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Abstract. A general formalism is presented that treats self-
consistently and simultaneously classical atomic motion and
quantum electronic excitations in dynamical processes of
atomic many-body systems (non-adiabatic quantum molecu-
lar dynamics). On the basis of time-dependent density func-
tional theory, coupled highly non-linear equations of motion
are derived for arbitrary basis sets for the time-dependent
Kohn-Sham orbitals. Possible approximations to make the
approach practical for large atomic cluster systems are dis-
cussed. As a first application of the still exact equations of
motion, non-adiabatic effects in the scattering of H++H, as
a case study, are investigated.

PACS: 31.15.Ew; 31.15.Qg; 31.70.-f; 34.10.+x; 36.40

1 Introduction

Great progress has been made in the study of atomic clus-
ters during the last decade [1, 2]. Metal clusters especially,
which show remarkable analogies to atomic nuclei [3], as
well as fullerenes have been studied extensively. Recently,
dynamical processes with and within atomic clusters have
become a very attractive field of cluster research.

In particular, it is now possible to study even cluster-
cluster collisions (CCC) [4], as well as molecule-cluster col-
lisions (MCC) [5], and atom-cluster collisions (ACC) [6–10],
experimentally. Further, so called “half collisions”, i. e. frag-
mentation of (charged and especially highly charged) clus-
ters are studied in detail in novel experiments [10–15].

In contrast to this fascinating experimental progress, the
theory and, therefore, the (microscopic) physical understand-
ing of these processes is still modest. So far, most of the the-
oretical studies have been performed with the help of molec-
ular dynamics (MD) calculations [16–24], in which the inter-
atomic forces are calculated phenomenologically by two- or
three-body interactions [16] or within tight-binding approxi-
mations [17–19]. Fully microscopic calculations – restricted
to small systems – are based on classical MD combined with
Hartree-Fock (HF) theory [20, 21], density functional theory
(DFT) [12, 22] or approximate DFT [23, 24] – applicable

also to larger systems – for the quantum electronic system.
Methods like [20–24] are hereafter referred to as adiabatic
quantum molecular dynamics, or simply as QMD.

However, in all these MD or QMD calculations the
atomic dynamics is governed by forces resulting from the
electronic ground-state configuration (adiabatic dynamics
on the Born-Oppenheimer (BO) ground-state surface). Al-
though one may obtain some microscopic insight into the
reaction mechanism, the adiabatic approximation is by no
means justified if clusters collide or dissociate. Moreover,
in ion-cluster collisions electronic charge transfer as well as
electronic excitations or ionization processes [6, 9, 10, 25]
are just the phenomena of interest. Therefore, the develop-
ment of non-adiabatic methods to include electronic transi-
tions in cluster dynamics is one of the great challenges for
theory in the coming years.

In the field of chemical reaction theory (with typical
kinetic energies of eV and below) the treatment of non-
adiabatic processes has a long tradition [26–28]. How-
ever, “surface-hopping” models [27] or combinations [29]
of “surface-hopping” and the Pechukas theory [26] are gen-
erally not suited to describe dynamical processes in clusters,
because the large number of classical degrees of freedom
prevents one from defining BO surfaces prior to consider-
ing the dynamics. Therefore any non-adiabatic approach to
clusters must be formulated without the use of BO surfaces.

In the traditional field of ion-atom scattering, where one
deals with typical kinetic energies of keV, electronic excita-
tions have been considered in time-dependent (td) mean-field
approximations [30–32]. In this case, the classical trajectory
of the ion is usually predefined (e. g. by a “straight line” or
Coulomb trajectory).

For low-energy collisions there are also attempts to treat
the classical ionic motion self-consistently with electronic
excitations by the use of time-dependent HF theory [31–34].
All these studies are restricted to few-electron problems (one
or two “active” electrons) whereas in clusters one encounters
a real many-body situation. (E. g., in a C+

60+C60 collision [4]
there are 479 “active” and correlated electrons.)

Recently, an MD approach combined with a time-depen-
dent treatment of the electronic many-body problem has been
proposed in solid state physics [35] on the basis of td DFT
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[36–38]. The td Kohn-Sham (KS) equations are solved by a
plane-wave expansion. In collisions, however, an adequate
treatment of electronic transitions requires the accurate de-
scription of the asymptotic form of the density (or wave-
function) and so, as in ion-atom scattering, local basis sets
have to be used (see discussion below).

Very recently, an interesting non-adiabatic MD approach
(based on an extended Tully-type coupling [27] and taking
into account quantum effects on the atomic motion) has been
developed and applied to the photo-excitation dynamics of
Ba(Ar)N (N = 10, 20) clusters [39].

In this paper, the basic formalism of a non-adiabatic
QMD is presented. First we discuss general equations of
motion and related problems in Sect. 2. Using td DFT, self-
consistent equations for the classical atomic motion and the
electronic dynamics are derived in Sect. 3. Possible approxi-
mations to make the approach practical for large systems are
presented. As a case study and first application of the still
exact equations, the scattering of H+H+ is considered over
a wide range of incident energies (10 eV. . . 10 keV) within
a transparent model where all matrix elements can be cal-
culated analytically (Sect. 4). It is found that non-adiabatic
effects become important above∼20 eV and below∼100 eV
bombarding energy.

2 General equations of motion

In order to formulate the general problem as well as to dis-
cuss relationships with other fields, we derive in this section
general equations of motion for a mixed system consisting
of Ni classical ions (nuclei) andNe electrons treated within
quantum mechanics. The hamilton operator for the whole
system can be divided into three parts

Ĥ = Hcoll(R,P) + Ĥ0(r̂ , p̂) + Ĥint(r̂ ,R) . (1)

Here R ≡ {R1, . . . ,RNi} and P ≡ {P1, . . . ,PNi} are the
sets of classical positions and momenta of the ions, while
r̂ ≡ {r̂ 1, . . . , r̂Ne} and p̂ ≡ {p̂1, . . . , p̂Ne

} are the position
and momentum operators of the electrons. The single terms
of the hamilton operator (1) are defined as

Hcoll =
Ni∑
A

P2
A

2MA
+

1
2

Ni∑
A

Ni∑
B

′ ZAZB
|RA − RB | (2a)

Ĥ0 =
Ne∑
a

p̂2
a

2
+

1
2

Ne∑
a

Ne∑
b

′ 1
|r̂a − r̂ b| (2b)

Ĥint =
Ne∑
a

Ni∑
A

−ZA
|r̂a − RA| ≡

Ne∑
a

V (ra,R) (2c)

whereHcoll describes the “free” dynamics of classical ions,
Ĥ0 depends only on the quantum electronic degrees of free-
dom including the electron-electron interaction andĤint is
the coupling between nuclei and electrons mediated by the
single-particle potentialV (r ,R). In Eq. (2), MA and ZA
stand for the mass and the charge of nucleusA, respec-
tively. The prime at the sum excludes the divergent terms.
Atomic units (~=e=me=1/4πε0=1) are used.

