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Abstract

The work presented in this dissertation concerns dynamics of Rydberg atom lattices in
the presence of noise and dissipation. Rydberg atoms possess a number of exaggerated
properties, such as a strong van der Waals interaction. The interplay of that interaction,
coherent driving and decoherence leads to intriguing non-equilibrium phenomena.

Here, we study the non-equilibrium physics of driven atom lattices in the pres-
ence of decoherence caused by either laser phase noise or strong decay. In the Vrst case,
we compare between global and local noise and explore their eUect on the number of ex-
citations and the full counting statistics. We Vnd that both types of noise give rise to a
characteristic distribution of the Rydberg excitation number. The main method employed
is the Langevin equation but for the sake of eXciency in certain regimes, we use a Marko-
vian master equation and Monte Carlo rate equations, respectively.

In the second case, we consider dissipative systems with more general power-
law interactions. We determine the phase diagram in the steady state and analyse its
generation dynamics using Monte Carlo rate equations. In contrast to nearest-neighbour
models, there is no transition to long-range-ordered phases for realistic interactions and
resonant driving. Yet, for Vnite laser detunings, we show that Rydberg atom lattices can
undergo a dissipative phase transition to a long-range-ordered antiferromagnetic phase.
We identify the advantages of Monte Carlo rate equations over mean Veld predictions.

Having studied the dynamics of Rydberg atom lattices, we study an application
of the strong interactions in such systems for quantum information processing. We inves-
tigate the coherent exchange of a single photon between a superconducting microwave
cavity and a lattice of strongly interacting Rydberg atoms in the presence of local electric
Veld Wuctuations plaguing the cavity surface. We show that despite the increased sensi-
tivity of Rydberg states to electric Velds, as compared to ground state atoms, the Rydberg
dipole-dipole interaction can be used to protect the system against the dephasing induced
by the local noise. Using 1{f and laser phase noise models, we show that compared to
the case with non-interacting atoms, our system exhibits longer coherence lifetimes and
larger retrieval eXciency of the photon after storing into the atoms.
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Chapter 1
Introduction

The work presented in this dissertation concerns the interface between atomic physics,
quantum optics, and quantum information. The Vrst aim is to theoretically study non-
equilibrium phenomena of Rydberg atom lattices in the presence of noise and dissipative
processes. The second aim is to propose a solution for a long-standing problem of coupling
quantum states in atoms to solid state quantum devices.

Non-equilibrium phenomena are ubiquitous in nature and can be found in Wu-
ids [1], cells [2, 3], light harvesting complexes [4] and polymers [5]. They can be stud-
ied in controllable artiVcial systems, in which the presence of driving and decoherence
leads to intriguing physics that diUers from the equilibrium situation. This has motivated
much theoretical [6–11] and experimental work [12–21], based on diUerent experimen-
tal platforms ranging from ultracold atoms [13–16] to driven semiconductor heterostruc-
tures [17–21]. Among such platforms, Rydberg atoms constitute a powerful tool for creat-
ing controllable interaction potentials [22, 23]. Together with decoherence and coherent
driving, this can lead to non-equilibrium relaxation [24–28], which was also observed ex-
perimentally [29–32], and, to non-equilibrium steady-state phase transitions [33–45] in
the limit of strong dephasing.

Decoherence may arise from laser phase noise or from the spontaneous decay
of excited atoms. In the Vrst case, we compare between homogeneous or inhomogeneous
phase noise: the Vrst one acts globally on the excited states (also referred to as corre-
lated noise), while the second one acts locally on the excited states (uncorrelated noise).
Previous works assumed that the noise is uncorrelated [24–28, 46–50]. However, as the
laser features modes, practically it acts globally on the excited states of atoms. The conse-
quences for the steady states of Rydberg ensembles are yet to be understood.

Although the presence of strong radiative decay prevents the preparation of
Rydberg states, the interplay of coherent laser excitation and strongly interacting Rydberg
atoms in the presence of strong radiative decay can lead to the non-equilibrium steady-
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state phase transitions [33–45]. Most previous works have predicted the emergence of
steady states with antiferromagnetic order on the basis of mean Veld theory assuming
nearest neighbour interactions [33]. Yet, large single-site Wuctuations due to a simple two-
level driving scheme restrict the emergence of such ordering to short length scales in all
lattice dimensionalities [34]. The other driving scheme (e.g. in three-level systems) in a
1D setting fails to realise crystallisation [34–36]. MeanVeld predictions are also in conWict
with variational calculations [37, 38] and Veld-theoretical methods [39], which raises the
validity of the results. This motivates theoretical study of the possibility of long-range
order in dissipative Rydberg atom lattices.

On the other hand, decoherence is a long-standing problem of coupling quan-
tum states in atoms to superconducting cavity [51–55]. The implementation of such a
quantum interface oUers a major breakthrough for quantum information science. It al-
lows the development of a powerful hybrid architecture, where long-lived states of atoms
store quantum information that can be processed rapidly using superconducting circuits.
For such a hybrid system, a strong coherent coupling between them is required for an eX-
cient and fast information exchange, which can be achieved by exploiting the large dipole
moment of Rydberg states [56–59]. However, it makes Rydberg states more susceptible to
Wuctuating electric Velds, which are present close to the metallic cavity surface. The Wuc-
tuations shift the energy states of the atoms leading to random inhomogeneous phases (if
the noise acts locally) being accumulated in the dynamics of each atomic transition.

Most previous works investigated the Rydberg-atom-surface interactions in atom-
chip traps [60–63]. Although the coherent driving of a Rydberg transition near the surface
of atomic chips has been demonstrated [53, 61], the coherent evolution is limited by the
described noise mechanisms. For instance, adatoms are shown to be the major cause of
electrostatic Velds in atom chip surfaces [60, 64]. Although, harmful eUects from electro-
static Velds due to adsorbates have been mitigated by carefully designing the cryogenic
chamber and cooling sequences [65], or by covering the surface of an atom-chip with a
thin metallic layer [66], the problem of uncontrolled Wuctuating Velds is more diXcult to
address [61]. Hence, the realisation of noise-resistant quantum interfaces between Ryd-
berg atoms and superconducting cavities remains a major challenge.

1.1 Outline

In chapter 2, a short introduction into the theory of Rydberg atoms will be given. In
chapter 3, we study the dynamics of driven atom lattices in the presence of global noise
and analyse its diUerence to the case of local noise. We will show that both types of noise
give rise to a characteristic distribution of the Rydberg excitation number. The results of
this work have been published in the article:

• Wildan Abdussalam and Laura I. R. Gil
Non-equilibrium Physics of Rydberg lattices in the presence of noise and dissipative processes,
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European Physical Journal for Special Topics 225, Issue 15-16, 1325-1347, (2016).

In chapter 4, instead of the presence of noise, we study the dynamics of driven
atom lattices in the presence of strong decay. We will show that a long-range-ordered anti-
ferromagnetic phase can be realised in dissipative Rydberg atom lattices when subjected to
appropriate coherent driving. In contrast to the equilibrium physics of the corresponding
unitary systems, which is well described by mean Veld models [67] and nearest-neighbour
approximations [68], Wuctuations as well as the weak tail of the rapidly decaying interac-
tions are both found to be essential for the physics of the dissipative phase transition. The
results of this work have been published in the articles:

• M. Höning, W. Abdussalam, M. Fleischhauer and T. Pohl
Antiferromagnetic long-range order in dissipative Rydberg lattices,
Phys. Rev. A 90, 021603 (R).
and the extension in the article

• Wildan Abdussalam and Laura I. R. Gil
Non-equilibrium Physics of Rydberg lattices in the presence of noise and dissipative processes,
European Physical Journal for Special Topics 225, Issue 15-16, 1325-1347, (2016).

