below the
vacuum level E = 0 to avoid ionization. Therefore, the max-
imal momentum at backscattering is ks = 0.285, defined by
C1(ks) = 0. Since the electron can acquire at most a momen-
tum of 2A0 through (unperturbed) interaction with the laser
field, the maximal final momentum is k′

1 = ks+2A0−2π/d in
the first Brillouin zone (BZ) leading to the recombination en-
ergy ω′

1 = C2(k′
1) − V2(k′

1) = 1.0 which defines the first cutoff
energy extended through backscattering. Indeed, this corre-
sponds to harmonic order 35, 53, and 70 for the wavelengths
λ = 1600, 2400, and 3200 nm, respectively, where the yield
of the enhanced spectra (dark red lines) in Figs. 1(d)–1(f)
decreases.

In passing we note that, without backscattering, the elec-
tron in Fig. 1(h) would never have the chance to pass the BZ
boundary and enter C2 via a subsequent band-gap transition.
Hence, edge backscattering suggests itself as a pathway to
high-energy states in analogy to backscattered electrons from
an ion in the atomic context. There, however, backscattering
only leads to higher photoelectron energies [17,24], but not to
larger cutoffs in HHG. This is mainly due to the fact that the
electron’s wave function in the atomic context is usually spa-
tially localized on the ion (playing the role of the hole) and the
continuum electron wave packet. The lacking overlap prevents
recombination necessary for HHG between the energetic elec-
tron far away from the ion available for recombination. In
solidlike systems, on the other hand, we deal with spatially de-
localized Bloch electrons, for which overlap of electron-hole
wave functions can be more easily achieved [25]. Moreover,
delocalized electrons reflected by the edges continue to move
inside the system, allowing them to recombine with significant
wave-function overlap. Therefore, backscattering represents a
promising mechanism for increasing the energy of solid-state
harmonics.

As a next step we work out which role the spatial extension
of the chain plays for backscattering. To this end we vary in
Fig. 2 the wavelength λ while keeping the vector potential
amplitude A0 fixed. The latter ensures that the dynamics in
momentum space, and in particular the energy gain through
backscattering depending on A0 as discussed so far, remains
the same while through the variation of the wavelength the
quiver amplitude xq ∝ A0λ changes linearly, resulting in dif-
ferent scales for the spatial dynamics. Hence, locking the
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FIG. 2. The HHG spectra from Figs. 1(d)–1(f) as a function of
photon energy (a) and their integrated yield YN beyond the first cutoff
ω1 as a function of scaled system size N/Nq (b). The vertical dashed
line in panel (a) represents the edge-backscattering cutoff at ω′

1 = 1.0,
discussed in the text.

ratio of chain length versus wavelength N/λ in addition to an
identical A0 should provide similar conditions for the high-
order-harmonic generating electron dynamics and we expect
similar spectra, provided the HHG yield is shown as a function
of harmonic energy, as done in Fig. 2(a). The similarity of the
three spectra with the extended cutoff at ω′

1 = 1.0 is evident.
In Fig. 2(b) we demonstrate that this similarity implies a

universal ratio Nq/λ where the largest enhancement of the
high-order-harmonic yield for edge backscattering occurs. For
this purpose we integrate the yield in the spectral region
of enhancement, YN =

∫
ω1

dω SN (ω). That the curves level
off for large N simply reflects convergence to the periodic
limit without edge backscattering. That all three integrated
yields have a similar shape over the entire scaled range of
N illustrates the universality of the underlying strong-field
dynamics of delocalized electrons provided that momentum
and spatial dynamics are equivalent. Most interesting in the
context of backscattering is the sharp rise and maximum of YN
which occur close to N/Nq = 1 for different wavelengths with
the critical number of atoms Nq = 2xq/d , where the length
Nqd of the chain equals the full quiver excursion 2xq of the
excited electron. This can be understood by considering the
extreme cases: For 2xq ( Nd only a small fraction of excited
electron density can reach the chain edge for backscatter-
ing. The limit 2xq ) Nd implies that A(ts) and A(t0) hardly
differ and therefore the momentum gain at backscattering
%k = − 2k(ts) = 2[A(t0) − A(ts)], with the band-gap tunnel-
ing assumption k0 = 0, becomes negligible. Hence, Nd = 2xq
is the optimal length where the entire spatially distributed
excited electron density can participate in backscattering.