The ad hoc splitting of a hamiltonian into classical and
quantum mechanical degrees of freedom, as done e. g. in

Eq. (1), has been already suggested by Mott [41] as early
as 1931. It has been used and applied in different fields
of physics (e. g. nuclear heavy-ion collisions [42], ion-atom
scattering [43, 44], molecular processes [27], etc.). We adopt
this approximation here also from the very beginning. One
should note, however, that the hybrid description is justified
only as long as theindividual quantum transition does not
change considerably thecollectivedynamics of the system
described classically. Otherwise, a fully quantum treatment
of the whole system is necessary which is beyond the scope
of this paper (for a discussion of this point and a derivation
of Eq. (1) see e. g. [27, b]).

The time evolution of the electronic many-body state is
given by the time-dependent Schrödinger equation

i
d
dt
Ψ (r , t) =

{
Ĥ0(r̂ , p̂) + Ĥint(r̂ ,R)

}
Ψ (r , t) (3)

with d
dt = ∂

∂t + Ṙ ∂
∂R := ∂

∂t +
∑

A ṘA
∂

∂RA
. This abbreviation

for the scalar product of the ionic velocities and the gradients
of all ions will be used in the following.

The equations of motion for the classical system can be
derived from the conservation of the total energy

E = Hcoll +
〈
Ψ
∣∣Ĥ0+Ĥint

∣∣Ψ〉 = const (4)

because the total hamiltonian (1) does not depend explicitly
on time. In Eq. (4) as elsewhere in the paper, the brackets
〈. . .〉 denote integration over all electronic coordinates. The
total time derivative of energy (4) vanishes

d
dt
E =

Ni∑
A

ṖA
PA
MA

+
Ni∑
A

ṘA

(
∂

∂RA

∑
B

′ ZAZB
|RA−RB |

)

+Ṙ
〈
Ψ

∣∣∣∣ ∂∂R
Ĥint

∣∣∣∣Ψ〉
+

〈
d
dt
Ψ

∣∣∣∣ Ĥ0+Ĥint

∣∣∣∣Ψ〉 +

〈
Ψ

∣∣∣∣Ĥ0+Ĥint

∣∣∣∣ d
dt
Ψ

〉
!
= 0 (5)

which is equivalent to the equations (A = 1, . . . , Ni )

ṘA = PA/MA , (6)

ṖA = − ∂

∂RA

Ni∑
B

′ ZAZB
|RA−RB | −

〈
Ψ (t)

∣∣∣∣ ∂

∂RA
Ĥint

∣∣∣∣Ψ (t)

〉
(7)

and〈
d
dt
Ψ

∣∣∣∣ Ĥ0+Ĥint

∣∣∣∣Ψ〉 +

〈
Ψ

∣∣∣∣Ĥ0+Ĥint

∣∣∣∣ d
dt
Ψ

〉
= 0 . (8)

Equation (8) is fulfilled automatically ifΨ represents the ex-
act solution of the Schrödinger equation (3). Equations (6)
and (7), which must be solved simultaneously with Eq. (3),
have a transparent interpretation. They represent classical
Hamilton equations of motion for the ions, which move
within an explicit time-dependent potential. Thus, in contrast
to adiabatic QMD where the second term in Eq. (7) does not
depend explicitly on time, energy can be transferred from
the classical subsystem to the quantum-mechanical one and
vice versa. Equations (3), (6) and (7) are self-consistent in
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the sense that the classical motionR(t) determines the quan-
tum dynamics (3) and the quantum stateΨ (t) governs the
classical dynamics (6), (7).

The quantum force in (7) has been derived in differ-
ent ways starting from a fully quantum mechanical treat-
ment [26, 45, 46]. Firstly, Pechukas [26] has applied the
stationary-phase approximation within a path-integral for-
mulation. Kwong [45] used an eikonal approximation for
the derivation and Diestler [46] applied the narrow-wave-
packet approximation to the ions.

It is interesting to note, that the same general form of
Eqs. (6) and (7), has been derived and used also in the theory
of nuclear heavy-ion collisions [42]. In this case,Hcoll de-
scribes the classical “free” motion of two nuclei (including
the conservative part of the nuclear interaction),Ĥ0 is the
internal hamiltonian, i. e. that of the nucleons andĤint the
interaction between relative motion and intrinsic system ap-
proximated by two (static) HF-fields of the individual nuclei
moving along classical trajectories [42]. In [42], the retar-
dation effects contained in forces like (7) on the classical
motion (note that Eq. (7) is actually an integro-differential
equation and the force depends on the whole history of the
trajectory) have been studied in detail too. Owing to the
short-range nuclear interaction the asymptotic range of the
HF (single-particle) wave functions is not decisive in heavy-
ion reactions and crude model assumptions may give a re-
alistic description of nuclear collisions.

In striking contrast, in atomic collisions, and particularly
while describing charge transfer, it is important to properly
describe the exponential tails of the wave functions. A plane-
wave expansion, often used in solid state physics (e. g. [35]),
or the standard linear combination of Gaussian orbitals used
in quantum chemistry [47], are generally not suited to de-
scribe atomic collisions. (For a detailed discussion of this
important point see e.g. [32a].) On the other hand, any use of
(realistic and adequate) local basis sets complicates the force
calculations (in the static case or in adiabatic QMD simula-
tions well known as Pulay forces [48]). In the td case, the
force corrections resulting from local, finite basis sets can
be obtained from Eq. (8).

