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Tunneling exit characteristics from classical backpropagation of an ionized electron wave packet
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We investigate tunneling ionization of a single active electron with a strong and short laser pulse, circularly
polarized. With the recently proposed backpropagation method, we can compare different criteria for the tunnel
exit as well as popular approximations in strong-field physics on the same footing. Thereby, we trace back
discrepancies in the literature regarding the tunneling time to inconsistent tunneling exit criteria. The main source
of error is the use of a static ionization potential, which is, however, time dependent for a short laser pulse. A
vanishing velocity in the instantaneous field direction as tunneling exit criterion offers a consistent alternative,
since it does not require the knowledge of the instantaneous binding energy. Finally, we propose a mapping
technique that links observables from attoclock experiments to the intrinsic tunneling exit time.
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I. INTRODUCTION

Tunneling phenomena have given rise to controversies
almost since the birth of quantum mechanics. In particular, the
question of how much time it takes to tunnel has been debated
frequently [1–3], most recently in the context of strong-field
tunneling ionization [4–6]. This type of electron tunneling is
triggered by a laser pulse, whose electric field is comparable
to the Coulomb field bound electrons experience from the
nucleus. This strong electric field bends down the Coulomb
potential periodically in one direction and results in a barrier.
If the top of the barrier is below the initial energy of the bound
electron, one speaks of “over-the-barrier” ionization, which
is classically allowed. In the opposite situation, however, the
electron can only escape quantum mechanically by tunneling.
Since the probability of this process depends exponentially
on the barrier and therefore on the electric field strength of
the laser, the latter suggests itself as a trigger for tunneling
ionization, starting a clock to measure the time that elapses
before the electron has tunneled out. If one uses a short,
elliptically polarized infrared laser pulse, the angle at which the
ionized electron appears at the detector can be compared to the
direction of the maximal laser electric field and from a possible
difference a time delay can be inferred using the angular fre-
quency of the light. This is the principle of the attoclock [7,8].

The idea to “measure” possible tunneling ionization times
directly in this setup is very appealing. Yet, it actually adds to
the notoriously difficult problem of tunneling through static
barriers the difficulty of nonadiabaticity: Since the barrier is
now time-dependent, the tunneling electron may gain or lose
energy. Moreover, the electron is asymptotically not free but
subject to the long-range attraction of the ionic core, which, by
itself, generates a time delay. Although substantial obstacles,
these difficulties are technical and can be overcome (as we will
see). What remains is the fundamental question how to define
tunneling in the first place such that it can be clocked, not to
speak of a possible measurement.

While we do not have a definite answer, we have proposed
to define tunneling by classically forbidden dynamics, i.e.,
by propagating classical trajectories. We have shown [9]

that classical backpropagation of a wave packet, quantum-
mechanically ionized in a strong circularly polarized laser
pulse, can provide a consistent definition of tunneling and the
time it takes. In addition, we were able to formulate a criterion
that reveals if the ionization process has tunneling character in
the first place. Finally, our classical backpropagation allows
us to compare different tunneling criteria that have been
proposed on the same footing, in particular criteria based on
spatial and momentum conditions for the tunnel exit. Thereby,
we will be able to clarify the origin of contradicting published
results [9–17], which have been difficult to contrast with each
other so far since they use different approximations to the
entire electron dynamics along with a respectively different
tunneling criterion. We can easily examine the effect of these
different tunneling criteria using the same dynamics, namely
our classical backpropagation.

Before we do so, we present in Sec. II a detailed account
of the classical backpropagation as introduced in Ref. [9].
In Sec. III, we extract the tunneling coordinates with the
velocity criterion and analyze their intensity dependence. In
Sec. IV, we proceed analogously with the position criterion
to define tunneling ionization and demonstrate that this leads
to inconsistent results. The section includes a reanalysis of
a recent theoretical [15] and experimental [16] study with
the velocity criterion, demonstrating that in both cases zero
tunneling time results. In Sec. V, we describe a mapping
technique to link the tunneling exit time to experimental
observables. Conclusions are given in Sec. VI.

II. BACKPROPAGATION AND IDENTIFICATION
OF TUNNELING

The essence of classical backpropagation is to first
quantum-mechanically propagate the initial state forward to
some time after the laser pulse has ended which avoids any
assumptions or approximations. In a second step the ionized
part of the propagated wave packet is extracted and transcribed
to classical phase space with the help of the local-momentum
method [18,19]. In the third step the wave packet is backprop-
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FIG. 1. Schematic overview of the classical backpropagation
method to extract tunneling parameters: (A) quantum forward prop-
agation of an initial state !(r) until time t ′ (Sec. II A), (B) extraction
of ionized part of the wave packet and transcription to a classical
phase-space density ρ( p,r,t ′) (Sec. II B), (C) classical backpropa-
gation (Sec. II C), and (D) extraction of tunneling exit distributions
(Sec. II D).

agated with classical trajectories and finally, tunneling exit
properties are extracted with suitable projectors corresponding
to the specific tunneling criterion applied. These steps are
schematically summarized in Fig. 1.

Note that the idea of propagating the wave packet backward
in time itself is not new but has been applied in many areas.
Probably most fundamental is the S-matrix for collisions, a
product of two Møller operators #(±) [20]. First, with #(−)

the projectile and target are propagated backwards without
interaction, and then forward with interaction. In a second
step the same is done in the forward direction to connect
with the respective asymptotic states. Such forward–backward
propagation with slightly different Hamiltonians has been
termed quantum fidelity [21] in the context of error assessment
for quantum computing and has also gained popularity in
semiclassics [22,23]. Backpropagation is also used in quantum
optimal control to obtain the best electric field for a certain op-
timization goal [24,25]. In the present context of intense-field
interactions the backpropagation has been used to obtain the
Wigner–Smith time delay [26,27] in photoemission [28,29].

While in all these examples, forward and backward prop-
agation were formulated quantum mechanically, we rely on
classical backpropagation as an essential element to identify
the tunneling dynamics. This unusual combination of a quan-
tum forward and a classical backpropagation brings about
new possibilities of extracting classical features from quan-
tum processes without approximating the accurate quantum
dynamical evolution. In the present study, in particular, this
concept provides the first means to retrieve the tunneling exit
time without approximating the ionization dynamics to obtain
a tunneling scenario, which is a prerequisite to define the
tunneling exit time.

