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Nonadiabatic electron pumping through interacting quantum dots
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We study nonadiabatic charge pumping through single-level quantum dots taking into account Coulomb
interactions. We show how a truncated set of equations of motion can be propagated in time by means of an
auxiliary-mode expansion. This formalism is capable of treating time-dependent electronic transport for arbitrary
driving parameters. We verify that the proposed method describes very precisely the well-known limit of adiabatic
pumping through quantum dots without Coulomb interactions. As an example we discuss pumping driven by
short voltage pulses for various interaction strengths. Such finite pulses are particularly suited to investigation
of transient nonadiabatic effects, which may also be important for periodic drivings, where they are much more
difficult to reveal.
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I. INTRODUCTION

In 1983 Thouless1 proposed a simple pumping mechanism
to produce, even in the absence of an external bias, a quantized
electron current through a quantum conductor by an appro-
priate time-dependent variation of the system parameters.
Experimental realizations of quantum pumps using quantum
dots (QDs) were already reported in the early 1990s.2,3 More
recently, due to the technological advances in nanolithography
and control, such experiments have risen to a much higher level
of sophistication, making it possible to pump electron4–6 and
spin7 currents through open nanoscale conductors, as well as
through single and double QDs.8–11

Early theoretical investigations were devoted to the
adiabatic pumping regime within the single-particle
approximation.12–14 This is well justified for experiments with
open QDs, where interaction effects are believed to be weak15

and the typical pumping parameters are slow with respect to the
characteristic transport time scales, such as the electron dwell
time τd. This time-scale separation enormously simplifies the
analysis of the two-time evolution of the system. Within the
adiabatic regime, inelastic and dissipation16 effects of currents
generated by quantum pumps were analyzed. Furthermore,
issues like counting statistics,17 memory effects,18 and gener-
alizations of charge pumping to adiabatic quantum spin pumps
were also proposed and studied.19–21

Nonadiabatic pumping has been theoretically investi-
gated within the single-particle picture, either by use of
Keldysh nonequilibrium Green’s functions, with an optimal
parametrization of the carrier operators inspired by bosoniza-
tion studies,22 or by a Floquet analysis of the S matrix
obtained from the scattering approach.23 While the first
approach renders complicated integrodifferential equations for
the Green’s functions associated with transport, the second one
gives a set of coupled equations for the Floquet operator. It is
worth stressing that, in both cases the single-particle picture is

crucial to make the solution possible and it is well established
that both methods are equivalent.24,25

Several works have provided a quite satisfactory description
of quantum pumping for weakly interacting systems. In con-
trast, the picture is not as clear for situations where interaction
effects are important. Different approximation schemes have
been proposed to deal with pumping in the presence of interac-
tions and to address charging effects, which are not accounted
for in a mean-field approximation. Typically, two limiting
regimes have been studied, namely, that of low pumping
frequencies �, such that �τd � 1 (adiabatic limit),26–32 and
that of very high frequencies, �τd � 1 (sudden or diabatic
limit).33–35 Nonadiabatic pumping is mainly studied as a side
effect of photon-assisted tunneling,36–38 where �τd � 1.

Unfortunately, it is quite cumbersome to calculate correc-
tions to these limit cases. For instance, the analysis of higher-
order corrections to the adiabatic approximation for the current
gives neither simple nor insightful expressions.32 In addition to
the theoretical interest, a comprehensive approach bridging the
limits of �τd � 1 and �τd � 1 also has a strong experimental
motivation: Most current experimental realizations of quantum
pumping deal with QDs in the Coulomb blockade regime
and �τd ∼ 1. This regime was recently approached (from
below) by means of a diagrammatic real-time transport
theory with a summation to all orders in �.39 However, the
derivation implied the weak tunnel coupling limit, whereas
experiments40–44 typically rely on tunnel coupling variations,
which include both weak and strong coupling.

To address the above-mentioned issues and to account
for the different time scales involved, it is natural to use
a propagation method in the time domain.45–49 In this work
we express the current operator in terms of density matrices
in the Heisenberg representation. We obtain the pumped
current by truncating the resulting equations of motion for
the many-body problem. This approximation is valid for
temperatures T higher than the Kondo temperature TK.50 For
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lower temperatures the Kondo effect starts to manifest, which
requires a nonperturbative description.27,28,31 Since we study
pumping in the Coulomb-blockade regime where T � TK, the
truncation scheme we employ is expected to be an accurate ap-
proximation. The time dependence is treated exactly by means
of an auxiliary-mode expansion.47,51 This approach provides
a quite amenable path to circumvent the usual difficulties
of dealing with two-time Green’s functions.51 Moreover, it
has been successfully applied to systems coupled to bosonic
reservoirs52 and to the description of time-dependent electron
transport using generalized quantum master equations for
the reduced density matrix.47,53,54 Since the auxiliary-mode
expansion is well controlled,55 the accuracy of our method is
determined solely by the level of approximation used to treat
the many-body problem.

The formalism we put forward is illustrated by the study
of the charge pumped through a QD in the Coulomb-blockade
regime by varying its resonance energy and couplings to the
leads. The external drive is parametrized by a single pulse,
whose duration and amplitude can be arbitrarily varied. When
this is done, the formalism is capable of reproducing all known
results of the adiabatic limit and exploring transient effects
beyond this simple limit.