In chapter 5, the coupling quantum states in atoms to superconducting circuits
will be introduced. In chapter 6, we propose a noise-resistant interface between a collec-
tion of Rydberg atoms and a single photon in a superconducting cavity by means of (reso-
nant) dipole-dipole interactions. Instead very large atoms clouds (N » 106 atoms) [60], we
use an atomic lattice with up to hundreds atoms. In such system, (resonant) dipole-dipole
interactions are exploited to compensate dephasing of Rydberg states due to Wuctuating
electric Veld from the superconducting cavity surface. We will show that this scenario
is not only robust to the Wuctuating noise from the cavity surface but also robust to the
dissipative processes. The results of this work are summarised in

• W. Abdussalam, D. Viscor, T. Lahaye, J. Fortagh, A. Browaeys, and T. Pohl
Noise-resistant coupling between Rydberg atoms and a superconducting cavity via
dipole-dipole interaction.
In preparation. To be submitted to Physical Review Letters.

In the appendix of this thesis, the supplementary informations are added. They
contain the derivation of dipole-dipole interactions (Appendix A.1) for chapter 2, the simu-
lation methods (Appendix B) for chapter 4, 5, and 6, the population inversion (Appendix C)
for chapter 4 and the states truncation (Appendix D) for chapter 6.





Chapter 2
Rydberg atoms

Contents
2.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 The hydrogen atom . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Alkali atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Dipole moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Rydberg-Rydberg interactions . . . . . . . . . . . . . . . . . . . . . 12

Rydberg atoms are atoms in which an electron is excited to a state with a very
high principal quantum number n with energies close to the ionization limit. They are
gigantic; the electron’s orbital radius extends over several thousands of bohr radii. As a
result, Rydberg atoms possess a number of exaggerated properties [69] (see table 2.1): (i)
a large dipole polarisability, which scales as „ n7, making them very sensitive to electric
Velds; (ii) long radiative lifetimes, scaling as „ n3 such that the n “ 50 state of Rubid-
ium has a lifetime of „ 141.31 µs [70]; (iii) a dipole-dipole interaction which scales as
„ n4, and, consequently, (iv) a strong van der Waals interaction C6{r

6 with C6 scaling ap-
proximately asC6 „ n11. Owing to these interesting properties, Rydberg atoms have been
widely studied, for example, in astrophysics [71, 72], plasma physics [73–75] and quantum
optics [76–80], quantum information [22, 23, 81, 82], and quantum simulations [15, 83–85].
Most relevant for the present thesis work, interacting Rydberg atoms conVned in lattices
can be used for quantum simulations of many body phases [86–88] and provide a well
suited platform for studying non-equilibrium phenomena [8, 24, 32, 33].

In this chapter, we will review some basic properties of Rydberg atoms as a
prerequisite for describing the resulting many-particle physics in subsequent chapters.
In Sec. 2.1, we Vrst describe how to determine Rydberg states of single-electron atoms
and their energy spectrum. We will discuss the electronic structure, dipole moments and
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Property Expression n dependence

Binding energy En n´2

Level spacing En ´ En´1 n´3

Orbital radius xnl|r|nly n2

Dipole matrix element between
low-lying state and Rydberg state

e.g. x5P |r|nSy n´3{2

Dipole matrix element between two
Rydberg states

e.g. xnP |r|nSy n2

Radiative lifetime τ 0
nlj n3

Table 2.1: Properties of Rydberg states

lifetime of alkaline atoms. In Sec. 2.2, we consider two atoms and their mutual dipole-
dipole coupling that gives rise to van der Waals interactions.

2.1 Basic properties

In this Section, we brieWy introduce selected basic single-atom properties of Rydberg
states, which are most relevant for the considerations of the present thesis. We will focus
on the simplest case of eUective single-electron atoms, such as the alkalines, which are be-
ing employed in the majority of Rydberg gas experiments [22]. The electronic properties
alkaline atoms are very similar to those of hydrogen atoms, and we will Vrst consider this
most simple case in the next section.

2.1.1 The hydrogen atom

The Hamiltonian for the hydrogen atom can be written as :

Ĥa “ ´
1
2∇2 ´

1
r
`
α2

r3 L̂ ¨ Ŝ, (2.1)

where the Vrst term describes the kinetic energy, and the second accounts for the Coulomb
interaction between the electron and the singly charged nucleus. The third term is the
spin-orbit coupling, where α is the Vne structure constant and L̂ and Ŝ are the orbital and
spin angular momentum operators of the electron. The eigenenergies and eigenstates can
be obtained analytically by solving the time-independent Schrödinger equation

Ĥaψnljmj pr, θ, φq “ Enljψnljmj pr, θ, φq . (2.2)

: Here, we use Hartree atomic units, in which all length scales are in units of the Bohr radius a0 “ 5.29 ¨
10´11m, and energies are scaled by the Hartree energy EH “ mα2c2 “ 4.3579 ¨ 10´18J , where m is the
electron mass, α the Vne structure constant, and c the speed of light.
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Since the Coulomb potential as well as the spin-orbit coupling are radially symmetric, the
wave function ψnljmj pr, θ, φq can be factorised into two terms as

ψnljmj pr, θ, φq “ Rnlj prqYl,j,mj pθ, φq . (2.3)

The Vrst part denotes the radial wavefunction Rnlj prq while Yl,j,mj pθ, φq is the angular
eigenstate given by the generalised spherical harmonics as [89]

Yl,j,mj pθ, φq “

b

j`mj

2j |y
`y `

b

j´mj

2j |y
´y

`

j “ l ` 1
2
˘

Yl,j,mj pθ, φq “

b

j`1`mj

2pj`1q |y
`y `

b

j`1´mj

2pj`1q |y
´y

`

j “ l ´ 1
2
˘

,

(2.4)

where

|y˘y “ Y
mj¯

1
2

l pθ, φq

ˇ

ˇ

ˇ

ˇ

1
2 ,˘

1
2

F

, (2.5)

and
ˇ

ˇ

1
2 ,˘

1
2
D

denotes a deVnite spin state, |s,msy. The quantum numbers n, l, j,m obey
the following conditions:

• The principal quantum number assumes positive integer values n ą 0.

• The orbital quantum number l acquires integer values between 0 and n´ 1.

• The quantum numbers j andmj derive from the total angular momentum operator
Ĵ “ L̂` Ŝ. The quantum j follows from the eigenvalue, j pj ` 1q, of the operator
Ĵ2,such that j “ l ` 1

2 or j “ l ´ 1
2 for l ą 0, and j “ `1

2 for l “ 0.

• The quantum number mj corresponds to the projection of the total angular mo-
mentum onto the z-axis, and, therefore, acquires integer values between ´j and
`j.

Below, we will use the standard notation for low-l orbitals, with l “ 0 denoted by S-
states, l “ 1 by P -states, l “ 2 by D-states, and l “ 3 by F -states. Moreover, when the
quantum numbers j and mj are irrelevant, we will use the label nS, nP , etc., to indicate
the |n, l “ 0, ...y, |n, l “ 1, ...y, etc., states. When only mj is irrelevant, we will append
the value of j as a subscript, e.g. write nP3{2 for the |n, l “ 1, j “ 3{2, ...y state.

The resulting radial Schrödinger equation

EnljRnlj “

!