A. Quantum forward propagation

We will focus on a realization of tunneling ionization by
a short circularly polarized pulse for a single active electron
(SAE) model of helium in two spatial dimensions. This
problem is of sufficient complexity to contain all features of
tunneling ionization, yet it is simple enough to facilitate its
computation and its interpretation in terms of visualization
of distributions. We use the split-step Fourier method (or
Fourier grid method) to numerically solve the time-dependent

Schrödinger equation (TDSE) for the model helium atom
with the SAE potential V (r) [30] on a grid in space (two-
dimensional) and time (atomic units are used unless stated
otherwise),

i
∂

∂t
!(r,t) =

{
1
2

[ p + A(t)]2 + V (r)
}
!(r,t), (1a)

where p is the momentum operator and

A(t) ≡
(

Ax(t)
Ay(t)

)
= A0 cos4 [ωt/(2N )]√

ϵ2 + 1

(
cos(ωt)
ϵ sin(ωt)

)
(1b)

is the vector potential of the laser field, with peak value
A0, ellipticity ϵ, angular frequency ω, and a duration of N
optical cycles. The corresponding electric field is obtained
from F(t) = − d

dt
A(t). Note that t = 0 corresponds to the pulse

center and A(t) = 0 unless |t | < Nπ/ω.
The TDSE is solved as before [9], starting with the ground

state of V (r). For the laser pulse, we use a two-cycle (N = 2)
circularly polarized (ϵ = 1) infrared laser pulse with angular
frequency ω = 0.045.1 For testing numerical accuracy, the
TDSE has been solved in both length and velocity gauge,
whereby identical final results were produced.

B. From the quantum wave function to the classical
phase-space distribution

From the propagated state !(r,t ′) at a time t ′ when the laser
pulse is over, the ionized wave packet ψ(r,t ′) is obtained by
discarding in the wave function a sphere of radius rc, in which
only the remaining bound-state amplitude is assumed to be
localized,

ψ(r,t ′) = )(r − rc)!(r,t ′). (2)

Using rc = 12 a.u., we have verified that the resulting ionized
wave packet produces the same results as a wave packet ψ(r,t ′)
obtained by projecting out the lowest 16 bound eigenstates
from the final state !(r,t ′).

The ionized wave packet ψ(r,t ′) can now be regarded as
the “initial condition” to initiate the backpropagation. To this
end, we write the quantum ionized wave packet ψ(r,t ′) ≡
R(r,t ′) exp[iS(r,t ′)] in terms of real amplitude and phase and
transcribe it to a classical phase-space distribution using the
local-momentum [18,19]. Defining

p(r) = ∇S(r), (3a)

we get

ρ( p,r,t ′) = R2(r,t ′) δ( p − ∇S(r,t ′)), (3b)

for the phase-space distribution representing the quantum
ionized wave packet.

In Fig. 2 we compare the momentum distribution of the
ionized electron from the model helium atom obtained by the

1For a short finite laser pulse, the electric field has a different
frequency than the vector potential. For our laser parameters here,
this corresponds to ωF = 0.057 for the electric field, or 800 nm
wavelength. The physical observables, on the other hand, are more
closely related to the frequency of the vector potential.
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FIG. 2. Momentum distribution of the ionized electron after the laser pulse at time t ′ for the model helium atom generated from the ground
state (in logarithmic scale) with a circularly polarized laser pulse [Eq. (1b)] of two optical cycles length, an angular frequency ω = 0.045, and
a peak intensity of 8 × 1014 W/cm2. The momentum distributions are obtained (a) as |ψ̃( p,t ′)|2 from the Fourier transform of the ionized wave
function ψ(r,t ′) [Eq. (2)] and (b) as ρ( p,t ′) from the local-momentum method, see Eq. (4b).

local-momentum to its quantum counterpart ψ̃( p,t ′) obtained
from ψ(r,t ′) by Fourier transform. Clearly, both distributions
are quite similar, which is confirmed by the overlap of the
densities,

∫
d2p |ψ̃( p,t ′)|

√
ρ( p,t ′)

∫
d2p |ψ̃( p,t ′)|2

= 0.998, (4a)

close to one, where

ρ( p,t ′) =
∫

d2r ρ( p,r,t ′). (4b)

Note that via its construction with the local-momentum
method, ρ in Eq. (3b) is essentially a two-dimensional distri-
bution and not a full four-dimensional one. It can be rigorously
derived in the limit h̄ → 0 from the Wigner function in saddle-
point approximation [31].

C. Classical backpropagation

Classical mechanics has been shown to provide a good
and effortless description of the electron dynamics in the
continuum (see, e.g., Refs. [32–40]). This is a welcome side
effect but the real reason why we use classical dynamics is to be
able to identify tunneling dynamics, or more precisely under-
barrier motion whose spatial boundaries at a given energy are
local properties which can only be defined classically. To reach
the barrier, we first will propagate the ionized phase-space
distribution ρ( p,r,t) backward in time, starting at time t ′.
Formally, the time evolution is given by Liouville’s equation,
which we discretize with the help of classical trajectories.
They are propagated solving Newton’s equations by means
of a fourth-order Runge–Kutta method.

D. The tunneling projector

As already mentioned, the classical description allows
for detecting tunneling, or more precisely, to determine the
probability that a certain phase-space density tunnels, for
which one can consider different criteria. Such criteria apply
conditions on phase-space coordinates, in the simplest case to
position or momentum. Thereby the dimension of the phase
space is reduced.

Formally, the conditions leading to a lower-dimensional
phase-space density are most easily introduced by a projection
operator +. It monitors the evolution of ionized phase-space
density while being backpropagated and detects, according to
criteria which need to be specified, if tunneling occurs at any
given time t . It is therefore given as a density in time,

+ξ = δ(ξ (γ ))
dξ

dt
, (5a)

where γ (t) ≡ { p(t),r(t)} describes a trajectory which should
fulfill ξ (γ (t)) = 0 to count as a tunneling contribution. By
means of the projector +ξ one can put various tunneling criteria
ξ , that have been adopted in former investigations, side by side.
Its abstract definition Eq. (5a) becomes clearer in Secs. III and
IV below, where we discuss two essentially different conditions
ξ , cf. Eqs. (7) and (11).