The paper is organized as follows. In Sec. II we present
the resonant-level model, as well as the theoretical framework
employed in our analysis. In Sec. III we introduce the general
propagation scheme, suitable for calculation of the pumping
current at the adiabatic regime and beyond it. Next, in Sec. IV,
we discuss a few applications of the method. Finally, in Sec. V
we present our conclusions.

II. TIME-DEPENDENT INTERACTING
RESONANT-LEVEL MODEL

The standard model for addressing electron transport
through QDs is the Anderson interacting single-resonance
model coupled to two reservoirs, one acting as a source and
the other as a drain. Despite its simplicity, the model provides
a good description for Coulomb-blockade QDs and for QDs in
the Kondo regime, where the electrons are strongly correlated.
In this paper we address the Coulomb-blockade regime, for
QDs whose typical line width � is much smaller than the
QD mean level spacing δ, justifying the use of the Anderson
single-resonance model. In addition, in the Coulomb-blockade
regime, � is much lower than the resonance charging energy U .

A. Setup

The total Hamiltonian is given by the usual threefold
decomposition into a QD Hamiltonian Hdot, a Hamiltonian
Hleads representing the leads, and a coupling term Hcoup,
namely,

H = Hdot + Hleads + Hcoup. (1a)

The QD is modeled by a single level of energy εd(t), which
can be occupied by spin-up and spin-down electrons, which
interact through a contact interaction of strength U . The QD
Hamiltonian reads

Hdot =
∑

s=↑,↓
εd(t)n̂s + Un̂↑n̂↓, (1b)

where n̂s = ĉ
†
s ĉs , ĉ

†
s , and ĉs are the electron number, the

creation, and the annihilation operators for the respective spin
state s =↑ , ↓ in the dot.

The two reservoirs, labeled L (left) and R (right), are
populated by noninteracting electrons, whose Hamiltonian
reads

Hleads =
∑

α∈L,R

∑
ks

εαk(t)b̂†αks b̂αks, (1c)

where {b̂†αks} and {b̂αks} stand for the electron creation and
annihilation operators for the α-reservoir state ks, respectively.
The reservoir single-particle energies have the general form
εαk(t) = ε0

αk + �εα(t), with the �εα accounting for a time-
dependent bias. The stationary current due to a time-dependent
bias was addressed several years ago.56 For pumping, we take
�εα(t) = 0, as usual. Finally, the coupling Hamiltonian is
given by

Hcoup =
∑
αk

∑
s

Tαk(t) b̂
†
αks ĉs + H.c., (1d)

with {Tαk} denoting the coupling matrix element between the
QD and reservoir α.

B. Equation-of-motion approach

We are interested in the electronic current from reservoir
α to QD state s, which can be obtained from the current
operator

Ĵαs(t) ≡ i
∑

k

[Tαk(t)b̂†αks(t)ĉs(t) − T ∗
αk(t)ĉ†s (t)b̂αks(t)]. (2)

Here and in the following we use units where the elementary
charge e = 1 and the reduced Planck constant h̄ = 1, unless
otherwise indicated. To calculate Ĵαs(t) we use the following
equations of motion, which are obtained from the Hamiltonian
[Eqs. (1)] by means of the Heisenberg equation,

i∂t b̂αks(t) = εαk(t)b̂αks(t) + Tαk(t)ĉs(t), (3a)

i∂t ĉs(t) = εs(t)ĉs(t) + Uĉs(t)n̂s̄(t)

+
∑
αk

T ∗
αk(t)b̂αks(t), (3b)

i∂t n̂s̄(t) =
∑
αk

[−Tαk(t)b̂†αks̄(t)ĉs̄(t)

+ T ∗
αk(t)ĉ†s̄ (t)b̂αks̄(t)]. (3c)

Analogous equations hold for b̂
†
αks and ĉ

†
s .

In the spirit of the scheme introduced by Caroli and
coworkers,57 we assume an initially uncorrelated density
operator of the combined system, i.e., we set Tαk(t0) → 0 for
t0 → −∞. Further, we apply the so-called wide-band limit,58

which assumes that the density of states ρα and tunnel matrix
elements Tαk are constant in the energy window relevant for
transport. By means of the lead Green’s function58

gαk(t,t ′) = exp

[
−i

∫ t

t ′
dt ′′εαk(t ′′)

]
, (4)
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we can define the decay rate

�α(t,t ′) ≡
∑

k

Tαk(t)gαk(t,t ′)T ∗
αk(t ′), (5a)

which becomes local in time in the wide-band limit, namely,

�α(t,t ′) =
∫

dεkρα(εk)Tαk(t)gαk(t,t ′)T ∗
αk(t ′)

= �α(t)δ(t − t ′). (5b)

In the following we replace the sum in Eq. (5a) with the
expression involving the δ function in Eq. (5b).