´
1
2

„

d2

dr2 `
2
r

d

dr



`
lpl ` 1q

2r2 ´
1
r
` α2 j pj ` 1q ´ l pl ` 1q ´ 3

4
2r3

)

Rnljprq,

(2.6)
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Figure 2.1: (a) Distance dependence of the radial charge of Rubidium and (b) the resulting eUective
core potential (blue dashed) line, as given by Eq. (2.9) compared to the pure Coulomb potential for
the hydrogen atom (red line).

can be solved analytically, which yields the following eigenenergies and eigenstates

Enlj “ Enj “ ´
1

2n2

ˆ

1` α2

n2

„

n

j ` 1
2
´

3
4

˙

, (2.7)

ψnlmj prq “

d

ˆ

2
n

˙3
pn´ l ´ 1q!
2n pn` lq! e

ρ{2ρlL2l`1
n´l´1 pρqYl,j,mj pθ, φq , (2.8)

where ρ “ 2r{n and L2l`1
n´l´1 is the generalised Laguerre polynomial.

2.1.2 Alkali atoms

Alkaline atoms represent the simplest non-hydrogenic systems. For a given nuclear charge
z, they feature a single valence electron orbiting a compact core of the remaining z ´ 1
electrons that occupy closed shells. Their interaction with weak external Velds is thus
dominated by the single active valence electron while the eUects of the core electrons can
be described by an eUective core potential Veff prq replacing the Coulomb potential,´1{r,
in Eq.(2.1). An accurate and, yet, simple form is described in [90] and given by

Veff prq “ ´
Zl prq

r
´

αc
2r4

”

1´ e´pr{rcq
6
ı

. (2.9)

Here, αc denotes the static dipole polarisability of the core and the eUective radial charge
Zl reads

Zl prq “ 1` pz ´ 1q e´a1r ´ r pa3 ` a4rq e
´a2r. (2.10)

The explicit values of the Vve free parameters (a1, a2, a3, a4, rc) in Eqs. (2.10) and (2.9)
have been determined for rubidium atoms in [90]. Fig. 2.1 shows the corresponding radial
charge of rubidium and a comparison of the Coulomb potential of hydrogen and the ef-
fective core potential. For high principal quantum numbers with large orbital radii, „ n2,
the eUective potential deviates from the Coulomb potential only within a small fraction of
the actual atomic radius such that the resulting correction to the atom’s binding energy
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l j δl,j,0 δl,j,2
0 1/2 3.1311804 0.1784
1 1/2 2.6548849 0.2900
1 3/2 2.6416737 0.2950
2 3/2 1.34809171 -0.60286
2 5/2 1.34646572 -0.596
3 5/2 0.0165192 -0.085
3 7/2 0.0165437 -0.086

Table 2.2: The free parameters of Rubidium

can be expressed by the quantum defect formula

Enl “ ´
Ry˚

pn´ δnljq
2 (2.11)

where Ry „ 0.5a.u. is the Rydberg constant and δnlj denotes quantum defect. It can be
accurately calculated from the Rydberg-Ritz formula [91]:

δnlj “ δ0 `
δ2

pn´ δ0q
2 `

δ4

pn´ δ0q
4 `

δ6

pn´ δ0q
6 ` ... (2.12)

Accurate values for δnlj and the parameters in Eq.(2.12) can be obtained from precise spec-
troscopic data, as reported in [92, 93] for rubidium atoms, and given in table 2.2. For high
angular momenta l ą 3, the centrifugal barrier prevents electrons from penetrating the
core potential region rendering the corresponding quantum defects virtually negligible.

In Fig. 2.2 we show calculated radial probability densities |rRnlj|
2 for diUerent

values of n and l, illustrating the strong increase of the orbital size, 9n2 with growing
principal quantum number n for l “ 0. For the n but l = 20 with j “ l ´ 1{2 the
strong centrifugal barrier prevents the electron from penetrating the core region such that
the resulting wave functions are identical to that of hydrogen. We furthermore show the
radial density of circular Rydberg states [94] with l “ n´1 for which the density features
only a single maximum.

2.1.3 Dipole moments

The obtained wave function, e.g., allow us to determine transition dipole moments of high
lying Rydberg states which are essential for a range of central properties. They determine
the interaction of atoms with laser light or microwave radiation, the atomic response to
electric Velds, and the van der Waals or dipolar interaction between the Rydberg atoms.
The dipole moment operator is deVned as

µ̂ “ ´er̂, (2.13)
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Figure 2.2: Radial probability densities |rRnl prq |
2 as a function of a distance from the core r ra0s

for n = 25, 35, and 45. Panel (a) shows |rRnl prq |
2 for S states with l = 0, (b) a high value of l=20,

showing the eUects of the centrifugal barrier which pushes the valence electron away from the
core, and (c) l = n - 1 states, for which the wave function does not exhibit any nodes.

where r̂ denotes the displacement vector of the valence electron from the nucleus, and e
is the elementary charge, with e = 1 in atomic units. Correspondingly the dipole matrix
element for a transition between two states, |n, l, j,mjy and |n1, l1, j1,m1jy is given by

xn, l, j,mj|r̂|n1, l1, j1,m1jy. (2.14)

The aforementioned separability of the wave function carries over to the dipole matrix

elements, which can be written as products, Rn1l1j1

nlj Cl
1j1m1

j

ljmj
, of a radial matrix element

Rn1l1j1

nlj “

ż 8

0
Rnlj prq rRn1l1j1 prq r2dr, (2.15)

and matrix elements for the angular and spin component

Cl
1j1m1

j

ljmj
“

ż

dφdpcos θqYl,j,mjpθ, φq

¨

˚

˝

sin θ cosφ
sin θ sinφ

cos θ

˛

‹

‚

Yl1j1m1
j
pθ, φq. (2.16)

Using

e1 “
ex`iey?

2 , e2 “
ex´iey?

2 , e3 “ ez (2.17)
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to deVne orthogonal polarization vectors from the cartesian basis vectors ex, ey and ez ,
the matrix element can be most conveniently written as [95, 96]

ei ¨ C
l1j1m1

j

ljmj
“

c

p2l ` 1q p2k ` 1q p2l1 ` 1q
4π

˜

j k j1

´mj ∆m m1j

¸˜

l k l1

0 0 0

¸

(2.18)

in terms of Wigner-3j symbol [95], where ∆m “ 0,˘1 and k “ 1.

2.1.4 Lifetimes

Applications of Rydberg atoms as quantum simulators or quantum computation platforms
crucially rely on a long coherence of the excited state. The total lifetime τnjl of a Rydberg
state largely depends the spontaneous decay time τ 0

nlj and the timescale τ bbnlj for transition
induced by black body radiation:

1
τnlj

“
1
τ 0
nlj

`
1
τ bbnlj

. (2.19)

The rate of spontaneous decay from |nljy to |n1l1j1y is given by the Einstein A coeX-
cient [69]

An1l1j1,nlj “
e2ω3

n1l1j1,nlj

3πε0~c3
lmax

2l ` 1 |xn
1l1j1|r̂|nljy|2, (2.20)

where ωn1l1j1,nlj denotes the frequency diUerence between the state |n1l1j1y and the state
|nljy, ωn1l1j1,nlj “ pEn1l1j1 ´ Enljq{~, and lmax is the maximum of l and l1. The lifetime of
a state |nljy is the reciprocal of the sum of decay rates to all possible Vnal states |n1l1j1y
:

τ 0
nlj “

1
ř

n1l1j1

An1l1j1,nlj
. (2.21)

Due to the strong dependence of the decay rate (2.20) on the frequency as ω3
n1l1j1,nlj , tran-

sitions with the highest frequency diUerence generally contribute the largest terms in the
sum (2.21). Thus, the predominant decay channel for a high-lying atomic state is a dipole-
allowed transition to states with the lowest energy. For example, in rubidium |nSy states
decay predominantly to |5P y and |6P y, while |nP y decays predominantly to |5Sy, |6Sy,
and |4Dy [97]. For high n, as n increases ωn1l1j1,nlj converges due to the n´2-scaling of the
binding energy Eq. (2.11), and thus An1l1j1,nlj depends only on the matrix elements for the
transition from the state |nljy to a low-lying state |n1l1j1y. Thus for large n, we Vnd the
simple power-law scaling

τ 0
nlj „ n3, (2.22)

showing that the lifetime rapidly increases with n which is essential for the applications
mentioned above.