This will be shown in the following by expanding the
many-body wave function

Ψ (r , t) =
∑
α

Ψα(r ; R) aα(t) (9)

where {Ψα} is a many-particle basisparametrically de-
pending on the ionic positionsR. Although the basis is
not specified, one can assume without loss of generality
〈Ψα|Ψβ〉 = δαβ to simplify the following equations. With
this ansatz, the Schrödinger equation (3) can be rewritten in
terms of coupled-channel equations for the expansion coef-
ficientsaα(t)

ȧα(t) = −i
∑
β

{〈
Ψα
∣∣Ĥel

∣∣Ψβ〉
+Ṙ
〈
Ψα

∣∣∣∣ ∂∂R
Ψβ

〉}
aβ(t)

(10)

where the abbreviationĤel := Ĥ0 + Ĥint is used. These
coupled equations describe electronic transitions by non-

diagonal matrix elements
〈
Ψα
∣∣Ĥel

∣∣Ψβ〉 and by the velo-
city-dependent terṁR

〈
Ψα
∣∣ ∂
∂RΨβ

〉
.

With Eq. (10), the expression on the l. h. s. of (8) reads

i
∑
αβγ

a∗α
〈
Ψα
∣∣Ĥel

∣∣Ψβ〉 〈Ψβ ∣∣Ĥel

∣∣Ψγ〉 aγ
−i
∑
γαβ

a∗γ
〈
Ψγ
∣∣Ĥel

∣∣Ψα〉 〈Ψα ∣∣Ĥel

∣∣Ψβ〉 aβ
−Ṙ

{∑
αβγ

a∗α
〈
∂
∂RΨα

∣∣Ψβ〉 〈Ψβ ∣∣Ĥel

∣∣Ψγ〉 aγ
−∑

αγ
a∗α
〈

∂
∂RΨα

∣∣ Ĥel

∣∣Ψγ〉 aγ
+
∑
γαβ

a∗γ
〈
Ψγ
∣∣Ĥel

∣∣Ψα〉 〈Ψα ∣∣ ∂∂RΨβ
〉
aβ

−∑
γα
a∗γ
〈
Ψγ
∣∣Ĥel

∣∣ ∂
∂RΨβ

〉
aβ

}
and does not vanishes in general. Whereas the first two
terms cancel each other in any basis, the term{. . .} van-
ishes only if the basis does not depend parametrically onR,
i.e. ∂

∂RΨα ≡ 0, or if the basis is complete, i.e.
∑

α Ψα(r ; R)
Ψα(r ′; R) = δ(r − r ′) for any R. In practical calculations the
second condition cannot be realized, and so the term{. . .}
proportional to velocity gives rise to additional corrections
to the force (7). Analogous corrections have to be taken into
account if the electronic system is treated within td density
functional theory (next section).

3 Molecular dynamics combined
with time-dependent density functional theory

3.1 General

The basic theorem of Runge and Gross [36] states that the
many-body stateΨ (r 1, . . . , rNe, t) and thus any observable
of the system are uniquely defined by the td single-particle
density%(r , t). (From now on,r denotes the single-particle
coordinate.) As in the ground-state DFT, one can introduce
in the td case a non-interacting reference system with the
same density as the interacting system

%(r , t) =
Ne∑
j

∣∣ψj(r , t)∣∣2 (11)

with td single-particle functionsψj(r , t) determined by an
effective potentialVeff still to be defined. The time evolution
of the system is determined by the action

A[ψj ] =

t1∫
t0

dt′


Ne∑
j

〈
ψj
∣∣∣∣i d

dt′
− t̂

∣∣∣∣ψj〉
−
∫

d
3
r %(r , t′)

[
V (r ,R)

+
1
2

∫
d

3
r′
%(r ′, t′)
|r−r ′|

]−Axc[%]

(12)
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with t̂ the kinetic energy operator. The last termAxc ac-
counts, in principle, forall exchange and correlation effects
of the interacting electrons. The solutions of the td Kohn-
Sham equations [36, 38]

i
d
dt
ψj(r , t) =

{
t̂ + Veff(r , t)

}
ψj(r , t) (13)

with the effective potential

Veff(r , t) = V (r ,R) +
∫

d
3
r′
%(r ′, t)
|r−r ′| + Vxc[%](r , t) (14)

and

Vxc[%](r , t) =
δAxc[%]
δ%(r , t)

(15)

make the action (12) stationary. The exchange-correlation
potentialVxc must be derived from an approximatedAxc be-
cause an exact form is not available. In the following, the
simplest approximation for the exchange-correlation part, the
so called adiabatic (or time-dependent) local-density approx-
imation (LDA) [38]

Axc[%] =
∫ t1

t0

dt′
∫

d
3
r %(r , t′)εxc[%](r , t′) (16)

is used. Obviously, the ansatz (16) should be a good ap-
proximation for slow time-dependent processes. This can be
expected to be realized for any situations where the time-
dependence of the electronic density is governed only by the
slow atomic motion. In addition, Eq. (16) guarantees that the
non-adiabatic QMD formalism includes and describes auto-
matically adiabatic situations (see below).

As Axc is local in spaceand time one has an explicit
expression forVxc = εxc +% δεxc

/
δ%. Thus one can obtain the

electronic energy as

Eel[ψ
j ](t) =

Ne∑
j

〈
ψj
∣∣ t̂ ∣∣ψj〉 +

∫
d

3
r %(r , t)

[
V (r ,R)

+
1
2

∫
d

3
r′
%(r ′, t)
|r−r ′| + εxc[%](r , t)

]
. (17)

This energy depends on time and corresponds to the expec-
tation value with the many-body wave function in Eq. (4).
The total time derivative of this energy is

d
dt
Eel[ψ

j ](t) = Ṙ
∫

d
3
r %(r , t)

∂

∂R
V (r ,R)

+
Ne∑
j

{∫
d

3
r′

dψ∗j(r ′, t)
dt

δEel[ψj ]

δψ∗j(r ′, t)

+
∫

d
3
r′

dψj(r ′, t)
dt

δEel[ψj ]
δψj(r ′, t)

}

= Ṙ
∫

d
3
r %(r , t)

∂

∂R
V (r ,R)

+
Ne∑
j

{〈
dψj

dt

∣∣∣∣ t̂ + Veff

∣∣∣∣ψj〉

+

〈
ψj
∣∣∣∣t̂ + Veff

∣∣∣∣dψjdt

〉}
. (18)

The first term leads to the force for ionA

−
∫

d
3
r %(r , t)

∂

∂RA
V (r ,R)

which is equivalent to the explicit time-dependent force of
Eq. (7). This can easily be seen if one integrates (7) over all
but one electronic variables. The last term in Eq. (18) has to
be discussed in detail if the td single-particle functionsψj

are represented in a basis.