The equation of motion for the reservoir operators b̂αks ,
Eq. (3a), is now readily integrated, yielding

b̂αks(t) = B̂αks(t) − i
∫ t

t0

dt ′gαk(t,t ′)Tαk(t ′)ĉs(t
′), (6a)

where we have used the lead Green’s functions, Eq. (4), and
introduced

B̂αks(t) ≡ gαk(t,t0)b̂αks(t0). (6b)

Equations (6) are used to rewrite Eq. (3b) as

i∂t ĉs(t) =
[
εs(t) + Un̂s̄(t) − i

�(t)

2

]
ĉs(t)

+
∑
αk

T ∗
αk(t)B̂αks(t). (7)

Here the wide-band limit, Eq. (5), is employed to obtain the
decay term, proportional to �(t) = ∑

α �α(t). Similarly, we
can rewrite Eq. (3c) as

i∂t n̂s̄(t) =
∑
αk

[−Tαk(t)B̂†
αks̄(t)ĉs̄(t)

+ T ∗
αk(t)c†s̄ (t)B̂αks̄(t)] − i�(t)n̂s̄(t). (8)

Here again the time integral of b̂αks(t) is reduced to a decay
width due to the wide-band limit, Eq. (5).

C. Expectation values and truncation schemes

The expression for the time-dependent current is given by
the expectation value of the current operator Ĵαs defined in
Eq. (2). As will become clear later, it is useful to write this
expectation value as

Jα(t) = e

h̄

∑
s

〈Ĵαs(t)〉 = 2e

h̄
Re

∑
s

�αs(t), (9)

with the current matrices of the first order

�αs(t) ≡ i
∑

k

Tαk(t)〈b̂†αks(t)ĉs(t)〉. (10)

These current matrices are an essential ingredient of our propa-
gation scheme, which is based on finding equations of motion
for �αs . Such equations have been derived starting from a
nonequilibrium Green’s function formalism for noninteracting
electrons.51

Exactly as for the operator equations above, we can use
b̂αks from Eq. (6) and employ the wide-band limit, Eq. (5),

for the current matrices defined in Eq. (10). This leads to the
following decomposition:

�αs(t) = �′
αs(t) +

∑
k

Tαk(t)�′′
αks(t), (11a)

�′
αs(t) = −�α(t)

2
〈n̂s(t)〉, (11b)

�′′
αks(t) = i〈B̂†

αks(t)ĉs(t)〉. (11c)

Having derived all relevant equations of motion for the
operators, we can specify the respective equations for the two
contributions �′ and �′′. The term �′ is the simplest and is
basically given by the equation of motion for n̂s ; cf. Eq. (8).
The corresponding equation for the occupation ns(t) ≡ 〈n̂s(t)〉
reads

∂tns(t) = 2Re
∑
αk

Tαk(t)�′′
αks(t) − �(t)ns(t). (12)

The above relation can be viewed as the charge conservation
equation for the QD. The rate by which the charge in the QD
changes is equal to the total electronic currents. The first term
on the right-hand side (r.h.s.) of the equation can be interpreted
as the current flowing into the QD, whereas the second term
gives the current flowing out.

Since we do not consider spin-dependent driving or
spin-polarized initial states, ns(t) = ns̄(t). This relation is
not explicitly used in the derivation but is employed as a
consistency check throughout the analysis.

The evaluation of �′′ requires the solutions for both the
lead operator b̂αks and the dot operator ĉs . Using these, we
write

∂t�
′′
αks(t) = i�αks(t) �′′

αks(t)

+ T ∗
αk(t)fαk − iU�αks(t). (13)

Here we have introduced the abbreviation

�αks(t) ≡ ε0
αk −

[
εs(t) − i

�(t)

2

]
(14)

and used that

〈B̂†
αks(t)B̂αks(t)〉 = 〈b̂†αks(t0)b̂αks(t0)〉

= fα(εk) ≡ fαk, (15)

with fα(ε) the Fermi function describing the equilibrium
occupation of lead α. The last term in Eq. (13) uses the
auxiliary current matrices of the second order

�αks ≡ i〈B̂†
αks(t)ĉs(t)n̂s̄(t)〉, (16)

which will be subject to further approximations in the
following.

Before we turn to the approximations, we would like to
briefly discuss the physical meaning of �αks . The equation of
motion for the two-electron density matrix 〈n̂s(t)n̂s̄(t)〉 reads

∂t 〈n̂s(t)n̂s̄(t)〉 = −2�(t)〈n̂s(t)n̂s̄(t)〉
+ 2Re

∑
αks

Tαks(t)�αks(t), (17)

which follows from Eq. (8). The two-electron density matrix
may be interpreted as the occupation of one QD level under
the condition that the other one is occupied. The rate of
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change of this conditional occupation is consequently given
by tunneling into and out of the respective dot state under the
same condition. The latter process is described by the first term
on the r.h.s. of Eq. (17). The former process is governed by the
auxiliary current matrices �αks , which can be rewritten in the
suggestive form

2Re
∑

k

Tαk(t)�αks(t) = 〈
Ĵ (in)

αs (t)n̂s̄(t)
〉
. (18)

Consequently, the current matrices �αks describe the condi-
tional current from reservoir α into the QD level with spin
s.