At a Vnite environmental temperature, T , black-body needs to be considered.
Due to the small energy spacing between high-lying Rydberg states, and the large re-
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spective matrix elements, black-body radiation can induce rather strong transitions with
excited state manifolds. In equilibrium the frequency distribution of black body photons
is given by [98]:

N pωq “
1

e~ω{kbT ´ 1 . (2.23)

and features a linear temperature dependence if under the typical condition of ~ω ! kbT .
The resulting transition rates can be obtained from [69]:

Kn1l1j1,nlj “ An1l1j1,nljN pωn1l1j1,nljq . (2.24)

where An1l1j1,nlj is given in Eq.(2.20). At typical temperatures black-body radiation, hence,
tends to cause transitions between energetically adjacent states with n1 „ n, in marked
contrast to spontaneous emission, discussed above.

The total Rydberg state lifetime due to black-body radiation is obtained by sum-
ming the transition rates over all possible Vnal states, which yields the approximate ex-
pression [69]

τ bbnlj “
3~n2

4α3kbT
, (2.25)

revealing a weaker n-dependence τ bbnlj „ n2. As a result black body radiation can become
the major lifetime limitation limiting factor as n increases. Accurate values for Rydberg
lifetimes of alkaline atoms can be found in [70]. While black-body radiation is detrimental
to many experiments, since it transfers atoms to Rydberg states that are not coupled by the
initial excitation laser [99], it can be suppressed by working with cryogenic environments,
as demonstrated experimentally in Ref. [56].

2.2 Rydberg-Rydberg interactions

Having discussed the most relevant single-atom properties of Rydberg states, we are now
in a position to illuminate the interactions in atomic ensembles, which represent the most
important aspect of the present thesis work. To this end, we consider two atoms separated
by a distance vector R̂, whose interaction is composed of three contributions: the elec-
trostatic repulsion between the core, the electrostatic attraction between one core and the
Rydberg electron of the other atom, and the repulsion between the two Rydberg electrons.
The Hamiltonian that represents these terms reads

Ĥdd “
e2

4πε0
¨ Vdd

´

R̂, r̂1A, r̂2B

¯

(2.26)

Vdd

´

R̂, r̂1A, r̂2B

¯

“

«

1
|R̂|

´
1
|r̂1B|

´
1
|r̂2A|

`
1
|r̂12|

ff

(2.27)

“

«

1
|R̂|

´
1

|R̂ ´ r̂1A|
´

1
|R̂ ` r̂2B|

`
1

|R̂ ´ pr̂1A ´ r̂2Bq |

ff

, (2.28)
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Figure 2.3: Illustration of two interacting Rydberg atoms in which A and B label the two atomic
cores and 1 and 2 indicate the respective electrons.

where the distances R̂, r̂2A, r̂1B , r̂1A, r̂2B and r̂12 are shown in Fig. 2.3. Here, r̂i “
tr̂1A, r̂2Bu and the characters A and B label the two cores and the numbers 1 and 2 indicate
the respective Rydberg electrons. For large distances exceeding the typical size of the
Rydberg orbits we can simplify Eq. (2.26) by means of a multipole expansion, which, to
leading order, yields the dipole-dipole interaction Hamiltonian

Ĥdd “
µ̂1A ¨ µ̂2B ´ 3 pµ̂1A ¨ nq pµ̂2B ¨ nq

4πε0R3 , (2.29)

where the dipole moment operator is deVned as µ̂ “ ´er̂i and n “ R̂{R. A detailed
derivation of Eq. (2.26) to (2.29) is given in Appendix A.1.

With the single-atom Hamiltonian ĥi and Eq. (2.29) the interaction potentials
can be obtained by diagonalising the total two-atom Hamiltonian

Ĥ “ ĥ1 ` ĥ2 ` Ĥdd. (2.30)

While this typically requires a formidable numerical eUort involving several 104 coupled
pair states, we can obtain simple insights into the general scaling laws of the resulting
interactions from the following simple model.

To this end, we consider only three relevant states |oiy, o “ t´, 0,`u of an
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Figure 2.4: An example of two three-state atoms.

atom i (see Fig. 2.4) with

x`i|r̂i|´iy “ x´i|r̂i|`iy “ 0, (2.31)

x0i|r̂i|`iy “ x`i|r̂i|0iy “ µ` ‰ 0, (2.32)

x0i|r̂i|´iy “ x´i|r̂i|0iy “ µ´ ‰ 0. (2.33)

The single atom energies are assumed to be given by

ε0 “ x0i|ĥi|0iy “ 0, (2.34)

ε` “ x`i|ĥi|`iy ą 0 (2.35)

ε´ “ x´i|ĥi|´iy ă 0, (2.36)

such that the atomic pair energies energies at asymptotic distances R Ñ 8 are given
by

ε00 “ x00|ĥ1 ` ĥ2|00y “ 0, (2.37)

ε`´ “ ε´` “ x`´ |ĥ1 ` ĥ2| ` ´y “ ε` ` ε´, (2.38)

ε`` “ x`` |ĥ1 ` ĥ2| ` `y “ 2ε` (2.39)

ε´´ “ x´´ |ĥ1 ` ĥ2| ´ ´y “ 2ε´. (2.40)

Since ε` ą 0 and ε´ ă 0, we can assume that |ε``|, |ε´´| " |ε`´|. In addition, the states
| ` `y and | ´ ´y are energetically far away and thus only give negligible contributions.
Consequently, we only take into account the states |`´y and |´`y. The problem further
simpliVes in the rotated pair state basis

|my “
| ` ´y ´ | ´ `y

?
2

, (2.41)

|py “
| ` ´y ` | ´ `y

?
2

. (2.42)
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for which

x00|Ĥdd|my “ 0, (2.43)

x00|Ĥdd|py “

?
2µ`µ´
R3 (2.44)

and one obtains the following simple two-state Hamiltonian

Ĥ2ˆ2 “

˜

0 V0
V0 ε`´

¸

(2.45)

with V0 “
?

2µ`µ´{R3. Its eigenvalues

E˘ “
1
2

ˆ

ε`´ ˘

b

ε2
`´ ` 4V 2

0

˙

. (2.46)

allow to discriminate two distinct regimes. First, for weak dipole-dipole interaction, V0 !

ε`´ the pair energies

E˘{ε`´ «
1
2 ˘

1
2 ˘ pV0{ε`´q

2
¯O

`

pV0{ε`´q
4˘ ; (2.47)

assume the characteristic form, C6{R
6, of the van der Waals (vdW) interaction potential

with the vdW-coeXcient

C6 “
2µ2
`µ

2
´

ε`´
. (2.48)

Since µ „ n2 and ε`´ „ n´3, the C6 coeXcient is found to scale as n11. It follows form
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the above discussion that the van der Waals potential is valid if R larger than the critical
radius

RvdW “

ˆ

2µ`µ´
ε`´

˙1{3

. (2.49)

This is illustrated in Fig. 2.5. In the opposite limit where V0 " ε`´, the energies are
approximately given by

E˘{ε`´ «
1
2 ˘ V0{ε`´ `Opε`´{V0q, (2.50)

corresponding to dipole-dipole interactions [96] with the coeXcient

C3 „ µ`µ´. (2.51)

scaling as n4. This regime is valid for small distance R ! Rvdw, as illustrated in Fig. 2.5.
More detailed calculations of the C6 dispersion coeXcients for alkali Rydberg atoms pairs
are given in Ref. [100] and a numerical calculations for Rubidium beyond the simple
power-law scaling with the distance R can be found in Ref [101, 102].
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In the previous chapter, we have described basic properties of single and two-
interacting atoms. In this chapter, we consider laser-driven lattice of Rydberg atoms and
study the non-equilibrium physics in the presence of decoherence due to laser phase noise.
We compare between homogeneous or inhomogeneous phase noise: the Vrst one acts
globally on the excited states (also referred to as correlated noise), while the second one
acts locally on the excited states (uncorrelated noise). Most of previous work assumes that
the noise is uncorrelated [24–28, 46–50]. However, as the laser features modes, practically
it acts globally on the excited states of atoms. The consequences for the steady states of
Rydberg ensemble are yet to be understood.