3.2 Basis representation and equations of motion

Assume now that the td single-particle functions are ex-
panded within anarbitrary single-particle basis{φα}
ψj(r , t) =

∑
α

φα(r ; R)ajα(t) (19)

which depends parametrically onR. Then the td Kohn-Sham
equations (13) read (j = 1, . . . , Ne)

ȧjα(t) = −
∑
βγ

(
S−1

)
αβ

{
iHβγ +

Ni∑
A

ṘARA
βγ

}
ajγ(t)

(20)

with the following definition of matrices

Sαβ := 〈φα |φβ 〉 (21a)

Hαβ :=
〈
φα
∣∣t̂ + Veff

∣∣φβ〉 (21b)

RA
αβ :=

〈
φα

∣∣∣∣ ∂∂RA
φβ

〉
. (21c)

Using Eq. (20) one can expressd
dtψ

j explicitly and the time
derivative of the total energyE = Hcoll +Eel becomes

d
dt
E =

Ni∑
A

ṖA
PA
MA

+ ṘA

(
∂

∂RA

Ni∑
B

′ ZAZB
|RA−RB |

)

+ ṘA

∫
d

3
r %(r , t)

∂

∂RA
V (r ,R) (22)

− ṘA

Ne∑
j

∑
αβγδ

a∗jαHαβ

(
S−1

)
βγ

RA
γδa

j
δ

+
∑
αβγδ

a∗jα
(
RT)A

αβ

(
S−1

)
βγ
Hγδa

j
δ

−
∑
αβ

a∗jα

〈
φα

∣∣∣∣t̂ + Veff

∣∣∣∣ ∂∂RA
φβ

〉
ajβ

−
∑
αβ

a∗jα

〈
∂

∂RA
φα

∣∣∣∣ t̂ + Veff

∣∣∣∣φβ〉 ajβ
 .

In the transposed matrix
(
RT)A

αβ
the derivation with re-

spect toRA acts to the left. It is obvious that the term
[. . .] in (22) vanish only if the underlying basis is com-
plete, i. e. if

∑
βγ φβ(r ; R)(S−1)βγφγ(r ′; R) = δ(r−r ′), or

the basis does not depend onR. Rearranging some terms
one can deduce from Eq. (22) the following equations of
motion (A = 1, . . . , Ni )
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ṘA = PA/MA (23a)

ṖA = − ∂

∂RA

Ni∑
B

′ ZAZB
|RA−RB | (23b)

−
Ne∑
j

∑
αβ

a∗jα

(
∂

∂RA
Hαβ

)
ajβ

−
∑
αβ

a∗jα

〈
φα

∣∣∣∣ ∂∂RA
(Veff−V )

∣∣∣∣φβ〉 ajβ
−
∑
αβγδ

[
a∗jαHαβ

(
S−1

)
βγ

RA
γδa

j
δ

+a∗jα
(
RT)A

αβ

(
S−1

)
βγ
Hγδa

j
δ

] .

The td Kohn-Sham equations (20) and the Hamilton equa-
tions (23) represent the basic equations of motion of the
non-adiabatic QMD. They areexactin the sense of the time-
dependent LDA (16) and they are valid forany basis. They
describe self-consistently and simultaneously thedynamics
of Ni classical ions andNe quantum electrons including their
excitations. For completeness we show in the appendix that
the non-adiabatic Eqs. (20), (23) reduce to (or include) the
corresponding equations of motion of an adiabatic QMD for
situations where electronic excitations do not occur.

An exact numerical solution of the highly non-linear
Eq. (20) and the Eq. (23) with local basis sets is rather dif-
ficult to obtain (if not impossible at all for realistic cluster
dynamics). These equations still contain all electrons includ-
ing the “non-active” core electrons. In the next section we
propose and derive successive approximations for the solu-
tion of the coupled Eqs. (20) and (23).

3.3 Approximate equations of motion

For the following discussion it is convenient to start with an
LCAO (linear combination of atomic orbitals) representation
of the td Kohn-Sham orbitals (j = 1, . . . , Nval)

ψj(r , t) =
∑
α

φα(r−RAα ) ajα(t) . (24)

HereAα stands for the atom on which the atomic orbitalφα
is centered. We treat at the very beginning valence electrons
Nval only. Then the collective part of the total energyE =
Hcoll +Eel becomes

Hcoll =
Ni∑
A

P2
A

2MA
+

1
2

Ni∑
A

Ni∑
B

′ Z0
AZ

0
B

|RA − RB | (25)

with Z0
A the valence charge of the ionA. The electronic

part Eel is obtained from (17) by rearranging some terms
using (21b) with (14) and the density

%(r ,R, t) =
∑Nval

j

∑
αβ a

∗j
α φαφβ a

j
β

from (24) as

Eel
(
R, ajα(t)

)
=

Nval∑
j

∑
αβ

a∗jα(t)Hαβ a
j
β(t) (26)

−1
2

∫
d

3
r

∫
d

3
r′
%(r ,R, t)%(r ′,R, t)

|r − r ′|
+
∫

d
3
r %(r ,R, t)

(
εxc[%] − Vxc[%]

)
where the external potentialV (r ,R) in (14) has now to be
understood as the sum of atomic pseudopotentialsV (r ,R) =∑Ni

A Vps(r−RA). The energy (26) is still considered on the
ab-initio level. It is the aim of the following considerations
to simplify these expressions and then to derive appropriate
approximate coupled equations of motion.