1. Hartree-Fock approximation

The simplest approximation to �αks consists in using the
following factorization:

�HF
αks(t) ≡ i〈B̂†

αks(t)ĉs(t)〉〈n̂s̄(t)〉
= ns̄(t) �′′

αks(t). (19)

Inserting this expression into Eq. (13) results in the following
equation of motion:

∂t�
′′
αks(t) = i[�αks(t) − Uns̄(t)]�

′′
αks(t) + T ∗

αk(t)fαk. (20)

This result is equivalent to the Hartree-Fock approximation
applied to the Anderson model standard two-electron Green’s
function.58 Like any mean-field approach, it does not lead
to a double-resonance Green’s function, which is required
to properly account for charging effects. Hence, as is well
known, a good description of the Coulomb-blockade regime
requires going beyond this level of truncation in the equations
of motion.

2. Hubbard I approximation

Instead of factorizing �αks directly, we proceed by deriving
its equation of motion. By means of Eqs. (3) we get

∂t�αks(t) = i[�αks − U − i�(t)]�αks(t)

+
∑
α′,k′

T ∗
α′k′(t)〈B̂†

αks(t)B̂α′k′s(t)n̂s̄(t)〉

+
∑
α′,k′

[Tα′k′(t)〈B̂†
αks(t)ĉs(t)B̂

†
α′k′ s̄(t)ĉs̄(t)〉

− T ∗
α′k′(t)〈B̂†

αks(t)ĉs(t)c
†
s̄ (t)B̂α′k′ s̄(t)〉]. (21)

Note that the term proportional to U has only four operators
in the expectation values because n̂s̄ n̂s̄ = n̂s̄ .

The approximation consists in neglecting matrix elements
involving opposite spins, which renders the following factor-
izations:

〈b†αks(t0)b̂α′k′s(t0)n̂s̄(t)〉 ≈ fαkδαα′δkk′ns̄(t),

〈b̂†αks(t0)ĉs(t)b̂
†
α′k′ s̄(t0)ĉs̄(t)〉 ≈ 0, (22)

〈b̂†αks(t0)ĉs(t)ĉ
†
s̄ (t)b̂α′k′ s̄(t0)〉 ≈ 0.

This approximation for the density matrices is equivalent to the
truncation scheme employed in the nonequilibrium Green’s
function approach,50,58 which yields the high-temperature
limit of the Anderson model.

As a result of the factorization, we obtain the following
compact equation of motion for the approximated second-
order current matrices:

∂t �̃αks(t) = i[�αks − U − i�(t)]�̃αks(t)

+ T ∗
αk(t) fαk ns̄(t). (23)

The equations of motion for ns(t) [Eq. (12)], �′′
αks(t) [Eq. (13)

with �αks replaced by �̃αks], and �̃αks(t) [Eq. (23)] form a
closed set of equations, which can be solved by means of the
auxiliary-mode expansion discussed below.

III. AUXILIARY-MODE PROPAGATION SCHEME

The general idea of the auxiliary-mode expansion consists
in making use of a contour integration and the residue theorem
to perform the energy integration, for instance, in Eq. (11).
To this end the Fermi function is expanded in a sum over
simple poles (or auxiliary modes) and the respective integrals
are given as finite sums (cf. Appendix A).

The transition to auxiliary modes (denoted by the index p)
is facilitated by the following set of rules:

εαk(t) −→ χ+
αp(t), (24a)

T ∗
αk(t)fαk −→ Tα(t)

(−i

β

)
, (24b)

∑
k

Tαk(t)�′′
αks(t) −→ 1

4
�α(t) + Tα(t)

∑
p

�′′
αsp(t), (24c)

which are derived in Appendix A. The first rule replaces
the reservoir energy εαk with the (complex) pole χ+

αp of the
expansion [cf. Eq. (A5)]. The second rule replaces the Fermi
function with the respective weight, which is the same for
all auxiliary modes. Finally, the third rule provides the actual
expansion for the current matrices.

Applying these rules, the current matrices become

�αs = �′
αs(t) + �′′

αs(t), (25a)

�′
αs(t) = −�α(t)

2
ns(t), (25b)

�′′
αs(t) = �α(t)

4
+ Tα(t)

∑
p

�′′
αsp(t). (25c)

The equation of motion for the auxiliary matrix �′′
αsp is

obtained from Eq. (13). One arrives at

i∂t�
′′
αsp(t) = [εs(t) − i�(t)/2 − χ+

α,p(t)]�′′
αsp(t)

+ 1

β
Tα(t) + U �αsp(t) . (26)

The equations of motion for the auxiliary matrices �αsp are
quite similar to those of Eq. (25c), namely,

i∂t �̃αsp(t) =
[
εs(t) + U − χ+

α,p(t) − i
3�(t)

2

]
�̃αsp(t)

+ 1

β
Tα(t) ns̄(t). (27)

The solution of the above equations still requires a complete
description of the population dynamics given by ns(t). The
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latter can be directly obtained from Eq. (12) in terms of the
current matrices

∂tns(t) = −�(t) ns(t) + 2Re
∑

α

�′′
αs(t). (28)

This concludes the derivation of the auxiliary mode prop-
agation scheme. The set of Eqs. (26) to (28), with initial
conditions ns(t0) = 0, �′′

αsp(t0) = 0, and �̃αsp(t0) = 0, can
be solved numerically using standard algorithms. Before the
desired time dependence of the parameters εs(t) and �(t) sets
in, the system has to be propagated until a steady state is
reached. In this way, transient effects arising from the choice
of the initial state are avoided. For convenience we derive in
Appendix B the expressions for the stationary occupations,
which may also be used as initial values for ns .