We note that while the momentum scale A0 is a property of
the light only this is not the case for the spatial scale xq, the
quiver amplitude, which depends also on the band structure.
With k(t ) given by Eq. (2), the position-space motion of a
Bloch electron in band B reads

%xB(t ) ≡ xB(t ) − xB(t0) =
∫ t

t0
dt ′ d

dk B(k)
∣∣
k=k(t ′ ). (4)

Within the Kane band approximation [26], an explicit ex-
pression for the quiver motion can be given which is even
analytically solvable if the electron moves with initial con-
dition A(t0) = 0 in the conduction band [20]. In this case
xq = [A0/(m∗ω0)] arctan(a)/a, with a = A0/k∗, where m∗ is
the effective mass of the electron and k∗ is the band’s momen-
tum scale [27].
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FIG. 3. HHG time-frequency profile at λ = 2400 nm for the pe-
riodic system (a) and a finite chain of N = 24 (b), respectively.
The black dots are traces obtained from our refined semiclassical
recollision trajectories with finite electron-hole separation xit after
tunneling. Consistent with the Taylor expansion (see text) we use
the same xit = −Eg/F (tm ) for all trajectories in the small interval
|t0−tm| < 0.25π/ω0 around tm = 3.5T, 4.0T, 4.5T contributing to
the traces. The white circles are traces obtained from trajectories as-
suming xit = 0 without complex initial time (see text). Panels (c) and
(d) provide representative trajectories forming the black traces in
panels (a) and (b) in real space. The horizontal dashed lines in panel
(d) indicate the locations of the edge atoms, where backscattering is
assumed to occur.

Finally, we discuss how the HHG time-frequency profile,
shown in Fig. 3, obtained by Gabor transforming the quantum
current in Eq. (1), can be mapped onto classical trajectories
from Eq. (4) for electron-hole pairs. It is a priori unclear
if the (quantum) reflection-based backscattering mechanism
can be described adequately with trajectories. Certainly, such
trajectories will require refined spatial properties. To identify
them, we first analyze the (standard) periodic system case.

To fulfill the stationary-phase condition for the tunneling
step ECV [k(ti )] ≡ C1[k(ti )] − V2[k(ti )] = 0 justifying the tra-
jectory picture in the first place [2], we propagate electron and
hole trajectories from an initial complex time ti = t0 + iτ over
an imaginary time span iτ realizing the tunneling process.
Tunneling happens most likely near the band gap Eg at the
$ point (k = 0), where each band typically has an approxi-
mately parabolic dispersion around its local extremum. With
an effective mass, we can write for small |k| the difference
in the band dispersion as ECV (k) ≈ Eg + k2/(2µ) with µ−1 ≡
d2

dk2 ECV (k)|k=0. Hereby µ is the reduced effective mass of the
electron-hole pair, which has for the system considered here
the value µ= 0.108.

Then we approximately solve ECV [k(t0+iτ )] = 0 de-
scribing tunneling with complex time and momentum. The
trajectories for interband HHG are typically created when
the laser field F (t ) = − d

dt A(t ) is near its extrema at times tm
fulfilling d

dt F (t )|t=tm = 0. This leads to a relatively small τ , for
which we make a (truncated) Taylor expansion A(t0+iτ ) ≈
A(t0) − iτF (t0) and therefore k(t0+iτ ) ≈ −iτF (t0). Hence,
τ is approximately given by τ 2 = 2µEg/F 2(t0). Denoting

the electron-hole separation by %CV (t ) ≡ xC (t ) − xV (t ), and
integrating the trajectory from t0+iτ to t0 along the imaginary-
time axis leads to a “tunnel exit”:

xit ≡ %CV (t0) − %CV (t0 + iτ )

=
∫ t0

t0+iτ dt ′ d
dk ECV [k(t ′)] ≈ −F (t0)τ 2/2µ

= −Eg/F (t0) ≈ −Eg/F (tm ), (5)

which defines the separation of electron and hole trajectories
when they start their dynamics at real time t0 ( ≈ tm ) on the
conduction and valence band, respectively.