To do this we divide the density% into two parts

%(r ,R(t), t) = %0(r ,R(t)) +∆%(r ,R(t), t) (27)

where%0(r ,R(t)) depends smoothly on time via the coordi-
natesR(t) and∆%(r ,R(t), t) contains the explicit time de-
pendence of the density. Independent on the total charge of
the actual system under consideration we define%0(r ,R) as
the adiabatic density of the neutral reference system. This
definition allows to treat charge and polarization effects with
the help of∆% explicitly, including that in neutral systems
(see below). One may now simplify the Coulomb- as well as
the exchange-correlation integrals contained in (26) leading
to an approximate expression of the total energy which will
have a transparent interpretation.

The ansatz (27) splits the two Coulomb terms in (26) into
three terms of the structure%0 %0, (%0+∆%) %0, and∆%∆%.
Whereas the first two (and large) terms are taken into account
exactly, the last one (in general a small correction) is treated
in point charge approximation, i. e. with

∆%(r ,R, t) := −
Ni∑
A

QA(R, t) δ(r−RA) (28)

whereQA(R, t) is the net charge located on the centreA.
Consistent with the definition of%0(r ,R) the point charges
QA can be obtained with help of the Löwdin population
analysis [47]

QA(R, t) = Z0
A −

Nval∑
j

∑
αβ

a∗jα(t)SAαβ(R) ajβ(t) (29)

where the symmetric matrixSAαβ is defined with the square
root of the overlap matrix (21a) as

SAαβ(R) :=
∑
γA

(
S1/2

)
αγA

(
S1/2

)
γAβ

. (30)

In Eq. (30) the sum has to be taken over all atomic orbitals
belonging to the centreA.

Any practical application of (or approximation to) DFT
is connected with an approximate treatment of the exchange-
correlation effects. As a first approximation of a non-adia-
batic QMD (and enlighting arguments given below) we re-
place the td density%(r ,R, t) in the last term of Eq. (26) as
well as in the exchange-correlation potentialVxc, contained
in Hαβ , by the adiabatic density%0(r ,R). Together with (28)
this leads after some algebra to an approximate total energy
of the form
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E =
Ni∑
A

P2
A

2MA
+U (R) +Ecoul

(
R, ajα(t)

)
+
Nval∑
j

∑
αβ

a∗jα(t)H0
αβ a

j
β(t)

(31)

with the conservative potential

U (R) =
1
2

Ni∑
A

Ni∑
B

′ Z0
AZ

0
B

|RA−RB |

−1
2

∫
d

3
r

∫
d

3
r′
%0(r ,R)%0(r ′,R)

|r − r ′|

−
∫

d
3
r
[
%0(r ,R, t)

]2 δεxc[%0]
δ%0(r ,R)

,

(32)

and the Coulomb correction

Ecoul
(
R, ajα(t)

)
=

1
2

Ni∑
A

Ni∑
B

′QA(R, t)QB(R, t)
|RA − RB | . (33)

The last term in Eq. (31) still contains the full density but is
obtained now with the Hamilton matrix

H0
αβ =

〈
φα
∣∣t̂ + V 0

eff

∣∣φ〉 (34)

which does not depend explicitly on time due to the effective
potential

V 0
eff(r ,R) = V (r ,R) +

∫
d

3
r′
%0(r ′,R)
|r − r ′| + Vxc[%0](r ,R) .

(35)

The sense of the upper made approximations becomes now
apparent. In the adiabatic limit (automatically contained in
the present formalism) the approximate energy (31) has for-
mally the same structure as that used in the tight-binding
approximation [49]. Here, however, one has explicit time-
dependent coefficientsajα(t). In addition, and in striking con-
trast to the tight-binding method, the matrix elementsH0

αβ
and the potentialU (R) (in general short range and repul-
sive, see the structure of (32)) do not contain any free pa-
rameter. Owing to the inclusion of the Coulomb termEcoul
in (31), charged systems (still a delicate problem in the tight-
binding method) can be treated self-consistently as well (see
below). In any case, the approximate energy (31) provides
a direct link between the (in principle exact) MD combined
with DFT and molecular dynamics combined with the tight-
binding theory. This is especially so because the lower given
equations of motion (37), (38) remain valid (and therefore
are consistent with (31))independentof the assumptions or
approximations made in calculating the matrix elementsH0

αβ
and the potentialU (R).

It is worth to note that (31) is still the exact energy for
neutral systems in the adiabatic limit.

Two longer calculations lead to the final equations of
motion. First, the variation of the action

A
[
ajα
]

=

t1∫
t0

dt′


Nval∑
j

∑
αβ

a∗jα(t′)
〈
φα

∣∣∣∣ i d
dt′

∣∣∣∣φβ〉 ajβ(t′)

− E
(
R, ajα(t′)

) (36)

with respect toa∗jα, i. e.δA/δa∗jα(t)
!
= 0, provides the Kohn-

Sham equations (j = 1, . . . , Nval)

ȧjα(t) = −
∑
βγ

(
S−1

)
αβ

{
iHβγ +

Ni∑
A

ṘARA
βγ

}
ajγ(t) .

(37)

Second, the time derivative of the total energy, i.e. dE/dt
!
=

0, results in the Newton equations

MAR̈A = − ∂

∂RA

[
U (R) +Ecoul

(
R, ajα(t)

) ]
(38)

−
Nval∑
j

∑
αβ

a∗jα

(
∂

∂RA
H0
αβ

)
ajβ

−
∑
αβγδ

[
a∗jαHαβ

(
S−1

)
βγ

RA
γδa

j
δ

+a∗jα
(
RT)A

αβ

(
S−1

)
βγ
Hγδa

j
δ

]}
.

In Eqs. (37) and (38) we have introduced the abbreviation

Hαβ := H0
αβ −

Ni∑
B

ΦB(R, t)SBαβ (39)

with the potential

ΦB(R, t) :=
Ni∑
C

′ QC(R, t)
|RB−RC | . (40)

Owing to the QA dependence ofHαβ the Kohn-Sham
equations (37) are still non-linear. However, in neutral (or
slightly charged) systems with delocalized electronic states
and therefore negligible charge localization effects (like
metal clusters or fullerenes) one may linearize (and therefore
extremly simplify the numerical solution of) the Kohn-Sham
equations (37) because the assumptionQA ≡ 0 and hence
Hαβ ≡ H0

αβ is expected to be a good approximation. This,
however, must be checked carefully. For charged (and espe-
cially highly charged) systems one is confronted in any case
with the non-linear Kohn-Sham problem (37).