The chapter is organised as follows. In Sec. 3.1, we consider the setup, where the
Hamiltonian that governs the system is provided in Sec. 3.2. For the simple case of two
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Figure 3.1: (a) Schematics of a one-dimensional lattice in which ground-state atoms |gy are laser
excited to the Rydberg state |ey in the presence of local (b) or global (c) noise.

interacting atoms, we compare the steady states for global and local noise [see 3.3]. In
Sec. 3.4 we extend the system to more atoms and characterise the Rydberg population and
the full counting statistics (FCS) in Sec. 3.5. We will complete this chapter by considering
implications for experiments in Sec. 3.6.

3.1 Basic Setup

We consider an ensemble of N two-level atoms, each with a ground state |gy and a highly
excited state |ey, which are placed in neighbouring sites of a one-dimensional lattice with
spacing a [see Fig.3.1(a)]. A pair of excited atoms at sites i and j experiences the repulsive
van der Waals (vdW) interaction V0{|i´ j|

6 with V0 “ C6{a
6 and C6 ą 0. The transitions

between two states are driven by a laser, which is subject to local [see Fig.3.1(b)] and global
[see Fig.3.1(c)] phase noise. We denote the Rabi frequency of laser by Ω and detuning by
∆ “ ωL´ωeg , where ωeg “ pEe ´ Egq {~ denotes the atomic transition frequency and ωL
denotes the laser frequency. We assume that the transitions are resonant in the sense that
∆ » 0. As we will see, the interplay between the laser driving, vdW interaction and laser
phase noise gives rise to a characteristic distribution of the Rydberg excitation number.

3.2 1D lattice of two-level atoms

In this section, we will consider the Hamiltonian that governs the system. As we are
interested in exploiting the dynamics and steady state of the system, we will employ three
diUerent numerical methods. The main method employed is the Langevin equation, but
for the sake of eXciency in certain regimes, we use a Markovian master equation and
Monte Carlo rate equation, respectively.
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3.2.1 Light-atom coupling

We Vrstly consider an atom with the atomic eigenstates |gy and |ey, under the inWuence
of the laser Veld

E pr, tq “ E0 cos pωLt` φ ptq ´ k ¨ rq “
1
2E0

´

eipωLt`φptq´k¨rq ` e´ipωLt`φptq´k¨rq
¯

.

(3.1)
The amplitude of the Veld is denoted by E0, where ωL and φ denotes the Veld frequency
and the phase noise, respectively. The Hamiltonian that governs the system is given by

ĤAL “ Ĥatom ` ĥint (3.2)

“ ~ωegσ̂ee ` qr̂ ¨ E pr̂, tq (3.3)

“ ~ωegσ̂ee `
1
2qr̂ ¨ E0

´

eipωLt`φptq´k¨rq ` e´ipωLt`φptq´k¨rq
¯

(3.4)

where q “ ´e denotes the electron charge and qr̂ exp p˘ik ¨ r̂q can be expressed in the
two-state basis t|gy, |eyu:

qr̂ exp p˘ik ¨ r̂q “ ´xg|er̂ exp p˘ik ¨ r̂q |ey|gyxe| ´ xe|er̂ exp p˘ik ¨ r̂q |gy|eyxg|
´ xg|er̂ exp p˘ik ¨ r̂q |gy|gyxg| ´ xe|er̂ exp p˘ik ¨ r̂q |ey|eyxe|. (3.5)

The third and fourth part of Eq. (3.5) is zero xg|r̂|gy “ xe|r̂|ey “ 0. The Vrst and second
part can be simpliVed by performing a dipole approximation, i.e., an approach via ne-
glecting the spatial dependence of the electric Veld. On the Vrst glance, applying a dipole
approximation is prohibited. This is due to the fact that the Rydberg state |ey is on aver-
age a thousand Bohr radii far away from the core (see Chap. 2), which is the same order
of magnitude of the laser wavelength 2π{k. However, if the scalar products in (3.5) are
written as integrals of the form

ż

d3rψg prqer exp p˘ik ¨ rqψe prq , (3.6)

the signiVcant contributions only come from the positions where the products |ψg prqψe prq |
is large. As the ground state |gy has a size of only a few atomic units p1 nm ! 2π{kq, the
product |ψg prqψe prq | has a size much smaller than the wavelength pk ¨ r ! 1q. There-
fore, we may apply the dipole approximation,

er̂ exp p˘ik ¨ rq « er̂ “ xg|er̂|ey|gyxe| ` xe|er̂|gy|eyxg| “ µ̂ pσ̂ge ` σ̂egq , (3.7)

where µ̂ “ exg|r̂|ey is the dipole matrix element. Here, we have also deVned the operators
σ̂αβ “ |αyxβ|. The Hamiltonian (3.2) becomes

ĤAL “ ~ωegσ̂ee `
1
2E0 ¨ µ̂ pσ̂eg ` σ̂geq

´

eipωLt`φptqq ` e´ipωLt`φptqq
¯

(3.8)
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It is useful to transform the problem to the interacting picture by applying the unitary
transformation

Û “ e´i~ωgetσ̂ee , (3.9)

from which we obtain the Hamiltonian

ĤI
AL “ Û :ĤALÛ ´ ~ωegσ̂ee (3.10)

“
1
2E0 ¨ µ̂

`

σ̂ege
iωegt ` σ̂gee

´iωegt
˘

´

eipωLt`φptqq ` e´ipωLt`φptqq
¯

(3.11)

“
~Ω
2

´

σ̂ege
irpωeg`ωLqt`φptqs ` σ̂gee

ip∆t`φptqq ` σ̂ege
´ip∆t`φptqq ` σ̂gee

´irpωeg`ωLqt`φptqs
¯

(3.12)

where ∆ “ ωL ´ ωeg denotes the so-called detuning and Ω “ E0 ¨ µ̂{~ is the (resonant)
Rabi frequency.