IV. NONADIABATIC PUMPING

In this section we present two applications of the formalism
developed above. As shown below, one of the interesting
features of nonadiabatic pumping is the increasing delay
in the current response to the external drive with growing
driving speed. Hence, in distinction to the adiabatic limit,
the current caused by a train of pulses can show interesting
transient effects, whenever the pulse period is shorter than
the system response time. To better understand nonadiabatic
driving effects, we focus our analysis on single pulses and vary
the speed by which their shape is changed.

It is worth stressing that our propagation method does not
possess restrictions on the time dependence of the system driv-
ing parameters. In other words, the external time-dependent
drive can be just a single pulse or a train of pulses; it can also
be either fast or slow compared with the system internal time
scales.

A. Symmetric monoparametric pumping

Let us begin by discussing the current generated by a single
Gaussian voltage pulse changing the resonance energy as

εd(t) = ε0 + ε1 exp[−(t/tp)2]. (29)

Here tp sets the pumping time scale. We take �α(t) to be time
independent and equal for both leads, �L(t) = �R(t) = �0/2.
Since thereby JL = JR, we consider only JL in the following.

Figure 1(a) shows the time dependence of the resonance
energy according to Eq. (29). The parameters are taken as
ε0 = �0, ε1 = −2�0, kBT = 0.1�0. Left and right chemical
potentials are equal, namely, μL(R) = 0, and the number of
auxiliary modes is NF = 160. The two bottom panels show
the instantaneous current JL as a function of time for both
the noninteracting (U = 0) and the interacting (U �= 0) case.
In the limit of large tp, we use as a check for our results an
analytical expression for the pumped current JL, obtained for
U = 0 within the adiabatic approximation.12,28

Here, due to the L/R symmetry, there is no net charge
flowing through the QD. At any given time, both leads pump
the same amount of charge in or out. In the driving scheme
defined by Eq. (29), the QD is initially nearly empty. At t = 0,
the resonance energy favors an almost-full occupation. For
very slow pumping, large tp�0, the current JL depends only
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FIG. 1. (Color online) (a) Time dependence of the resonance
energy according to Eq. (29). (b, c) Time-resolved current JL

for different pulse lengths tp and U = 0 and U/�0 = 10. Pa-
rameters used: ε0 = �0, ε1 = −2�0, μα = 0, kBT = 0.1�0, and
NF = 160 (number of auxiliary modes). Circles denote the adiabatic
limit.28

on the resonance energy εd(t): As the resonance dives into
the Fermi sea, the QD is loaded with charge and the process
is reversed as εd(t) starts increasing. This is no longer true
when the drive is faster and tp�0 decreases: Now one observes
a retardation effect, namely, the JL depends not only on the
resonance position, but also on the driving speed. For fast
driving one needs to integrate JL over times much longer than
tp to observe a vanishing net charge per pulse.

In concluding this part, we would like to point to the
possibility of the delay times depending on other pumping pa-
rameters, in particular, on the resonance energy. For example,
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in a recent study,59 it was found that the charge-relaxation time
of an interacting QD coupled to a single-reservoir depends
strongly on the resonance energy. The implications of this
behavior for pumping driven by single pulses or pulse trains
will be the subject of future work.

B. Constrained two-parameter pumping

The pumped currents JL,R(t) characterize the time-
dependent electron response to the external drive. However, in
most applications one is only interested in the charge pumped
per cycle Qc or per pulse Qp. In the latter case, Qp is given
as the time integral over the current, which we write in a
symmetric way:

Qp = 1

2

∫ +∞

−∞
dt[JL(t) − JR(t)]. (30)

One of the beautiful lessons learned from the investigation
of adiabatic pumping establishes a proportionality relation
between Qp and the area swept by the time-dependent driving
forces in parameter space.12 In other words, the total charge
flowing through a QD per cycle (or per pulse) in a single-
parameter adiabatic pump vanishes. Due to the constraints
of single-parameter pumps, in most applications at least two
parameters are used.2–5,8–11,40–44 On the other hand, by using
a single-gate modulation one can realize a constrained two-
parameter pump,43 which implies that the time dependence of
the parameters is ultimately coupled due to the modulation of
only a single gate voltage. In the following we investigate the
implications of this scenario for nonadiabatic pumping.

1. Pulse scheme

Specifically, let us consider voltage pulses of the form

S(t,δ) = 1 − 2 exp[−(2
√

ln 2 t/tp − δ)2]. (31)

Here tp measures the characteristic pulse time, whereas δ

governs the time the pulse sets in. The numerical factor
2
√

ln 2 ensures that tp is the full width at half-maximum of the
pulse, which simplifies the following discussion. By tuning the
delay, one can conveniently switch between a single parameter
(δ = 0) and a two-parameter setup (δ �= 0). Further, the time
dependence of the resonance energy and the coupling strengths
(decay widths) are chosen as

εd(t) = ε0 + ε1S(t,0), (32a)

�R(t) = �0

2
[1 − S(t,0)], (32b)

�L(t) = �0

2
[1 + S(t,δL)]. (32c)