+ξ is a projector, provided that each trajectory γ (t)
contributes once at most, i.e., for a unique time. Should
ξ (γ (tj )) = 0 hold along a trajectory several times, we take
the one for which the spatial electron distance is closest to
the nucleus γ (tγ ) ≡ {γ (tj )| minj (rj )} in line with a tunneling
process. Hence, extracting to which tunneling exit time τ an
individual trajectory contributes, the projector Eq. (5a), applied
to a backpropagated phase-space density, generates the fully
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differential tunneling density,

dD+1Ptun;ξ

dτ dγ
≡ ρtun;ξ (γ ,τ ) = +ξ ρ(γ ,t), (5b)

where D is the dimension of γ , in our case of a planar one-
electron problem, D = 4. The total tunneling probability is
given by

Ptun;ξ =
∫

dτ dγ ρtun;ξ (γ ,τ ). (5c)

Below we will discuss and compare specific choices for ξ ,
which will elucidate how the tunneling projector works.

E. Nontunneled fraction

With Ptun from Eq. (5c) the tunneling projector not only
determines the probability for tunneling ionization, it also
identifies the fraction χ of electrons which was not ionized
by tunneling but through another process [9],

χ = Pion − Ptun

Pion
, (6)

where Pion =
∫

|ψ(r,t ′)|2d2r is the total ionization probability
with ψ(r,t ′) from Eq. (2). If this nontunneled fraction χ is
small, tunneling ionization dominates over other ionization
mechanisms, e.g., multiphoton or over-barrier ionization.

III. TUNNELING EXIT BY VELOCITY CONDITION

Earlier we have defined the tunnel exit by a minimal
condition [9], namely that the velocity k ≡ ṙ = p + A in
the instantaneous field direction is zero, which leads to the
projector

+p = δ(ξp)
dξp

dt
with ξp = k · F(t). (7)

Here, F(t) is the electric field of the laser. Tunneling is
synonymous with classically forbidden dynamics and therefore
requires at least one suitably chosen phase-space coordinate to
be imaginary throughout the barrier. The tunnel exit is defined
as the border between classically forbidden and allowed motion
(with real velocities) and since for a continuous potential the
velocities will be continuous, we must have a zero for at
least one velocity component. Note, that this condition +p

is independent of the instantaneous energy E(t) of the system,
a fact which will turn out to be crucial.

A. Tunneling ionization rate

To put the tunneling criterion, as just defined, into per-
spective, it is natural to compare the resulting tunneling (exit)
time distributions dPtun;p/dτ =

∫
dγ ρtun;p(γ ,τ ) to the well

known instantaneous Ammosov–Delone–Krainov (ADK) rate
[41–43], the Perelomov–Popov–Terent’ev (PPT) rate [44–49]
and the Yudin–Ivanov (YI) rate [50], whose analytical formula
are listed in Appendix A. Although these rates are for elec-
trons in three dimensions, there is good agreement in shape
with our calculations in two dimensions, as one can see in
Fig. 3. Indeed, the dominant (exponential) dependence of the
analytical rates on intensity is independent of dimensionality.
Only the prefactor differs, which is reflected by the scaling

FIG. 3. The distribution of the tunneling exit time (blue solid line)
compared to the instantaneous ADK rate (red dashed line), PPT rate
(green dash-dotted line), and YI rate (magenta dotted line). The latter
three are hardly distinguishable. Laser parameters are the same as in
Fig. 2. The rates are scaled to match at maxima.

factors in Fig. 3; for more details see Appendix B. Hence, our
tunneling rate obtained by backpropagation may be seen as the
first validation of the ADK and PPT theories by a tunneling
approach that does not approximate the electron dynamics in
the first place.

B. Tunneling and asymptotic momentum distributions

While there is no substantial difference in the tunneling
ionization rate obtained by various analytical approximations
and the backpropagation as we have seen, it is well known
that the momentum distributions of ADK and PPT theories are
different. This is a good motivation to take a closer look at the
corresponding distributions from backpropagation, in addition
to the promise of more detailed understanding of the tunneling
dynamics. To this end two distributions of the (kinetic) mo-
mentum k⊥, perpendicular to the instantaneous field direction
F(t)/F (t) at the tunnel exit, are presented in Fig. 4(a), namely
(i) the distribution averaged over the tunneling ionization times
(blue solid line) and (ii) the distribution taken at the pulse center
t = 0 (yellow solid line). These results from backpropagation
are contrasted with the ADK (red dashed) and PPT (green
dash-dotted) curves.

Obviously and as well known, the ADK description assumes
⟨k⊥⟩ = 0 and therefore, the momentum distribution peaks
about zero. In contrast, the PPT distribution has finite ⟨k⊥⟩
and is close to the backpropagated results, in shape as well as
peak position. Note that at the tunnel exit the two distributions
from backpropagation almost agree implying that most of the
ionization events contributing to the perpendicular momentum
occur close to maximal electric field. Note also that we define
k⊥ > 0 as pointing opposite to the rotation direction of the
laser field vector.

It is instructive to examine how these tunneling exit distri-
butions are reflected in the asymptotic distributions, accessible
by experiment and shown in Fig. 4(b). Since ADK as well
as PPT assume free electron motion in the laser field, the
respective width in momentum space remains unchanged. The
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FIG. 4. The distribution of (a) transverse momentum at the tunnel
exit (blue solid line: integrated over tunneling exit time; yellow solid
line: sliced at pulse center t = 0) with Ax(0) = A0/

√
1 + ϵ2 ≡ Amax,

(b) asymptotic momentum (blue solid line: integrated over emission
angle; yellow solid line: sliced at maximal emission angle θmax). Also
shown are the ADK (red dashed line) and PPT distributions (green
dash-dotted line) of transverse and asymptotic momentum, scaled
to the respective maxima of the distributions from backpropagation.
Laser parameters are the same as in Fig. 2. The central momenta of
PPT distributions are shifted by kPPT

⊥ w.r.t. the ADK distributions,
while both asymptotic distributions are shifted by Amax w.r.t. the
tunneling exit distributions, all marked by black dashed lines.

asymptotic distributions must peak in the direction of electron
propagation, i.e., the radial momentum can be directly deduced
from the tunneling exit distributions through the conservation
of the canonical momentum: Simply put, the drift momentum
at the tunnel exit is converted into asymptotic radial momentum

p. Clearly, the ADK distribution must peak about the drift
momentum, i.e., pADK = A0/

√
1 + ϵ2 ≡ Amax since this was

necessary to have zero mean velocity at the tunnel exit.
The PPT distribution has at the tunnel exit in perpendicular
direction the additional contribution kPPT

⊥ [44–49] (see also
Ref. [51]), such that asymptotically the central momentum
is pPPT = kPPT

⊥ + Amax, in almost perfect agreement with the
backpropagated distribution evaluated at the angle of maximal
emission. Averaging over all ionized flux should give a distri-
bution centered at lower momentum since also other emission
angles with smaller laser intensities contribute. This is indeed
the case, as the solid blue curve in Fig. 4(b) reveals.