In order to eliminate the time dependence in (3.12), we perform another unitary
transformation Û “ e´i~∆σ̂eet,

ĤI
AL “ Û :ĤALÛ ´ ~∆σ̂ee (3.13)

“ ´~∆σ̂ee `
~Ω
2

´

σ̂ege
irpωeg`ωLqt`φptqs ` σ̂gee

iφptq ` σ̂ege
´iφptq ` σ̂gee

´irpωeg`ωLqt`φptqs
¯

(3.14)

We use the Hilbert space basis p|ey, |gyq, i.e.,

|ψy “ cg|gy ` ce|ey (3.15)

and numerically Vnd the solution of the Schrödinger equation

i~Bt|ψptqy “ ĤI
AL|ψptqy (3.16)

with the initial condition |ψp0qy “ |gy. For large values of ωL, the solution is a combi-
nation of slow oscillations (the so-called "rabi oscillations") and small, fast oscillations.
The latter vanish for ωL Ñ 8. This is due to the quickly oscillating nature of the
terms e˘pωge`ωL`∆qt in the Hamiltonian 3.14. Hence, if ωge ` ωL becomes large enough
pωge ` ωL ! ∆,Ωq, they average out very short timescales „ pωL ` ωegq

´1
! ∆´1,Ω´1

and it is justiVed to neglect them. This is known as the rotating wave approximation
(RWA). This leaves us with

ĤI
AL “ ´~∆σ̂ee `

~Ω
2

´

σ̂gee
iφptq ` σ̂ege

´iφptq
¯

. (3.17)

At initial condition t “ 0, the phase noise has the form eiφp0q. The instantaneous change
of phase noise can be deVned as eiφpt´t

1q. Thus, the Eq. (3.17) becomes

ĤI
AL “ ´~∆σ̂ee `

~Ω
2

´

σ̂gee
ipφptq´φpt1qq ` σ̂ege

´ipφptq´φpt1qq
¯

. (3.18)
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The instantaneous change of phase is so-called the frequency noise

ε ptq “ 9φ “
dφ

dt
, (3.19)

which corresponds to the energetic shifts of Rydberg state. Finally, we perform the trans-
formation Û “ e´i~εptqσ̂ee [103] to remove the time dependence of the frequency noise in
the exponent,

ĤI
AL “ ´~∆σ̂ee ´ ~ε ptq σ̂ee `

~Ω
2 pσ̂ge ` σ̂egq , (3.20)

which is the Hamiltonian that governs the interaction between a single atom and light.
For N -interacting atoms, the total Hamiltonian reads

Ĥ “ ĤI ´ Ĥn (3.21)

ĤI “
Ω
2
ÿ

i

´

σ̂piqeg ` σ̂piqge

¯

` V0
ÿ

iăj

σ̂
piq
ee σ̂

pjq
ee

|i´ j|6
(3.22)

Ĥn “
ÿ

i

εpiqptqσ̂piqee (3.23)

where ~ “ 1, V0 “ C6{a
6 and C6 ą 0, i.e., the repulsive van der Waals (vdW) interaction.

As we consider a Rydberg ensemble in a one dimensional lattice, a pair of excited atoms at
site i and j is separated by distance rij ” |i´ j|. The transitions between two states are in
resonance with the Veld frequency ∆ “ ωeg ´ ωL » 0. Hence, we neglect ∆ for the rest
of the calculation in this chapter. The frequency noise εptq has the following relations:

xεpiqεpjqy “ Cδij (3.24)

εpiq “ ε, (3.25)

with (3.24) and (3.25) being local and global phase noise, respectively.

3.2.2 Langevin equation

The phase noise φptq causes fast and slow Wuctuation of the laser with correlation time τc,
where a characteristic time τd " τc [see Fig. 3.2(b)]. It acts as a time-dependent detuning
and can be considered analogous to a one-dimensional Brownian motion in which the
time evolution is quantitatively described by the Langevin equation [103, 104]

:φ “ ´γ 9φ` F ptq (3.26)

where γ denotes the inverse of correlation time τc “ 1{γ, and F(t) is a Gaussian func-
tion which denotes a rapidly Wuctuating force with zero ensemble average F ptq “ 0 and
F ptq2 ‰ 0 [see Fig. 3.2(a)]. We assume that F ptq has an extremely short correlation time
compared to all other characteristic time scales of the system [103, 104], and thus approx-
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(a) (b)

Figure 3.2: Panel (a) shows an example time dependence of random force F(t) for various realisa-
tions and (b) shows the phase φptq of the electric Veld of the laser wave, exhibiting fast and slow
Wuctuations characterized by the correlation times τc and τd.

imate
F ptqF pt1q “ 2Dδ

`

t´ t1
˘

. (3.27)

Here D describes the magnitude of the Wuctuating forces and δ pt´ t1q a Dirac delta, which
is together with γ characterises the spectral width Γ of the Lorentzian line shape [103]

Γ “ 2D
γ2 . (3.28)

We determine the quantum dynamics of this system by means of the Langevin equation
in which a single realisation k of the time dependent wave function evolves as i| 9ψpkqy “

Ĥ|ψpkqy. For M realisations |ψpkqy, we calculate the excited state population xσ̂pk,iqee y “

xψpkq|σ̂
piq
ee |ψpkqy and take its average

Nee “
1
M

M
ÿ

k“1

N
ÿ

i“1
xσ̂pk,iqee y, (3.29)

where N is the atom number. For suXciently large M, the average converges.

3.2.3 Master equation

In order to test the Langevin equation, we now compare it to the result of a master equa-
tion for the n-body density matrix ρ̂. The time evolution of the density matrix is given
by

9̂ρ “ ´i
”

ĤI , ρ̂
ı

` L rρ̂s (3.30)



3.2 1D lattice of two-level atoms 23

where ĤI is speciVed in Eq.(3.22). The superoperator L accounts for the phase noise,
which can be derived from a Born-Markov master equation [105]

9̂ρ “ ´

t
ż

´8

dt1 trB
”

Ĥnptq,
”

Ĥnpt
1q, ρ̂ptq

ıı

, (3.31)

with Ĥn is given in (3.23) and TrBtu is equivalent to the average x¨y. Inserting (3.23) into
(3.31) we Vnd

9̂ρ “ ´
t
ş

´8

dt1
ř

i,j

TrB
 

εpiq ptq εpjq pt1q σ̂
piq
ee σ̂

pjq
ee ρ̂` h.c.´ εpiq ptq σ̂

piq
ee ρ̂εpjq pt1q σ̂

pjq
ee ` h.c.

(

“ ´
ř

i,j

t
ş

´8

dt1TrB
 

εpiq ptq εpjq pt1q
(

”

σ̂
piq
ee ρ̂σ̂

pjq
ee ´

1
2tσ̂

piq
ee σ̂

pjq
ee , ρ̂u

ı

“ L rρ̂s ,

(3.32)

where TrB
 

εpiq ptq εpjq pt1q
(

“ xεpiq ptq εpjq pt1qy. For the local noise, similar to the relation
Eq. (3.24), the correlation between the phase noise experience by atoms i and j at two
diUerent times is xεpiq ptq εpjq pt1qy “ pΓ{2qδijδ pt´ t1q and thus we Vnd the superoperator
for local phase noise

L rρ̂splq “ Γ
ÿ

i

„

σ̂piqee ρ̂σ̂
piq
ee ´

1
2tσ̂

piq
ee σ̂

piq
ee , ρ̂u



, (3.33)

and for global noise, similar to the relation Eq. (3.25), the correlation is xε ptq ε pt1qy “
pΓ{2qδ pt´ t1q and the superoperator reads

L rρ̂spgq “ Γ
„

Σ̂iρ̂Σ̂j ´
1
2tΣ̂iΣ̂j , ρ̂u



(3.34)

where Σ̂i “
ř

i σ̂
piq
ee . The fraction of Rydberg atoms fe is obtained by taking the trace

Trtρ̂Σ̂iu{N which is equivalent to Nee{N in Eq. (3.29).

We introduce the dimensionless rescaled time τ “ p4Ω2LΓq ˆ t. The many-
body state is determined by three independent dimensionless parameters: the spectral
width of the noise ξ “ Γ

L

Ω, the damping term γ̄ “ γΓ
L

4Ω2, and the interaction strength
parameter R6 “ C6

L `

Γa6˘.