This choice takes into account that the coupling strengths
depend exponentially on the gate voltage.43 The constraint
is imposed by setting δR = 0 and the specific value of δL.
For this driving parametrization, the resonance and the decay
widths are ε0 and �0, respectively, for both asymptotic limits of
|t | � tp. In the following, the parameters are taken as ε0 = 0,
ε1/�0 = 4, kBT/�0 = 1/10, and interaction energy either
U = 0 or U/�0 = 10. In Fig. 2 the time dependence of εd

and �L/R is illustrated for three cases: δL = 0 and δL = ±1.
As mentioned above, in each case the coupling to the right

-4
-2
0
2
4

ε d/Γ
0

-2 -1 0 1 2
t / t

p

0

0.5

1

Γ L
/Γ

0, Γ
R
/Γ

0

-2 -1 0 1 2
t / t

p

-2 -1 0 1 2
t / t

p

)(c)(b)(a

FIG. 2. (Color online) Time dependence of the resonance energy
εd (upper row) and the decay widths �L [lower row; solid (blue) line]
and �R [lower row; dashed (red) line] for three cases: (a) δL = −1,
(b) δL = 0, and (c) δL = 1. Dotted lines indicate the chemical potential
in the reservoirs and the shaded area shows the times when the
resonance energy is below the chemical potential.

reservoir �R follows the time dependence of the resonance
energy. When the latter attains its minimal value at t = 0,
which brings the energy well below the chemical potential of
the reservoirs, the coupling to the right reservoir is minimal.
On the other hand, the behavior of the coupling to the left
reservoir can be influenced by the value of δL. For δL = −1
the maximum of �L comes before t = 0, while for δL = +1 it is
attained after t = 0. In the case δL = 0 the coupling to the left
reservoir is maximal simultaneously with �R being minimal
at t = 0. In the following the response to these drivings is
investigated.

2. Adiabatic pumping

Knowing the time dependence shown in Fig. 2, one can
readily predict the behavior of Qp in the adiabatic limit. In
this case, electron flow occurs when the resonance energy
matches the chemical potential of the reservoirs. In our pulse
scheme, εd(t) equals the chemical potential at t = −tp/2
and t = +tp/2, corresponding to the onset of charging and
decharging of the QD, respectively. Further, the direction of
the net current is determined by the difference in the couplings
to the reservoirs at these very times. For example, for δL =
−1, one finds �L > �R while charging and �L < �R while
decharging. Consequently, the net current is directed from left
to right and Qp is expected to be positive. For δL = +1 the
situation is opposite and Qp should be negative. Finally, for
δL = 0 the couplings are equal at both instants of time and the
net current is vanishing. These expectations are confirmed by
our results for the adiabatic regime, tp�0 � 1, and different
values of U/�0, which are shown in Fig. 3(a). As already
mentioned, one observes Qp = 0 for δL = 0 (monoparametric
pumping). As |δL| begins to increase, |Qp| increases as well. In
this scenario, when the resonance energy matches the chemical
potential, electrons load the dot from the left (or right) and later
they are unloaded to the right (or left, depending on the sign
on δ). For larger values of |δL|, the left reservoir participates
less in the loading or unloading of the QD and the charge per
pulse vanishes accordingly.

For interaction strengths U � ε1 the double occupation
of the QD is suppressed, and consequently, in the adiabatic
regime, Qp is half the value of Qp for the noninteracting
case. The numerical results indicate that within the Hubbard I
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FIG. 3. (Color online) Charge per pulse Qp vs pulse shift δL in
the long-pulse limit (upper panel) and at tp = 1.7 �−1

0 (lower panel).
Dashed lines indicate half of the no-interacting result.

approximation, U �= 0 does not introduce new time scales to
the problem for tp�0 � 1, and its major effect is to correct the
spin degeneracy factor in the equations for the U = 0 case.

3. Nonadiabatic pumping

None of the aforementioned features are observed in the
nonadiabatic pumping regime. Figure 3(b) shows, for example,
that, for short pulses there is no simple relation between Qp

for U = 0 and Qp for U �= 0. Moreover, compared to the
adiabatic regime the charge per pulse can be substantially

larger in this regime. Unfortunately, the behavior of Qp in
this regime is not as easily predicted in general, since the
evolution of the parameters {εd, �L, �R} after the onset of
loading and unloading has to be taken into account. This
is because in the nonadiabatic regime the QD charging and
decharging, and consequently the current, are delayed with
respect to the external system changes, as shown in Sec. IV A.
The quantitative behavior depends on the precise magnitude
of the delay, which is determined by the pulse length. Taking,
for example, the case δL = 0, one finds from Fig. 2(b) that
�L > �R while the resonance energy is below the chemical
potential and charging occurs. During the de-charging, when
εd > μL,R, one finds �R > �L. Consequently, the current is
expected to flow mainly from left to right, which leads to
a positive charge per cycle. For a sufficiently long delay of
the response, i.e., for sufficiently short pulses, one finds the
relations of �L and �R presented above for all δL. Thus, Qp

has to become positive independent of δL in the limit of fast
driving. This is confirmed by the results shown in Fig. 3(b).
The interesting implications of this result are discussed at the
end of this section.