A numerical implementation of the equations of mo-
tion (37), (38) and first non-adiabatic studies of cluster frag-
mentation and collisions with clusters will be presented else-
where [40].

In the next section we study non-adiabatic effects for a
model system using the exact Eqs. (20), (23).

4 Case study: one-particle model

In order to obtain a first insight into the non-adiabatic inter-
play between classical motion and electronic excitations, we
study here the simplest case – the collision of a proton with
a hydrogen atom H++H. To make the approach as transpar-
ent as possible only central collisions are considered and a
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minimal basis set that allows for non-adiabatic transitions is
used.

The (trivial) case of a one-electron system can be treated
with the exact equations of motion (20), (23) by omitting the
Hartree and exchange-correlation terms in the “effective”
potential (14). In that case the single-particle “Kohn-Sham
orbital” (19) corresponds to the one-particle wavefunction
ψ(r , t). Assuming the nuclei to be located on thez–axis at
the relative distanceR, one has

Veff(r , t) ≡ V (r , R) =
−1

|r + ezR/2| +
−1

|r − ezR/2| . (41)

Instead of an LCAO-ansatz (24) we use here the molecular
or adiabatic basis{ψn(r , R)} for the representation ofψ(r , t)
with the ansatz

ψ(r , t) =
4∑
n=1

ψn(r , R) e−i
∫ t

dt′εn(R) an(t) . (42)

The basis functionsψn(r , R) as well as the energy levels
εn(R) are obtained from the solution of (A10) using in-
tentionally the smallest possible (symmetric) set of atomic
hydrogen orbitsφα in (A9) that may lead to excitations,
i. e., the 1s- and 2s-functions centered on both nuclei. The
coefficientsa1 and a3 belong to the gerade states whereas
a2 and a4 are the coefficients of the ungerade states. This
choice provides a very transparent correlation diagram with
one avoided crossing between the two ungerade statesn = 2
andn = 4 at a distance of aboutR0 ≈ 0.65 a.u. (see Fig. 1).
Therefore electronic excitations are expected to be important
at centre-of-mass incident energiesEcm larger than about
Ecm

>∼ 1/R0 + 1
2 (ε1(R0)−ε1(∞) + ε2(R0)−ε2(∞)) ≈ 32 eV

which corresponds to the BO energy atR = R0 of the model
system with half-filled statesε1 andε2 (see below). The real
crossing between the gerade (n = 3) and ungerade state
(n = 2) does not contribute to excitations owing to the dif-
ferent symmetry.

With the adiabatic basis (42) the matrices (21) simplify
to

Snm = δnm (43a)

Hnm = εnδnm (43b)

Rnm =

〈
ψn

∣∣∣∣ ∂∂Rψm
〉

= − (RT
)
nm

(43c)

and the equations of motion (20), (23) become

ȧn = −Ṙ
∑
m

Rnme−i
∫

dt′(εm−εn) am (44)

µR̈ = 1/R2 −
∑
n

a∗n

(
∂

∂R
εn

)
an

+
∑
nm

a∗n(εn − εm)Rnmame−i
∫

dt′(εm−εn) .

(45)

with µ = 918 a.u. the reduced mass of the system. They are
solved with the initial conditionsa1

2(t0) = a2
2(t0) = 1/2

anda3
2(t0) = a4

2(t0) = 0, which ensure that the electron is
initially located at one proton in its ground state.

The results following from the self-consistent solution
of (44) and (45) are compared with those of two other ex-
treme cases:

0 2 4 6
R [a.u.]

−50

−30

−10

10

ε n
 [e

V
]

n=4

3

2

1

Fig. 1. Correlation diagram of the model system H++H. The adiabatic
single-particle energiesεn (n = 1, . . . , 4) are plotted as a function of the
distance between the nucleiR. The molecular states with an ungerade (ger-
ade) symmetry are drawn by dotted (solid) lines. Note the avoided crossing
at R0 ≈ 0.65 a.u. between the ungerade states

i) Equation (45) is solved with fixed coefficients

ȧn ≡ 0, an(t) ≡ an(t0) . (46)

This provides a classical trajectoryR(t) on the BO
ground-state surface, i. e., that of an adiabatic QMD. The
comparison with the self-consistent trajectory allows us
then to study the influence of the non-adiabatic effects
on the classical motion.

ii) Equation (44) is solved with a classical Coulomb trajec-
tory

µR̈ = 1/R2 . (47)

This corresponds to the classical-trajectory approxima-
tion (or “impact-parameter method”) of the ion-atom
scattering theory [44]. The comparison of the elec-
tronic excitation energies calculated self-consistently and
within the approximation (47) reveals the importance of
the self-consistent coupling between the trajectory and
the dynamics of the quantum system.

In Fig. 2, the classical trajectoriesR(t) and the correspond-
ing kinetic energies of the relative motionEkin = µ

2 Ṙ
2 are

plotted as a function of time for all three cases (non-adiabatic
QMD, adiabatic QMD, and Coulomb trajectory). The chosen
bombarding energy isEcm = 45 eV. The classical trajecto-
riesR(t) are very similiar in all three types of calculation.
The Coulomb trajectory, however, has a somewhat smaller
stiffness and, more importantly, a slightly larger distance of
closest approach (located att = 0 in Fig. 3) as compared to
the two QMD trajectories. It is just this effect which may
induce large differences in the calculated electronic excita-
tion energies if different trajectories are used to follow the
quantum system by Eq. (44) (see discussion for Fig. 4).

The different classical dynamics for the three cases con-
sidered becomes more apparent in the behavior of the ki-
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Fig. 2. Computed relative distance between the ionsR(t) and the corre-
sponding kinetic energy of the relative motionEkin = µ

2 Ṙ
2 as a function

of time for three different calculations: non-adiabatic QMD (solid line),
adiabatic QMD (dotted), and Coulomb trajectory (dashed). In all cases the
bombarding energy isEcm = 45 eV and the impact parameter isb=0

netic energiesEkin(t). While the classical motion in the adi-
abatic QMD and for the Coulomb scattering is strongly con-
servative (manifested by completely symmetric curves with
respect to the point of closest approach) the non-adiabatic
QMD leads to a mean energy loss of about∆Ekin/Ecm ≈
10% (lower part of Fig. 2). This energy is stored into elec-
tronic excitations.