Fig. 3.3 (a) shows the relaxation of the fraction of Rydberg atoms in the presence
of global noise. We show that in the limit γ̄ ąą ξ2, i.e. for very short correlation time, the
Langevin equation is in excellent agreement with Eq. (3.30). Later on in subsec. 3.4, we
will discuss the dynamics in the strong coupling limit. There, the classical rate equation is
computationally more eXcient than the Langevin equation.
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Figure 3.3: The averaged fraction of Rydberg atoms as a function of time (a) in the presence of
global noise for N “ 2, ξ “ 4, R “ 1 andM “ 104 calculated by the Langevin equation (LE) for
two diUerent γ̄ is compared to the Markovian master equation (ME). (b) The averaged fraction of
Rydberg atoms for N “ 6 and R “ 1 calculated by the classical rate equation (RE) withM “ 104

is compared to the Markovian master equation with two diUerent ξ in the presence of local noise.

3.2.4 Classical rate equation

In order to derive a rate equation, let us consider the dimensionless rescaled time (3.30)
with a Hamiltonian after rescaled time,

ĤI “
ξ

8
ÿ

i

´

σ̂piqge ` σ̂piqeg

¯

`
ξ2

4 R
6
ÿ

iăj

σ̂
piq
ee σ̂

pjq
ee

|i´ j|6
(3.35)

and superoperator for local

L rρ̂splq “
ξ2

4
ÿ

i

„

σ̂piqee ρ̂σ̂
piq
ee ´

1
2tσ̂

piq
ee σ̂

piq
ee , ρ̂u



. (3.36)

In the presence of local noise, the N -atom density matrix factorises, ρ̂ “ ρ̂
p1q
1 b .....b ρ̂

p1q
N ,

conversely for global noise, the factorisation is precluded. Therefore, for local noise, the
time evolution of non-interacting two-level atoms is completely determined by the master
equation for the single-atom density matrix ρ̂1

k ” ρ, i.e., the optical Bloch equation (OBE)
for two level atom,

9ρgg “ i ξ8 rρge ´ ρegs

9ρge “ ´
ξ2

8 ρeg ´ i ξ8 pρgg ´ ρeeq

9ρge “ ´
ξ2

8 ρge ` i ξ8 pρgg ´ ρeeq

9ρee “ i ξ8 rρeg ´ ρges

(3.37)
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The diagonal elements ρααpτq of the density matrix indicate the probability of Vnding the
atom at time τ in the state |αy. The probability is conserved

ÿ

α

ραα “ 1. (3.38)

The oU-diagonal elements, i.e., the coherences, contain the information about transition
amplitudes between the levels. For suXciently strong dephasing, the quantum dynamics
can be reduced to the diagonal elements of ρ upon adiabatic elimination of its coherences
by setting [106]

9ραβ “ 0 for α ‰ β. (3.39)

We make use of relations (3.38) and (3.39) to simplify the time evolution to a classical
rate equation model for the joint probabilities ρS1,....,SN of an atom i in the Rydberg state
pSi “ 1q or in the ground state pSi “ 0q. The time evolution is determined by

9ρS1,...,SN“
ÿ

i

”

p1´ SiqDpδiq ` SiP pδiq
ı

ρS1,...,1´Si,...,SN

´

”

p1´ SiqP pδiq ` SiDpδiq
ı

ρS1,...,Si,...,SN , (3.40)

where P pδiq and D pδiq denote the excitation and de-excitation rates, respectively. The
rates can be expressed as P pδiq “ 1

L “

4
`

1` 4δ2
i

˘‰

and D pδiq “ 1
L “

4
`

1` 4δ2
i

˘‰

. The
interaction enters through an eUective frequency detuning δi “ R6 ř

j‰i Sj|ri ´ rj|´6

which accounts for the level shift of the ith atom due to its surrounding Rydberg excita-
tions [24]. We solve the dynamics of Eq. (3.40) by means of dynamic Monte Carlo, where
its algorithm is given in appendix B.2.

We use the Markovian master equation as a test for the classical rate equation.
As shown on Fig.3.3(b), for ξ " 1 the fraction of Rydberg atoms is indeed well reproduced
by the Markovian master equation model (3.30). This is in agreement with the results
of [106–108]. In the following, we will only consider short correlation times γ̄ " 1 and
strong dephasing ξ " 1.

3.3 Two interacting atoms

In this section, we investigate the diUerence between global and local noise for two atoms,
with emphasis on the steady-state distribution in the non-interacting and interacting
case.

For non-interacting atoms in the presence of global noise [see Fig. 3.4 (a) (red
bar)], the distribution is uniform for any excitation number. This is due to the fact that the
phase acquired by each atom is identical. Consequently, the coherent driving couples the
ground state of atoms to the symmetric state |`y “

`

1{
?

2
˘

p|gey ` |egyq and the latter
to the doubly excited state [see Fig. 3.4 (b) for V12 = 0]. However, the antisymmetric state
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Figure 3.4: The excitation probability PNe
in the steady state as a function of the number of

excitations Ne in the presence of global (a) and local (c) noise. Red and green bars indicate non-
interacting and interacting Rydberg atoms, respectively. (b) and (d) illustrate the couplings be-
tween the two-atom energy states in the presence of global and local noise.

|´y “
`

1
L?

2
˘

p|gey ´ |egyq is decoupled. Thus, the excitation probability PNe for any
excitation number Ne is PNe “ 1{3.

On the contrary, the steady-state distribution in the presence of local noise ex-
hibits a non-uniform distribution [see Fig. 3.4 (c) (red bar)]. This is due to the fact that
each atom acquires a diUerent phase εpiq ptq. Consequently, the symmetric state |`y cou-
ples to the antisymmetric state |´y [see Fig. 3.4 (d) for V12 “ 0] which leads to a diUerent
population distribution with P0 “ 1

L

4, P1 “ 1
L

2, and P2 “ 1
L

4.

In the presence of interactions V12 ą 0, the steady-state distribution is the same
as in the non-interacting case [see Fig. 3.4 (a) and (c) green bar]. Despite the presence
of Rydberg-Rydberg interactions, the steady state for both types of noise remains un-
changed, as the interaction only shifts the energy of the doubly-excited state. In the pres-
ence of global noise, the energetic shift of the doubly-excited state is unable to break the
symmetry, resulting in the same distribution as in the non-interacting case. For the min-
imal example of two interacting atoms, we have shown that the steady-state distribution
changes remarkably with the type of noise considered, yet it remains unchanged quali-
tatively by the presence of interaction. In the next section we investigate whether this
Vnding persists in larger ensemble.

3.4 Few-body simulations

We determine the fraction of Rydberg atoms fe pτq in the presence of global and local
noise for diUerent interaction strength. We classify the interaction strength R6 into weak
interactions for

`

R6 ! ξ
˘

, intermediate interactions for
`

R6 „ ξ
˘

and strong interactions
for

`

R6 " ξ
˘

. Increasing the interaction strength between the atoms slows down the
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Figure 3.5: Relaxation of the fraction of Rydberg atoms in a one-dimensional system for N = 6
and M “ 104 calculated by the Langevin equation [(a), (b)] and the rate equation [(c), (d)]. The
comparison between global (GN) and local (LN) noise with ξ “ 4 and γ̄ “ 100 for non-interacting
and interacting atoms is shown in (a) and for intermediate as well as strong interactions in (b). The
inset in (b) shows the excitation distribution at the plateau for R “ 1.5. Relaxation in the presence
of local noise for diUerent strong interactions is presented in (c), where the dashed line indicates
the fraction of hard dimers. For long times the steady state is approached exponentially at a rate
9R´12 (d).

relaxation time. Therefore, we will use three diUerent methods for the three diUerent
limits : the Markovian master equation for the weak and intermediate interactions in the
Markovian limit (γ̄ " ξ2), the Langevin equation for intermediate and strong interactions
and arbitrary values of γ̄ and ξ, and the classical rate equation for strong interactions and
dephasing (ξ " 1) in the Markovian limit.