Before tunneling at the complex time t0+iτ , electron
and hole are at the same position, i.e., %CV (t0+iτ ) = 0.
After tunneling in imaginary time, however, when the tra-
jectory starts propagating in real time at t0, the electron-hole
separation is %CV (t0) = xit , approximated in Eq. (5). Accord-
ingly, the recombination condition at time tr is %CV (tr ) =
%CV (t0 + iτ ) = %CV (t0) − xit = 0, which naturally defines
the electron-hole recollisions as harmonic emission events.
Note that in the standard solid-state trajectory model xit = 0
is assumed [2,8]. In Fig. 3(a) one sees that the trajectories
starting with xit = −Eg/F (tm ), shown in black dots, track the
HHG profile much better than the ones with xit = 0, shown in
white circles, which have been used so far.

In the case of backscattering for a finite chain, trajectories
with the same tunnel exit xit propagate until the electron-
hole separation reaches the chain length and if the energy of
the electron is below the vacuum level, namely, C1(ts) < 0,
backscattering takes place by elastic reflection of the trajec-
tories at the chain edges [horizontal dashed lines in Fig. 3(d)].
This means that for t > ts Eq. (3) holds instead of Eq. (2).
These trajectories [black dots in Fig. 3(b)] trace the quite
different HHG profile very well, while trajectories with xit = 0
(white circles) disagree with the quantum profile. We may
conclude that semiclassical trajectories that include initial
propagation in imaginary time lead to a finite electron-hole
separation xit after tunneling, which should be taken instead
of xit = 0 for condensed-matter interband harmonics in a
fully periodic system as well as for the new harmonics from
backscattering in a finite chain.

To summarize, we have established backscattering of de-
localized electrons as a mechanism to extend the cutoff for
harmonics in quasiperiodic systems with an inherent length
scale due to broken translational symmetry. For simplicity
and consistency, we have chosen to demonstrate and analyze
backscattering with finite chains of atoms solving the many-
electron dynamics based on DFT. This has allowed us to link
the quiver amplitude of the driven electron to the extension of
the system, revealing that one achieves the highest integrated
harmonic yield beyond the first cutoff of the fully periodic
system, if twice the quiver amplitude is approximately equal
to the length of the atomic chain. The band energy at the mo-
mentum where backscattering takes place must be below the
vacuum level of the system, otherwise ionization outweighs
reflection. This is a universal condition for the extended cut-
off, which takes, however, different values depending on the
band structure.

High-order harmonics due to backscattering can be de-
scribed in terms of a simple trajectory picture with elastic
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reflection from the edges of the atomic chain and a finite initial
separation xit for the electron-hole pair determined by tunnel-
ing from valence to conduction band in imaginary time. We
have shown that the same tunnel exit xit also governs interband
harmonics in a conventional periodic system, improving the
agreement of the trajectory traces with the quantum energy-
time profile of the harmonics.

Backscattering as introduced here has close analogies in
extended atomic systems. However, in the latter it leads
only to higher energies in laser-driven photoionization (often
termed “above-threshold ionization”), but not to larger high-

order-harmonic cutoffs, since the localized electrons in atomic
systems lack the ability for overlap of electron amplitudes at
large distances which is possible for the delocalized electrons
in quasiperiodic systems. Other sources of breaking the pe-
riodicity of solid-state systems, such as impurities, domain
walls, or grain boundaries, may also induce backscattering
and ensuing effects on HHG. Work in this direction is under-
way.

C.Y. acknowledges discussion with Lars Bojer Madsen in
the early stage of this work.
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1. Band-structure picture for a finite chain

Conceptually, band structures are well-defined for periodic systems. For a finite chain, a multi-well
potential with edges is self-consistently determined according to Kohn-Sham DFT, and its corre-
sponding “band structures” can be represented by the k-space distribution of the eigenstates { j(x)}
in combination with their corresponding eigenenergies {Ej} [1]. It has been demonstrated that a
sufficiently large finite system can mimic the band structures of infinite periodic limit [2]. Here we
will show that the band-structure picture is also useful for describing the behavior of short chains
such as N =16.