Finally, in Fig. 4 we summarize and corroborate the
discussion of nonadiabatic pumping. It shows the charge
pumped due to the pulse as a function of pulse length tp�0

in the noninteracting (U = 0) and the Coulomb-blockade
(U = 10�0) regimes. In the latter case Qp � 1 for all pulse
lengths. As discussed above, the amount of pumped charge Qp

depends very strongly on the value of tp�0. In the limit of large
pulse lengths, Qp approaches the respective adiabatic value,
while for tp�0 → 0 the charge per pulse vanishes. Moreover,
one finds that Qp is indeed positive for small pulse lengths.
This has the intriguing consequence that the charge per pulse
can change its sign, sweeping from short to long pulses. This
is shown in Fig. 4(c) for δL = 1, where Qp is negative in the
adiabatic regime. A more general and quantitative analysis of
this effect is certainly desirable but beyond the scope of this
article. It may lead, however, to interesting new applications.
It is also worth mentioning that, by changing the pumping
parameters, it is possible to optimize the charge pumped per
pulse and, in particular, to find situations where Qp = 1, which
may be very interesting for metrologic purposes.60

0.1 1 10 100 1000
t
p

Γ0

-0.5

0

0.5

1

1.5

Q
p

0.1 1 10 100 1000
t
p

Γ0

-1.5

-1

-0.5

0

0.5

Q
p

0.1 1 10 100 1000
t
p

Γ0

-0.5

0

0.5

1

1.5
U / Γ0 = 0
U / Γ0 = 10

)(b)(a (c)

FIG. 4. (Color online) Charge pumped per pulse Qp versus pulse length tp for the pulse scheme given by Eq. (31). The solid (blue) line
represents the noninteracting case, while the dashed (red) line represents U/�0 = 10. We consider threecases: (a) δL = −1, (b) δL = 0, and
(c) δL = 1.
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V. CONCLUSIONS

We have presented a new method for analyzing nonadi-
abatic charge pumping through single-level QDs that takes
Coulomb interactions into account. The method is based
on calculating the time evolution for single-electron density
matrices. The many-body aspects of the problem are approxi-
mated by truncating the equations of motion one order beyond
mean field. The novelty is the way in which the time evolution
is treated: By means of an auxiliary-mode expansion, we obtain
a propagation scheme that allows for dealing with arbitrary
driving parameters, fast and slow. The method presented in this
paper can be applied to a wide range of coupling parameters
�α , provided one avoids the Kondo regime. Hence, we are
not restricted to the weak coupling limit where Qp, the charge
pumped per pulse, is rather small.

The results presented for single pulses are also valid
for pulse trains, provided the time between the pulses is
sufficiently long. One can expect to find qualitatively new and
interesting effects by decreasing the time lag. The propagation
scheme allows, in principle, for study of transient effects. In
addition, by propagating over a periodic sequence of pulses
it constitutes a complementary approach to the more familiar
periodic driving. In this regard, our propagation scheme has
the potential to be a valuable tool and provide deeper insights
into nonadiabatic quantum pumps.

ACKNOWLEDGMENT

This work was supported in part by CNPq (Brazil).

APPENDIX A: AUXILIARY-MODE EXPANSION

Here we motivate the rules given in Sec. III. To begin with
we introduce correlation functions, which can be approximated
by finite sums. Then we write the current matrices in terms of
these finite sums.

1. Correlation functions and mode expansion

As we will show later, in the present case we have to
consider the following reservoir correlation function:

Cα(t ′,t) ≡
∑

k

Tαk(t)gαk(t ′,t)T ∗
αk(t ′)fα(εk)

=
∫

dε

2π
�α(ε,t ′,t) fα(ε)

× exp

{
i
∫ t

t ′
dt ′′[ε + �εα(t ′′)]

}
, (A1)

where the line-width function �α is defined as usual:58

�α(ε,t ′,t) ≡ 2π
∑

k

Tαk(t)T ∗
αk(t ′)δ(ε − εαk)

= 2πTα(t)T ∗
α (t ′)ρα. (A2)

In the second line we have used the wide-band limit.

In order to perform the energy integration in Eq. (A1), we
expand the Fermi function f (ε) as a finite sum over simple
poles,

f (ε) ≈ 1

2
− 1

β

NF∑
p=1

(
1

ε−χ+
p

+ 1

ε−χ−
p

)
, (A3)

with χ±
p = μ± xp/β and Im xp > 0. Instead of using the

Matsubara expansion,61 with poles xp = iπ (2p−1), we use a
partial fraction decomposition of the Fermi function,55 which
converges much more rapidly than the standard Matsubara
expansion. In this case the poles xp = ±2

√
zp are given by the

eigenvalues zp of a NF ×NF matrix.55 The poles are arranged
such that all poles χ+

p (χ−
p ) are in the upper (lower) complex

plane. As in the Matsubara expansion, all poles have the same
weight.

Employing the expansion given by Eq. (A3), one can
evaluate the energy integrals by contour integration in the
upper or lower complex plane depending on the sign of t − t ′.
Thereby, the integral in Eq. (A1) becomes a (finite) sum of the
residues. For t � t ′, one gets

Cα(t ′,t) = 1

2
�α(t)δ(t − t ′) + Tα(t)

∑
p

Cαp(t,t1), (A4a)

Cαp(t ′,t) ≡ −i

β
Tα(t ′)ei

∫ t

t ′ dt ′′χ+
αp(t ′′), (A4b)

with the auxiliary modes for reservoir α given by

χ+
αp(t) = [μα + �εα(t)] + xp/β. (A5)

Here, μα is the chemical potential and �εα(t) is due to the
time-dependent single-particle energies εαk(t) of the reservoir
Hamiltonian [Eq. (1c)].