From Fig. 4 we may conclude that the PPT theory predicts
the asymptotic momentum distribution very well, while the
initial transverse momentum is slightly underestimated. Simi-
larly, the initial transverse momentum spread is slightly wider
than predicted by ADK and PPT theories, while the asymptotic
PPT momentum spread agrees quite well with the numerical
distribution. One should keep in mind that both analytical
theories neglect the Coulomb field.

The reader is referred to Appendix C for a study on the
influence of the initial conditions on the final momentum
distribution.

C. Double differential tunneling exit distributions

In the most differential setting, a correlated distribution of
the tunneling exit time (τ ), position (x and y) and transverse
momentum (k⊥) can be obtained from Eq. (5b), which contains
all the information regarding the tunneling process. To identify
characteristic features more easily, we will discuss two double
differential distributions.

From Figs. 5(a) and 5(b) it is clear that the ionization
mainly happens around the center of the pulse (τ = 0) with
an offset in the central transverse momentum from k⊥ = 0.
The backpropagated and PPT distribution obviously compare
quite well.

In Fig. 5(c) we explore spatial tunneling properties. As one
can see, the maximal emission probability (in y direction)
coincides with the direction of the maximal ionizing field.

FIG. 5. The correlated distribution of the tunneling exit time and transverse momentum (in logarithmic scale) from backpropagation [panel
(a)] and from the analytical PPT theory [panel (b)] with the same scaling factor as in Fig. 3 and the distribution of the tunneling exit position
[panel (c)]. Laser parameters are the same as in Fig. 2. The electric field −F (in arb. units) is shown as black solid line and the static tunneling
exit as green dashed line in panel (c).

013426-5



HONGCHENG NI, ULF SAALMANN, AND JAN-MICHAEL ROST PHYSICAL REVIEW A 97, 013426 (2018)

FIG. 6. The distribution of tunneling energy. Laser parameters
are the same as in Fig. 2. The green vertical line denotes the mean
tunneling energy and the black dashed line denotes the ground-state
energy −Ip .

However, most ionization occurs closer to the parent ion than
the static-field tunneling exit position, shown as a green dashed
line. This indicates nonadiabaticity [9,52–54], that is, energy
is not conserved and in this case the electron absorbs energy
during tunneling ionization. Indeed, the tunneling energy dis-
tribution (sum of kinetic energy, potential energy, and energy
in the field at the tunnel exit) peaks at an energy higher than
the ground-state energy as shown in Fig. 6. Consequently, the
tunnel exit is closer to the core for the majority of the ionized
electrons than assumed in adiabatic tunneling ionization, and
the far-out part of the exit corresponds to a tunneling energy
lower than the ground-state energy.

D. Intensity dependence of tunneling exit time

So far we have discussed tunneling at a specific intensity to
describe its characteristics and how one can formalize them
using a quantum-classical approach. In this subsection we
discuss the resulting averaged tunneling exit time [see Eqs. (5b)
and (7)],

⟨τ ⟩ =
∫

dτ dγ τ ρtun;p(γ ,τ ), (8)

as a function of laser intensity. This is the observable most
closely related to the recent debate in the literature [9–17]. As
one can see in Fig. 7, ⟨τ ⟩ (red dashed line with squares) changes
sharply before 2 × 1014 W/cm2. From there on, a gradual
decrease can be observed. It is a consequence of depletion
of the ground state through ionization, getting stronger for
increasing intensity. One can correct the exit time for depletion
through trajectories that leave the nucleus by tunneling as

⟨τ ⟩corr =
∫

dτ τ

∫
dγ ρtun;p(γ ,τ )

1 −
∫ τ

−∞ d τ̃
∫

dγ ρtun;p(γ ,τ̃ )
. (9)

Hence, ⟨τ ⟩corr (red solid line with squares) remains close to
zero until the nontunneled fraction χ of electrons from Eq. (6),
shown as a blue solid line with circles, sharply rises. Certainly,
we can conclude from there that tunneling ionization implies
zero tunneling exit time. But is it also true that zero exit time
means tunneling ionization? At a first glance this seems to be
the case since in the multiphoton regime at small intensities

FIG. 7. Intensity dependence of the tunneling exit time (red
dashed line) and that corrected for depletion according to Eq. (9)
(red solid line). Contributions from over-barrier trajectories fulfilling
Eq. (5c) have been excluded; see text. The corresponding nontunneled
fraction χ is shown as blue solid line. Laser parameters are the same
as in Fig. 2 except for a varying peak intensity.

as well as in the over-barrier regime at large intensities the
nontunneled fraction approaches unity.

Yet, in the over-barrier regime, trajectories on their way
back may go over the barrier top and reach the nucleus,
eventually fulfilling criterion Eq. (7) creating false “tunneling
exit” times. However, they circle the nucleus at least once so
that they can be easily identified and discarded from Ptun in
Eq. (5c). There remains for the transition from tunneling to
over-barrier-dominated ionization the regime where backprop-
agated trajectories come close to the top of the barrier and
may suffer long time delays or trapping, leading to classically
chaotic dynamics. All these trajectories should also count as
nontunneled, yet they are not easily identified.

To summarize, while tunneling ionization implies ⟨τ ⟩ ≈ 0,
one cannot say that ⟨τ ⟩ ≈ 0 according to criterion Eq. (7) is
tantamount to tunneling dynamics.