A more detailed insight into the classical dynamics can
be obtained from the calculated forces (Fig. 3). In the upper
part of Fig. 3 the forces originating only from the electron-
ion coupling Fion−el, i. e. that without the Coulomb term
1/R2 in Eq. (45), for the two QMD cases are presented while
in the lower part the total forces (45) are plotted as a function
of time for all three cases. Because of the simplicity of the
chosen model system, all details of the different behavior of
the forces can be physically understood in connection with
with the correlation diagram of Fig. 1 and the trajectories of
Fig. 2.

Note first that initially the statesn = 1, 2 are filled with
one-half probability. In the adiabatic QMD this occupation
remains unchanged for all times and the system moves on
the BO surface 1/R + 1

2

(
ε1(R)−ε1(∞) +ε2(R)−ε2(∞)

)
of

the model system. In the non-adiabatic QMD remarkable
changes in the occupation can be expected where the system
passes through the avoided crossing atR0 = 0.65 a.u. During
the approach phase the forcesFion−el of the adiabatic and
non-adiabatic QMD are identical and attractive. This results
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Fig. 3. Calculated forces mediated by the ion-electron couplingFion−el(t),
i. e. that without the 1/R2 term in Eq. (45) (upper part), and total forces
Ftot (lower part) for the same trajectories as shown in Fig. 2:solid lines:
non-adiabatic QMD,dotted lines:adiabatic QMD,dashed line:Coulomb
trajectory

from the larger decrease ofε1 as compared to the repul-
sive ε2–state (Fig. 1). As the systems approach closer, the
repulsive component resulting fromε2 dominates leading to
repulsive forces in both cases. The forces begin to differ in
the region around the classical turning point. The adiabatic
one (which must be completely symmetric with respect to
t = 0) becomes attractive (and again repulsive) aroundt ≈ 0
because of the decreasing slope ofε2 aroundR0. The non-
adiabatic force continue to act repulsively, which is clearly
due to the electronic transitions fromn = 2 to n = 4 around
this point (note the repulsive behaviour ofε4 in Fig. 1). On
the way “back” it becomes attractive again, with typical os-
cillations resulting from the energy differences between the
ε2 and ε4 states and mediated by the last term in Eq. (45).
These oscillations are damped out owing to the vanishing
coupling matrixRmn (for increasingR) contained in this
term.

Although there is a large difference in the time behav-
ior of the ion-electron forcesFion−el in the two QMD cases,
the total forces are strongly dominated by the Coulomb term
1/R2 in Eq. (45). This can be seen in the lower part of Fig. 3
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Fig. 4. Calculated mean electronic excitation energiesE? as function of the
bombarding energyEcm for the model system H++H (b=0). Thesolid line
corresponds to the self-consistent non-adiabatic QMD calculation, whereas
the dashed lineis obtained with a Coulomb trajectory

where for all three types of calculation the total forcesFtot
are drawn as a function of time. Whereas the two QMD
forces are practically equal, the pure Coulomb force is some-
what less repulsive aroundt = 0 and therefore leads to a
slightly different trajectory (cf. discussion for Fig. 2). The
quantum system, however, reacts very sensitively to fine dif-
ferences in the classical trajectories.

This is demonstrated in Fig. 4 where the calculated elec-
tronic excitation energiesE? as a function of the bom-
barding energyEcm are plotted for a self-consistent non-
adiabatic calculation and for the solution of (44) with a pure
Coulomb trajectory (47). Obviously, in the region between
Ecm ≈ 20. . . 100 eV there are large differences in the cal-
culated valuesE? for both cases demonstrating the impor-
tance of a self-consistent trajectory for the dynamics of the
quantum system. For energiesEcm

>∼ 100 eV the trajecto-
ries are dominated by the Coulomb repulsion only and (as
expected) the results coincidence. Finally, we remark that
the double-humped behavior ofE? as a function ofEcm is
due to the interference between both electronic transitions
during the approach and the recoil phases of the relative
motion. Owing to the simplicity of our model, with only
one avoided crossing, this can be understood qualitatively
within the Landau-Zener-Stückelberg theory [44] too.

5 Summary and outlook

The basic formalism of a non-adiabatic QMD is presented.
Based on td DFT, exact equations of motion are derived
which describe self-consistently and simultaneously classical
atomic motion and quantum electronicdynamics. They are
valid for any basis for the representation of the td Kohn-
Sham orbitals.

In the framework of an LCAO ansatz approximate equa-
tions of motion are derived. In the adiabatic limit they lead
to well known tight-binding-like equations, but are basically
different from the tight-binding theory because the micro-
scopic part of these equations is still based on the ab-initio
level and does not contain free parameters or parameter-
ized matrix elements. In addition, the consistent treatment
of charged systems causes no problems.

As a case study, non-adiabatic effects are studied in col-
lisions between a proton and a hydrogen atom using (in that
case) an adiabatic minimal basis which makes the equations
of motion simple and the interpretation of the results trans-
parent. For the chosen model system, non-adiabatic effects
are found to be important in the bombarding energy range
between about 20 eV and 100 eV. As a possible outlook for
future studies in this field, the non-adiabatic QMD can be a
good candidate to study ion-atom collisions for real many-
electron systems (e. g., C++C with 7 active and correlated
electrons [51]) where the present status of ion-atom scatter-
ing theory fails [44, 52].

As the main field of applications of the non-adiabatic
QMD formalism, however, we intend to investigate dynam-
ical processes with atomic clusters, namely, fragmentation
of (highly charged) clusters as well as collisions of ions
(atoms) with clusters (cluster-ions) and cluster-cluster colli-
sions [40, 51].

We thank S. Blundell for a careful reading of the manuscript and help-
ful remarks. This work was supported by the DFG through the SFB 276
(Freiburg), the Schwerpunkt “Zeitabhängige Pḧanomene und Methoden in
Quantensystemen der Physik und Chemie” and the EU through the HCM
Networks “Formation and Stability and Photophysics of Fullerenes” and
“Collision Induced Cluster Dynamics”.