2. Current matrices

The set of Eqs. (13) and (23) can be formally solved. In
order to write down these solutions we define the following
functions:

gs(t,t
′) ≡ e−i

∫ t

t ′ dt ′′[εs (t ′′)−i �(t ′′ )
2 ], (A6a)

gU
s (t,t ′) ≡ e−i

∫ t

t ′ dt ′′[εs (t ′′)+U−i �(t ′′ )
2 ]. (A6b)

With these definitions the formal solution of Eq. (13) reads

�′′
αks(t) =

∫ t

t0

dt ′gs(t,t
′)gαk(t ′,t)

× [T ∗
αk(t ′)fα(εk) − iU�̃αks(t

′)], (A7)

where we have assumed �′′
αks(t0) = 0, corresponding to

our choice of an initially uncorrelated density matrix (see
Sec. II A). An analogous equation holds for �̃αks(t), again
with �̃αks(t0) = 0. We can combine these two expressions to
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get, for the second part of the current matrix,

�′′
αs(t) =

∑
k

Tαk(t)�′′
αks(t) =

∫ t

t0

dt ′Cα(t ′,t)gs(t,t
′)

− iU
∫ t

t0

dt ′gs(t,t
′)

∫ t ′

t0

dt ′′Cα(t ′′,t)gU
s (t ′,t ′′)ns̄(t

′′),

(A8)

where we have used the definition of the correlation function
Cα given by Eq. (A1). Finally, by means of expansion (A4)
of the correlation functions, we obtain an expansion of the
current matrices,∑

k

Tαk(t)�′′
αks(t) = 1

4
�α(t) + Tα(t)

∑
p

�′′
αsp(t), (A9a)

�′′
αsp(t) ≡

∫ t

t0

dt ′Cαp(t ′,t)gs(t,t
′) − iU

∫ t

t0

dt ′gs(t,t
′)

×
∫ t ′

t0

dt ′′Cαp(t ′′,t)gU
s (t ′,t ′′)ns̄(t

′′),

(A9b)

which resembles the last rule of Eqs. (24). Using the explicit
expression for �′′

αsp and taking the time derivative, one can
easily verify the first two rules given by Eqs. (24). Similarly,
one also obtains an expression for �̃αsp, which reads

�̃αsp(t) ≡
∫ t

t0

dt ′′Cαp(t ′′,t)gU
s (t,t ′′)ns̄(t

′′). (A10)

The time derivative of this expression is given by Eq. (27).

APPENDIX B: STATIONARY OCCUPATIONS

If neither the couplings Tαk (and thus �) nor the levels εs or
εαk depend on time, the level occupations ns and the currents
Jα converge to stationary values. These values can be obtained
by setting all time derivatives in the respective equations of
motion to 0. In order to simplify the notation we characterize
the stationary values by omitting the time argument.

We specify below the level occupations for the two
approximations discussed in Sec. II C. Therefore we use

ns = 1

�
2Re

∑
αk

Tαk�
′′
αks, (B1)

which follows directly from Eq. (11b).

1. Hartree-Fock

Within the Hartree-Fock approximation [Sec. II C 1], from
Eq. (20) we get

�′′
αks = i

T ∗
αkfαk

�αks − Uns̄

. (B2)

Plugging this into Eq. (B1), changing the k summation into an
integral over ε, and using definition (14), for the wide-band
limit [Eq. (5)] we get

ns =
∑

α

�α

∫
dε

2π

fα(ε)

(ε−εs−U ns̄)2 + (
�
2

)2 . (B3)

Equation (B3) is a nonlinear equation for ns and has to be
solved numerically.

2. Hubbard I

We obtain the stationary conditional current �̃αks for the
Hubbard I approximation [Sec. II C 2] from Eq. (23) as

�̃αks = i
T ∗

αkfαkns̄

�αks − U + i�
. (B4)

This expression can be used for the stationary �′′
in Eq. (13):

�′′
αks = i

T ∗
αk fαk

�αks

+ i
T ∗

αk fαk Uns̄

�αks [�αks − U + i�]
. (B5)

We use Eq. (B1) and definition (14) and, finally, get, for the
occupation, the following integral:

ns =
∑

α

�α

∫
dε

2π
fα(ε)[A′(ε) + ns̄A

′′(ε)], (B6a)

A′(ε) ≡ 1

(ε−εs)2 + (
�
2

)2 , (B6b)

A′′(ε) ≡ A′(ε)
U [4(ε−εs) − U ]

(ε−εs−U )2 + (
3�
2

)2 . (B6c)

This time the equation is linear in ns̄ and can be solved ex-
plicitly. In the limits U → 0 and U → ∞, it is A′′(ε) = 0 and
A′′(ε) = −A′(ε), respectively. The former limit corresponds
to noninteracting electrons and Eq. (B6a) gives the correct
expression for the occupation.58 The latter case describes the
situation with very strong interactions.
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