E. Intensity dependence of the tunneling exit position

Similarly as for ⟨τ ⟩, we can construct also for other
properties their classical “expectation value” at the tunnel exit
with the help of the projector Eq. (7) and the backpropagated
ionized electron density. We compare our result for

⟨r⟩ =
∫

dτ dγ r ρtun;p(γ ,τ ) (10a)

with

⟨rexit⟩ =
∫

dτ dγ rexit(Ip,F ) ρtun;p(γ ,τ ) (10b)

from different tunneling theories (see Table I) with respective
expressions rexit(Ip,F ) for the tunnel exit. Implicitly, these
expressions are averaged over the laser pulse throughF = F (t)
in Eq. (10b). The reason for the consistently larger values
⟨rexit⟩ > ⟨r⟩ in Fig. 8 lies in the neglected energy absorption
of the electron on the way to the tunnel exit, as already
illustrated before. If in Table I the (static) value of the ionization
potential Ip is replaced by the actual ionization potential
−E(τ ), where E(τ ) is the total energy of the ionizing electron
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TABLE I. Different analytical expressions of tunneling exit posi-
tion rexit from the short-range solution (rSFA), the static field-direction
solution (rFDM), the solution in parabolic coordinates (rpara) [11,55–
57] and the PPT theory (rPPT) [45,47].

rexit Definition Remark

rSFA Ip/F Coulomb tail neglected

rFDM
Ip+

√
I2
p−4F

2F
static “field-direction model” [11]

rpara
Ip+

√
I2
p−4βF

2F
or “TIPIS” [11], β = 1 −

√
Ip/2 [55]

rPPT
F
ω2 (cosh τ0 − 1) τ0 is the solution of Eq. (A9)

trajectories at the tunnel exit, then the resulting tunnel exit
values ⟨rdyn

exit ⟩ become smaller and closer to ⟨r⟩, see dashed
lines in Fig. 8. Interestingly, the dynamic exit positions of the
more sophisticated spatial tunnel exit formulations from PPT
and TIPIS are quite close to our ⟨r⟩ as can be inferred from
Fig. 9(a). This suggests that PPT and TIPIS represent reason-
able approximations, provided one knows the instantaneous
binding energy −E(τ ) ̸= Ip at the tunnel exit.

The nonadiabatic energy gain has also been interpreted and
described as a virtual absorption of photons, or polarization
of the initial state, followed by a static tunneling ionization
[54]. In this study is shown that more photons are virtually
absorbed as the Keldysh parameter increases such that the
resulting dependence of tunneling energy on laser intensity
follows qualitatively the same trend as in Fig. 9(d).

F. Intensity dependence of momentum properties

For completeness we also provide with Figs. 9(b) and
9(c) the intensity dependence for the transverse momentum
k⊥ at the tunnel exit and of the asymptotic momentum p
respectively, as well as their spread σ . The approximate

FIG. 8. The intensity dependence of the tunneling exit positions
⟨rexit⟩ according to Eq. (10b) and Table I relative to ⟨r⟩ from Eq. (10a),
i.e., ⟨rexit⟩/⟨r⟩, is shown for fixed ionization potential (solid lines) and
for dynamic ionization potential (dashed lines). Laser parameters are
the same as in Fig. 2 except for a varying peak intensity.

asymptotic momentum closest to our result comes from PPT
theory [see green lines in Fig. 9(c)]. This suggests that the
laser intensity should be calibrated according to PPT theory
instead of ADK theory in the experiment [58,59] at maximal
emission angle. Since the momentum spread shows also good
agreement, it can be used as well [59]. However, its very weak
dependence on the intensity renders this parameter less suitable
for intensity calibration than the asymptotic momentum itself.

IV. TUNNELING EXIT BY POSITION CONDITION

In a static tunneling situation, i.e., for a barrier fixed in time,
the energy is conserved and the velocity criterion for the tunnel
exit as defined in the previous section is used to determine the
spatial tunnel exit rexit , such that both criteria are equivalent.

Since (tunneling) ionization by a light pulse is never
static, the equivalence of the primary tunneling exit definition
(zero velocity) and the spatial tunnel exit (derived with zero
velocity by assumption of conserved energy) does not hold,
or only in the adiabatic limit of low frequency and long
pulses. This is not fulfilled for the attoclock or other attopulse
experiments. Therefore, spatial tunnel exits determined under
this assumption and tunneling exit times derived from them
lead to inconsistent results which, nevertheless, have been
widely published. The common ground for comparison has
been missing so far, as usually along with a certain tunneling
exit criterion also the electron dynamics itself is approximated
in a specific way. The classical backpropagation we have
introduced offers such a common ground since the ionization
dynamics is fully quantum mechanical and does not change
for any tunneling criterion.

Therefore, we make the effort to assess the quantitative
deviations of the different spatial tunneling criteria among each
other, and the consistently formulated velocity criterion for the
tunnel exit in the following with classical backpropagation. To
this end, we first have to formulate the projector for a spatial
tunneling exit criterion rexit , constructed analogously to Eq. (7),

+r = δ(r − rexit)
dr

dt
, (11)

where rexit is the tunneling exit position in different models
given in Table I.

A. Intensity dependence of tunneling parameters

If r = rexit is used as the stopping criterion during back-
propagation, we obtain the fivefold differential tunneling
exit distribution as before as a function of exit time τ and
transverse momentum k⊥, but also as a function of longitudinal
momentum k∥, and, dependent on the exact nature of the spatial
stopping criterion as a function of the angle ϑ , relative to the
field direction.

In Fig. 10 we show singly differential tunneling exit distri-
butions to be compared to Fig. 9.