Eigenstates with energy Ej<0 are discretized bound states with their wavefunctions basically
confined within the chain (|x |< L/2) with length L=Nd, while eigenstates with energy Ej>0 are
in the continuum with their wavefunctions extending outside the system towards infinity in an os-
cillating manner just as in the atomic and molecular cases. Roughly speaking, the outer-region
(|x |> L/2) continuum wavefunctions lead to the free-space parabola E= k

2/2, while the inner-
region (|x |< L/2) part contains the signature of band structures determined by the multi-well po-
tential. For a better comparison with the periodic-system band structures, here we exclude the
free-space parabola by Fourier transforming only the inner-region part of eigenfunctions  j(x),

e j(k) =
R

dx w(x) j(x) exp(�ikx), (S1)

with the smooth window function

w(x) =

8
><
>:

1, |x |< L/2
cos2

�
⇡
d
(|x |� L/2)

�
, L/2 |x | L/2+d/2

0, |x |> L/2+d/2
. (S2)

For our purpose of visualizing the “band structures” of a finite chain, this treatment causes negligible
modifications to the bound-state wavefunctions and it approximately extracts the energy dispersion
within the chain.

Figure S1 shows the k-space distribution
�
| e j(k)|2

 
at the corresponding energy levels {Ej} for

a short chain of N =16. This plot includes eigenstates in V2, C1 and C2 bands, which are relevant for
the HHG processes discussed in this work. Motivated by the good agreement between the energy
dispersion shown as the main peaks of

�
| e j(k)|2

 
and the periodic-system band structures, in this

work we illustrate the backscattering dynamics in finite chains using the band-structure picture.
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Figure S1: The k-space distribution
�
| e j(k)|2

 
, nor-

malized such that the highest peak is equal to 1, at
the corresponding energy levels {Ej} for a short chain
of N =16. The periodic-system band structures are
shown in the repeated zone scheme as black lines.
The k values corresponding to the highest peaks of�
| e j(k)|2

 
agree well with the periodic-system band

structures (in the extended zone scheme).
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2. Laser-driven quiver motion in a Kane band

In the Kane model [3] the band structure is approximated up to a constant by

E(k) = Eb

∆
1+ k2/(m⇤Eb), (S3)

with Eb a characteristic band energy and m⇤ the effective mass. This model represents the real band
structure extremely well, as can be seen in Fig. S2. The group velocity in this band reads

d
dk

E(k) =
k/m⇤p

1+ k2/k⇤2
with k⇤ ⌘

p
m⇤Eb, (S4)

which shows that, particularly if k is larger than the characteristic band momentum k⇤, the free-
particle velocity k/m⇤, given by the numerator, is modified such that it saturates at a maximal value
of k⇤/m⇤. Note that k⇤ characterizes the point where the band dispersion changes from parabolic to
quasi-linear behavior.
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Figure S2: The Kane model (S3) in comparison to
the real structure of the 1st conduction band. The
model (black dotted line) perfectly matches the real
band (blue solid line) except from tiny deviations at
the Brillouin-zone boundaries. The characteristic band
momentum k⇤ is shown by the red arrow.

Assuming that k follows the oscillating vector potential A(t)=A0 sin(!t), one can calculate the
quiver position of a particle starting at x(t0) = 0 by

x(t) =
A0/!

m⇤

Z '

'0

d'0
sin'0� sin'0p

1+ a2[sin'0� sin'0]2
, (S5)

where the dimensionless a⌘A0/k⇤ is the “normalized” vector potential. The integration limits are
'0=!t0 and '=!t, respectively. Apparently the conventional (free-space) quiver motion and
thus its amplitude are modified. The modification of the amplitude A0/! are caused by both the
effective mass m⇤ and the integral over '0.

There is no simple analytical expression for the integral in (S5) for arbitrary initial phase '0.
Nevertheless, for the special case of '0=0 corresponding to a laser-field extremum, the quiver
amplitude is maximal, and the integral in (S5) leads to a simple analytical expression, namely
xq=⇠aA0/m⇤! with ⇠a⌘ arctan(a)/a. The prefactor ⇠a reduces the quiver amplitude and takes
the values ⇠0 = 1, ⇠1 = ⇡/4 and ⇠a!1 = ⇡/2a, respectively. For the chains considered in this
work, the parameters Eb=0.239 and m⇤=0.167 result for A0=0.21 in a=1.05. Due to the small
effective mass m⇤, the quiver amplitude of the conduction-band electron is much larger than the free-
electron quiver radius A0/! in the atomic case. This is only weakly compensated by the prefactor
⇠1.05=0.77 in the situation considered here.
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