Appendix

The coupled Eqs. (20) and (23) of the non-adiabatic QMD
should contain as limit the adiabatic QMD if electronic tran-
sitions are unlikely or unimportant. To demonstrate this, we
first derive the corresponding coupled equations for anadi-
abatic QMD combined with static DFT using local basis
sets for the KS orbitalsψn(r ; R). The indexn numerates the
static single-particle levels.

The starting point is the density%(r ) which can be rep-
resented in the formulation of Kohn-Sham [50] by

%(r ) =
Ne∑
n

|ψn(r ; R)|2 . (A1)

The total energy of the system including the classical part is
given by

E = Hcoll +Eel[ψn](R) (A2)

with Hcoll according to (2a) and the electronic part

Eel[ψn](R) =
occ∑
n

〈
ψn
∣∣ t̂ ∣∣ψn〉 +

∫
d

3
r %(r )

[
V (r ,R)

+
1
2

∫
d

3
r′

%(r ′)
|r − r ′|

]
+Exc[%] (A3)
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which determines the Born-Oppenheimer surface of the elec-
tronic ground state. Minimization of the functional (A3) with
respect toψ∗n(r ; R) leads to the Kohn-Sham equations{
t̂ + Veff(r ,R)

}
ψn(r ; R) = εn(R)ψn(r ; R) (A4)

with the effective potential

Veff(r ,R) = V (r ,R) +
∫

d
3
r′

%(r ′)
|r − r ′| + Vxc[%](r ) (A5)

including the exchange-correlation part

Vxc[%](r ) =
δExc[%]
δ%(r )

. (A6)

In the adiabatic theory the forces acting on the ions can be
derived straightforwardly by differentiation of (A2) with (A3)
with respect toRA leading to the equations of motion
(A = 1, . . . , Ni)

MAR̈A = − ∂

∂RA

∑
B

′ ZAZB
|RA−RB |

−
∫

d
3
r %(r )

∂

∂RA
V (r ,R) + FA

(A7)

where the second term is the usual Hellman-Feynman force
and the third term is formally given by

FA = −
∑
n

{∫
d

3
r′
∂ψ∗n(r ′; R)
∂RA

δEel[ψn]
δψ∗n(r ′; R)

+
∫

d
3
r′
∂ψn(r ′; R)
∂RA

δEel[ψn]
δψn(r ′; R)

}

= −
∑
n

{〈
∂ψn
∂RA

∣∣∣∣ t̂ + Veff

∣∣∣∣ψn〉
+

〈
ψn

∣∣∣∣t̂ + Veff

∣∣∣∣ ∂ψn∂RA

〉}
.

(A8)

This force vanishes for theexactsolutions of (A4) only. If
the Kohn-Sham functions are expanded in a local basis{φα}
ψn(r ; R) =

∑
α

φα(r ; R)Cαn(R) (A9)

the KS equations (A4) reduce to algebraic equations∑
β

{Hαβ − εnSαβ}Cβn = 0 . (A10)

Without loss of generality one can assume real expansion
coefficientsCαn. The matricesHαβ andSαβ are defined as
in (21). Using the ansatz (A9), the force (A8) alters to

FA = −
∑
n

∑
αβ

{
Cnα

〈
∂

∂RA
φα

∣∣∣∣ t̂ + Veff

∣∣∣∣φβ〉Cβn
+Cnα

〈
φα

∣∣∣∣t̂ + Veff

∣∣∣∣ ∂∂RA
φβ

〉
Cβn

+

(
∂

∂RA
Cnα

)
HαβCβn

+CnαHαβ

(
∂

∂RA
Cβn

)}
. (A11)

With the normalization condition for the KS functions

〈ψn|ψn〉 =
∑

αβ CnαSαβCβn
!
= 1

and rearranging some terms in (A7) and (A11) one obtains
finally

MAR̈A = − ∂

∂RA

∑
B

′ ZAZB
|RA − RB |

−
∑
n

∑
αβ

{
Cnα

(
∂

∂RA
Hαβ

)
Cβn

− Cnα

〈
φα

∣∣∣∣ ∂∂RA
(Veff−V )

∣∣∣∣φβ〉Cβn
−Cnαεn

(
∂

∂RA
Sαβ

)
Cβn

}
(A12)

the equations of motion for the adiabatic QMD. They have
to be solved simultaneously with Eq. (A10) and provide the
classical dynamics of the ions on the Born-Oppenheimer
ground state surface.

It remains to show that the non-adiabatic equations of
motion (20) and (23) reduce to the adiabatic ones if elec-
tronic transitions are neglected. In this case the initial con-
ditions for the amplitudesajα(t=0) must be given by the
adiabatic coefficientsCnα with n ≡ j (n = 1, . . . , Ne) and
their time dependence is the trivial one of a stationary single-
particle state

anα(t) = exp(−i εn(R) t) Cαn(R) . (A13)

Note that for the solution of the time-dependent KS equa-
tions (20)R has to be considered time-independent which is
valid only if the second term on the r. h. s. of (20) remains
small as compared to the first one, or in other words, if the
time scales of the classical motion and that of the quantum
system are completely separated. Under these circumstances
Eq. (20) reduces together with (A13) to the secular equa-
tion (A10). Using this secular equation (and the correspond-
ing transposed one) multiplied by the inverse of the overlap
matrix

(
S−1

)
αβ

from the left (and the right) one obtains for
the non-adiabatic force (23b)

MAR̈A = − ∂

∂RA

∑
B

′ ZAZB
|RA−RB |

−
occ∑
n

∑
αβ

{
Cnα

(
∂

∂RA
Hαβ

)
Cβn

−Cnα
〈
φα

∣∣∣∣ ∂∂RA
(Veff−V )

∣∣∣∣φβ〉Cβn
−
[
CnαεnRA

αβCβn +Cnα
(
RT)A

αβ
εnCβn

]}
(A14)

which is equivalent to (A12) becauseRA
αβ +

(
RT)A

αβ
=

∂
∂RA

Sαβ .
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