1. Tunneling exit time

First, we note that the tunneling exit time [Fig. 10(a)] is no
longer zero for all definitions of rexit considered, an observation
in line with what is found in Ref. [15]. This is mainly a conse-
quence of the nonadiabaticity of the tunneling process which
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FIG. 9. Comparison between the present backpropagation results (red lines) and various theories for the intensity dependence of the (a)
tunneling exit position with line codes and colors as in Fig. 8, (b) transverse tunneling momentum (red lines: integrated over tunneling exit time;
yellow lines: sliced at pulse center t = 0), (c) asymptotic momentum (red lines: integrated over emission angle; yellow lines: sliced at maximal
emission angle θmax), and (d) full tunneling energy. Further shown in panels (b) and (c) is the transverse momentum from ADK (magenta lines)
and PPT (green lines) and in panel (d) the ground-state energy −Ip (black dashed line). Laser parameters are the same as in Fig. 2 except for a
varying peak intensity.

moves the tunneling exit position closer to the core [52] than
assumed with fixed energy −Ip of the electron. Hence, when a
trajectory is stopped prematurely during backpropagation due
to adiabatically defined tunneling criteria from I at a larger
distance to the core, a positive tunneling time is obtained.
However, this nonzero tunneling exit time is a contradiction
to the underlying adiabatic assumption, on which the position
tunneling criterion is based. It was also (mis)interpreted in the
past as a nonzero time delay in the tunneling process (for atoms
with single active electron) revealed by the attoclock.

2. Longitudinal momentum

As consequence of the delayed tunneling exit times with
respect to the times obtained by the velocity criterion one would
expect a finite longitudinal momentum [15,16,58,60–62], since
the electron will have been accelerated until the later exit time.
The amount of this acceleration and the related longitudinal
momentum depend on the specific predefined exit position, cf.
Table I. This reasoning is supported by the observation that the

curves of the longitudinal momenta for the different definitions
of rexit in Fig. 10(b) exhibit the same order as the curves of the
tunneling exit time in Fig. 9(a).

3. Transverse momentum

Similar to the longitudinal momentum, also the transverse
momentum in Fig. 10(c) is nonzero with the same order of
curves for the different definitions of tunneling exit positions.
Only the PPT theory predicts analytically a finite transverse
momentum (shown as a green dashed-dotted line), which is
for larger intensities close to the one retrieved with the PPT
criterion applied to backpropagation.

4. Tunneling exit energy

We can also calculate the mean electron energy at the tunnel
exit in Fig. 10(d). This leads to a dramatic inconsistency if in the
spatial tunneling exit criteria from Table I, the static energy−Ip

is used at the tunnel exit (solid lines) as it is commonly done.
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FIG. 10. Intensity dependence of the (a) tunneling exit time, (b) longitudinal tunneling momentum, (c) transverse tunneling momentum,
and (d) full tunneling energy, when the position tunneling criterion r = rexit is used, where rexit is rpara (magenta lines with squares) or rPPT

(green lines with stars) with static (solid lines) and instantaneous (dashed lines) tunneling energies. Laser parameters are the same as in Fig. 2
except for a varying peak intensity. Further plotted in panel (c) is the analytical PPT transverse momentum (green dash-dotted line) and in panel
(d) the ground-state energy −Ip (black dash-dotted line). Note that r

dyn
PPT is so small for I < 3 × 1014 W/cm2 that backpropagated trajectories

never reach it.

However, both TIPIS and PPT theories deliver a result (dashed
lines) that agrees better with the actual tunneling energy −E(τ )
from Fig. 9(d) if this energy is already used in the respective
definition of the spatial tunneling exit criterion instead of the
static ionization potential Ip.

B. Failure of the position tunneling criterion

These comparisons clearly show that using a spatial tun-
neling criterion in a situation of a time-dependent laser field,
where one cannot safely assume a fixed binding energy Ip,
leads to inconsistencies that render the observables derived
with spatial tunneling criteria, in particular the tunneling (exit)
time, unreliable.

We finally illustrate this fact with a model, recently used
by Teeny et al. [15], who found that tunneling exit time and
longitudinal tunneling momentum is nonzero if the position
criterion is used, namely a predefined value rexit derived with a
static (maximal) field and ionization potential Ip. However, if

we apply the velocity criterion k∥ = 0 as discussed in Sec. III
to this model, zero tunneling exit time results after correction
for depletion, as can be seen in Fig. 11(a).

With the same position tunneling exit criterion, a finite
tunneling time was extracted for ionization experiments in
argon and krypton [16]. However, if instead the velocity
criterion k∥ = 0 is used, zero tunneling time for argon and
krypton in the observed intensity regime results; see Fig. 11(b).

We may conclude that in general knowledge of the electron
energy at the tunnel exit is needed for the position tunneling
exit criterion (Table I). It is naturally given for static fields by
the ionization potential Ip. The latter may be used as an approx-
imation if the laser field changes slowly (adiabatic dynamics).
However, the actual energy at the tunnel exit is substantially
different from −Ip for few-cycle pulses as was demonstrated
in Fig. 9. In this situation, generic for applications of the
attoclock, using the static energy Ip to define the tunnel exit
leads to inconsistent results. Above all, the position tunneling
criterion produces as a consequence of the erroneous use of the
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FIG. 11. Intensity dependence of the tunneling exit time obtained
by backpropagation using the velocity criterion after correction for
depletion (solid lines) compared to Teeny et al. [dashed lines, panel
(a)] [15] and Camus et al. [dashed lines, panel (b)] [16] using position
criterion. The same model and laser parameters are used as in Ref. [15]
and Ref. [16], respectively.

ionization potential as the energy at the tunnel exit a nonzero
tunneling exit time. It was (mis)interpreted in the past as a
nonzero time delay in the tunneling process (for atoms with
single active electron).

The standard rectification of the (experimental) attoclock
angle for the simultaneous interaction of the continuum
electron with the laser field and the Coulomb potential suf-
fers from a similar problem: The commonly used trajectory
based approaches [10,11,63–65] launch a trajectory from an
assumed tunneling exit time and predefined tunneling exit
position with certain inferred initial momentum distribution.
This procedure carries the inconsistencies just discussed,
questioning the validity of the Coulomb correction to the
attoclock angle and asking for a better approach to interpret
experimental data.

V. MAPPING OFFSET ANGLE TO TUNNELING EXIT TIME

Having established the validity of the velocity tunneling
criterion k∥ = 0, we will construct the correlation between
tunneling exit time and offset angle, which provides a link
to experimental observables.

To take into account the long-range Coulomb interaction,
we obtain the asymptotic momentum p0 using Kepler rules

FIG. 12. Correlated distribution of tunneling exit time and offset
angle θ (in logarithmic scale). Laser parameters are the same as in
Fig. 2. The black solid shows θ = ω(τ − τfit).

(although this is accurate only for pure 1/r Coulomb poten-
tials) [66]

p0 = p0
p0(L × ARL) − ARL

1 + p2
0L

2
. (12)

Here, p0 is the magnitude of the asymptotic momentum satis-
fying p2

0
2 = p2

2 + V (r), where r is the position of a particular
electron in the final ionized wave packet after the laser pulse,
p is its local momentum, L = r × p is its local angular
momentum, and ARL = p × L − r

r
is the Runge–Lenz vector.

The offset angle can be obtained from p0 and the correlated
distribution of tunneling exit time versus offset angle is
shown in Fig. 12. Evidently, similar to but different from the
attoclock, the time axis in Fig. 12 represents not experimentally
measured time, but the intrinsic tunneling exit time retrieved
by backpropagation. A simple linear regression using fixed
slope, i.e., τfit = ⟨τ ⟩ − ⟨θ⟩/ω, with the average taken over the
correlated distribution of Fig. 12, reveals directly the tunneling
exit time, clear of Coulomb correction:

θfit(τ ) = ω(τ − τfit). (13)

Hence, from the peak offset angle θpeak of an attoclock
experiment the tunneling exit time can be determined as
τpeak = θpeak/ω + τfit. The reader is referred to Appendix D
for technical details.

Figure 13 provides a comparison of the intensity depen-
dence of the tunneling exit time obtained by such fitting and
mapping procedure τpeak and the expected tunneling time ⟨τ ⟩
obtained directly (cf. Fig. 7), illustrating that the two methods
give very close results. Such good agreement has important
implications for future experiments. Once the experimental
data is available, a mapping between the data and the tunneling
exit time can be created using the backpropagation method
(using the velocity tunneling criterion). Hence, the tunneling
exit time, free from Coulomb corrections, can be extracted
routinely.

VI. CONCLUSION

We have provided a comprehensive study of electron prop-
erties at the tunnel exit in the regime of tunneling ionization
by circularly polarized light for a planar helium atom with
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FIG. 13. Intensity dependence of the tunneling exit time with a
comparison between the time obtained by fitting and mapping τpeak

(blue line with circles) and the expected tunneling exit time ⟨τ ⟩ (red
line with squares, cf. Fig. 7). Laser parameters are the same as in
Fig. 2 except for a varying peak intensity.

a single active electron using classical backpropagation. Our
approach employs a fully quantum-mechanical treatment of the
tunneling process without ad hoc assumptions or approxima-
tions. The ionized wave packet is then classically propagated
backward in time up to a stopping criterion for the tunnel
exit. This backpropagation naturally includes all interactions,
it automatically accounts for the Coulomb correction in the
attoclock measurements and we can quantify the validity of
the tunneling scenario in the first place via the introduction of
the so called “nontunneled fraction” of electrons.

The backpropagation method gives highly differential
phase-space information regarding tunneling and enables the
comparison of different tunneling criteria on the same footing.
In the case tunneling is characterized by the velocity criterion
k∥ = 0, a correlated distribution of tunneling exit time, posi-
tion, and transverse tunneling momentum can be obtained. We
can draw the following conclusions:

(A) Straightforward projections of this correlated distri-
bution reveals that in the tunneling regime, (i) the tunneling
exit time is around zero, (ii) the tunneling exit point is closer
to the core than predicted with adiabatic theories, (iii) the
tunneling electron has a larger transverse momentum offset
and spread than predicted, and (iv) the tunneling energy is
above the initial-state energy due to nonadiabatic effects.

(B) While the velocity criterionk∥ = 0 gives zero tunneling
exit time, different position criteria r = rexit give nonzero
tunneling exit time, mainly because the nonadiabatic behavior
of tunneling dynamics is not taken into account. The nonzero
tunneling exit time was (mis)interpreted in the past as a nonzero
time delay in the tunneling process for atoms with a single
active electron.

(C) In a wider context, this has the important implica-
tion that commonly used trajectory based methods (with
trajectories starting from an assumed tunneling exit time and
predefined tunneling exit position with certain inferred initial
momentum distribution to reconstruct the asymptotic momen-
tum distribution) may lead to inaccuracies and inconsistencies.
On the other hand, with the backpropagation method using
the velocity criterion, we can obtain a correlation between

tunneling exit time and offset angle, which provides a mapping
between the experimental observables and the exit time of
interest. Such mapping may serve as a convenient tool to extract
timing information from future attoclock experiments.

Finally, the present approach has opened the way to use
exact quantum propagation to define a tunnel exit in phase
space. For the latter, we have on purpose restricted ourselves
to purely classical backpropagation, since it can be easily
implemented. From a theoretical perspective, this picture is
not yet complete since one may resort to complex classical
mechanics, which has more flexibility but retains the locality of
the dynamics. Locality is convenient to identify tunneling and
necessary to define a tunnel exit, which is in the end, always
an approximation providing insight into physically relevant
processes.
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APPENDIX A: ANALYTICAL TUNNELING RATE
AND TUNNELING MOMENTUM DISTRIBUTION

We summarize here the instantaneous rate formula starting
from the ground s-state exposed to a circularly polarized laser
field as we have used in this article. Note that the formula
differ for different initial state and laser polarization. The
instantaneous (or quasistatic) ADK rate can be written as
[41–43]

wADK(F ) = FD2

8πZ
exp

(
−2F0

3F

)
, (A1)

where

D =
(

4eZ3

Fn∗4

)n∗

, (A2)

e = 2.718 . . . is the Euler number, n∗ = Z(2Ip)−1/2 is the
effective principal quantum number with Z being the asymp-
totic charge, and F0 = (2Ip)3/2 with Ip being the ionization
potential. The instantaneous PPT rate is expressed as [44–49]

wPPT(F,ω) = |Cn∗l∗ |2Ip

[
2F0

F
C(γ )

]2n∗−1

C(γ )h(γ )

× exp
[
−2F0

3F
g(γ )

]
, (A3)

where

|Cn∗l∗ |2 = 22n∗

n∗4(n∗ + l∗ + 1)4(n∗ − l∗)
, (A4)

C(γ ) = τ0

2γ
exp

{∫ τ0

0
dτ

[
γ

F (γ )
− 1

τ0 − τ

]}
, (A5)

F (γ ) =
[

(cosh τ0 − cosh τ )2

−
(

τ

τ0
sinh τ0 − sinh τ

)2]1/2

, (A6)
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h(γ ) = (1 − t0)

[
(1 + γ 2)(1 − t2

0 )(
1 + t2

0 /γ 2
)(

1 + t2
0 + 2t2

0 /γ 2
)
]1/2

,

(A7)

da9g(γ ) = 3t0

γ 2
(
1 − t2

0

)
[

(1 + γ 2)
(

1 + t2
0

γ 2

)]1/2

, (A8)

γ = ω
F

√
2Ip is the Keldysh parameter, l∗ = n∗ − 1 is the

effective orbital quantum number, and τ0 and t0 are determined
from the transcendental equations

sinh2 τ0 −
(

cosh τ0 − sinh τ0

τ0

)2

= γ 2, (A9)

tanh

[
1

1 − t0

(
t2
0 + γ 2

1 + γ 2

)1/2
]

=
(

t2
0 + γ 2

1 + γ 2

)1/2

. (A10)

The YI rate (up to exponential accuracy) reads [50]

wYI(F ) ∼ exp
[
−F 2

ω3
Φ

(
Fmax

F
γ

)]
, (A11)

Φ(γ ) = (γ 2 + 2) cosh−1
(

1 + γ 2

2

)
− γ

√
4 + γ 2. (A12)

The transverse tunneling momentum distribution in both
ADK and PPT theories is Gaussian-shaped. In ADK theory
[41–43], the transverse tunneling momentum centers at zero
with a spread of

σ ADK
⊥ =

√
Fmax

2
√

2Ip

. (A13)

In PPT theory [44–49], the transverse tunneling momentum
centers at

kPPT
⊥ = Fmax

ω

(
sinh τ0

τ0
− 1

)
, (A14)

with a spread of

σ PPT
⊥ =

√√√√√
ω

2τ0

[
1 +

(
τ0−tanh τ0
τ0 tanh τ0

)2
] . (A15)

APPENDIX B: DIMENSIONALITY DEPENDENCE

The strong nonlinear dynamics of tunneling ionization does
not depend on the dimensionality, although the overall magni-
tude does. Thus, the analytical tunneling rates above, although
developed initially for three-dimensional atoms, differ only in
the prefactors and the exponential factors stay the same for
two-dimensional systems. This also applies to the transverse

FIG. 14. Comparison of the distributions of (a) tunneling exit time
and (b) transverse momentum computed with two-dimensional (2D)
and three-dimensional (3D) model helium atom. Laser parameters are
the same as in Fig. 2.

momentum shift and spread. Therefore, a comparison of
our two-dimensional simulation to the analytical results is
possible.

A numerical proof of this dimensionality independence
can be seen from, say, a comparison of the distribu-
tions of tunneling exit time and transverse momentum in
two- and three-dimensional simulations obtained by back-
propagation (with velocity tunneling criterion), as shown
in Fig. 14.

APPENDIX C: INFLUENCE OF THE INITIAL
CONDITIONS ON THE FINAL MOMENTUM

DISTRIBUTION

We show in Fig. 15 the final momentum distribution from
trajectory based Monte Carlo simulations [10,11,63–65] when
the initial conditions are chosen as rexit = rpara and k⊥ = kADK

⊥
[panel (a)] and rexit = rPPT and k⊥ = kPPT

⊥ [panel (b)] with an
assumption of instantaneous response to the laser field. Note
that the ADK and PPT tunneling rates are scaled such that
they have the same total ionization probability as the quantum-
mechanical result as shown in Fig. 2(a).

As it is evident from the figure, both initial con-
ditions give visually similar momentum distributions to
Fig. 2(a) and main features of the quantum distribution

013426-12



TUNNELING EXIT CHARACTERISTICS FROM CLASSICAL … PHYSICAL REVIEW A 97, 013426 (2018)

FIG. 15. Momentum distribution obtained from trajectory based Monte Carlo simulations (in logarithmic scale) when the initial conditions
are chosen as rexit = rpara and k⊥ = kADK

⊥ [panel (a)] and rexit = rPPT and k⊥ = kPPT
⊥ [panel (b)]. Laser parameters are the same as in Fig. 2.

are retained. Such similarity can be quantified via the
overlap

∫
d2p |ψ̃( p,t ′)|

√
ρpara( p,t ′)

∫
d2p |ψ̃( p,t ′)|2

= 0.912, (C1)
∫
d2p |ψ̃( p,t ′)|

√
ρPPT( p,t ′)∫

d2p |ψ̃( p,t ′)|2
= 0.982. (C2)

This overlap indicates that, although the initial conditions used
by common trajectory based methods [10,11,63–65] are very
different (and imprecise) from that extracted by the back-
propagation method, the momentum distribution reconstructed
is still in reasonably good agreement with quantum results.
This suggests, to extract timing information from the attoclock
observables, the much more precise backpropagation method
(in terms of the mapping technique) is necessary since the atto-
clock offset angle is not sensitive to tiny changes in the initial
conditions. The overlap as shown in Eqs. (4a), (C1), and (C2)
may serve as a quantification of the precision of the method
used, and it is easy to conclude that the backpropagation
method, which guarantees to obtain a momentum distribution
as in Fig. 2(b) starting from the tunneling exit parameters

retrieved (up to an error at the level of the nontunneled fraction
χ as shown in Fig. 7), is much more precise.

APPENDIX D: WEIGHTED LINEAR
REGRESSION FITTING

We detail here the weighted linear regression fitting we
have used for the mapping technique to link the experimental
observable offset angle to tunneling exit time in Sec. V.

For a correlated distribution P (τ,θ ) shown in Fig. 12,
we seek the optimal fitting parameter τfit in ω(τ − τfit) as in
Eq. (13), so that

f (τfit) =
∫

dτdθ P (τ,θ )[θ − ω(τ − τfit)]2 (D1)
is minimized. To this end, we require ∂f (τfit)

∂τfit
= 0, i.e.,

∫
dτdθ P (τ,θ )[θ − ω(τ − τfit)] = 0, (D2)

from which obviously follows

τfit =
∫

dτdθ P (τ,θ )τ∫
dτdθ P (τ,θ )

−
∫

dτdθ P (τ,θ )θ
ω

∫
dτdθ P (τ,θ )

. (D3)
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