Fig. 3.5 shows the relaxation of the fraction of Rydberg atoms for N “ 6 for in-
termediate and strong interactions. The initial condition is fe p0q “ 0 which corresponds
to all atoms in the ground state. We vary the interaction strength and observe the charac-
teristic of dynamics. We will see the slow down of relaxation accompanied the emergence
of plateau before relaxing towards steady state. In the non-interacting case [see Fig. 3.5
(a)], the fraction of Rydberg atoms shows identical relaxation behaviour for both types of
noise that reaches the steady state, with fe p8q » 0.5. As R6 is increased to intermediate
interaction strength, the relaxation slows down because an excited atom suppresses the
excitation of atoms at neighbouring sites.

We now consider an interaction strength of R6 ą ξ. Fig. 3.5 (b) shows that
although the interaction strength is three times larger than the spectral width of the laser,
the fraction of Rydberg atoms relaxation is nearly identical for both types of noise. A small
discrepancy appears between global and local noise for intermediate interaction before
entering the plateau which we will discuss in the next section. In the time window at
which a plateau is present the excitation distribution for both types of noise is dominated
by two excited atoms [see Fig. 3.5(b) inset]. As we increase the interaction strength [see



28 3 Rydberg ensembles in the presence of noise

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  200  400  600  800

(∆
f e

)2

τ
 0  4  8  12  16  20

τ

R6 = 0.00
R6 = 0.02
R6 = 0.03
R6 = 0.04
R6 = 0.06
R6 = 0.100.6

0.8
1.0
1.2
1.4

10-2 10-1 100 101 102 103

(∆
f e

)2

τ

(a) (b) 
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Fig. 3.5 (c) and (d)], the plateau value becomes apparent.

Although the dynamics of the fraction of Rydberg atoms for both types of noise
is nearly identical, the relaxation to the transient state shows a small discrepancy due to
diUerent excitation distributions. Therefore, in the next section, we will investigate the
atom counting statistics for both types of noise.

3.5 Atom counting statistics

We now discuss the atom counting statistics for a small number of atoms with N ě 6.
One can quantify the distribution in terms of the variance p∆feq2 which corresponds to
the Wuctuations of a statistical distribution about its mean value. The variance is equal to
the square of the standard deviation ∆fe and is deVned by:

p∆feq2 “
N
ÿ

i

xσ
piq2
ee y ´ xσ

piq
ee y

2

xσ
piq
ee y

. (3.41)

Depending on the relation between the variance and the mean value one can distinguish
three cases. In a sub-Poissonian distribution, the variance is less than the mean value
p∆feq2 ă fe. In a Poissonian distribution, p∆feq2 “ fe. In a super-Poissonian distribu-
tion, p∆feq2 ą fe [109].

In order to reach the steady state within a short relaxation time, we have per-
formed the simulation in the weak interaction limit. In Fig. 3.6 we show the variance for
various interaction strengthsR6 in the presence of global (a) and local (b) noise. For global
noise [see Fig. 3.6 (a) inset], the relaxation behaviour and steady-state variance for R “ 0
are fundamentally diUerent from an interacting system with R ‰ 0. This is due to the fact
that for R “ 0 the ground state couples to the symmetric state, i.e. Dicke states [110], yet
the symmetric states uncouple to the non-symmetric states. For R ‰ 0, they no longer
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uncouples to the non-symmetric states, instead the symmetric states with Ne ě 2 are
shifted due to Rydberg-Rydberg interactions, resulting in a symmetry breaking and pop-
ulation transfer from symmetric states to non-symmetric ones. This leads to a diUerent
steady-state variance compared to R “ 0. Furthermore, a slight increase in the interac-
tion strength leads to strongly reduced relaxation times as long as R6 ! ξ [see Fig. 3.6
(a)]. Conversely, the variance in the presence of local noise shows a completely diUerent
relaxation behaviour and reaches a diUerent steady state. As shown in Fig. 3.6 (b), the
relaxation of variance and the steady state are completely independent of the interaction
strength for the small energetic shifts considered. This is due to the fact that for local
noise in the absence of interactions, each atom experiences a diUerent time-dependent
detuning, resulting in a coupling between symmetric and non-symmetric states. In this
weak interaction limit, the relaxation time for global noise is longer than for local noise.

We now discuss the dynamical evolution of the distribution of excitation num-
ber and classify the type of distribution in the steady state according to the criteria men-
tioned above. We show the probabilities PNe for Vnding Ne excitations at diUerent times
in Fig. 3.7, comparing the results for global and local noise. For global noise in the ab-
sence of interactions, as shown in Fig. 3.7 (a-d), the population of ground state |gg...gy is
slowly transferred to higher excitation numbers only via the symmetric states, relaxing
towards uniform distribution. The steady-state probabilities PNe “ 1

L

pN ` 1q. Thus, the
variance can be calculated analytically for N atom number, which is given by

p∆feq2 “

N
ř

Ne

N2
e ´

1
N`1

˜

N
ř

Ne

Ne

¸2

N
ř

Ne

Ne

(3.42)

In the presence of interactions, the population transfer via the symmetric states is followed
by the transfer into non-symmetric states, giving rise to a non-uniform distribution. As
shown in Fig.3.7(d), the non-uniform distribution corresponds to a super-Possionian dis-
tribution in which the steady-state variance p∆feq2 ą pfe “ 0.5q.

Fig. 3.7 (e-h) shows the excitation distribution in the presence of local noise. The
population transfer shows diUerent behaviour compared to the case of global noise. In the
absence of interactions, since the symmetric state is already coupled to non-symmetric
states, the ground state population is rapidly transferred to higher excitation numbers. For
`

R6 ! ξ
˘

, the relaxation is unchanged. The steady-state variance exhibits a Poissonian
distribution for both cases (p∆feq2 “ fe “ 0.5), shown in Fig. 3.7 (h) [red and green bars].
The Poisson distribution can be expressed as

P pNe, N, fe p8qq “

ˆ

N

Ne

˙

fep8q
Ne p1´ fe p8qq

N´Ne . (3.43)

For example, for Ne “ 3 and N “ 6 one obtains P pNe, N, fe p8qq » 0.3125, in agree-
ment with the simulation results in Fig. 3.7 (h-red and green bars).
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Figure 3.7: Dynamics of the excitation probability PNe
as a function of the excitation number
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For intermediate interaction strengths, the distribution of excitation number
for local noise starts to show a dependence on the interaction strength. As shown in
Fig. 3.8(a), the increase of the interaction strength R6 slows down the variance relaxation.
The slow down is followed by the emergence of a dip that corresponds to the transition of
the fraction of Rydberg atoms to the transient state in Fig. 3.5. For global noise [see Fig. 3.8
(b)], as we enter the intermediate interaction regime

`

R6 ď ξ
˘

, the interaction strength
starts to slow down the relaxation and the dip emerges at a later time than for local noise
[see Fig. 3.8 (c)]. This means that global noise slows down the transition to the transient
state as compared to local noise.

In the presence of global noise, we have seen that the steady-state variance
in a chain of 6 atoms diUers for non-interacting and interacting cases. An interesting
question is whether this diUerence depends on the atom number. Fig. 3.8(d)[inset] shows
the comparison of variances between non-interacting and interacting atoms. For the non-
interacting case, it is worth noting that the steady-state variance increases linearly with
N . As the interaction is switched on, the Wuctuations of excitation number are strongly
suppressed, evident from the decrease of variance with increasing number of atoms that
converges to a value p∆fep8qq2 ą 0.5, slightly above the steady-state in the presence of
local noise [see Fig. 3.8(d)]. The emergence of diUerent steady states is due to the fact that
for global noise the symmetric state for Ne “ 1 only gets shifted due to the global noise.
For local noise, the distribution follows a Poissonian distribution for the non-interacting
and interacting case, resulting in a constant variance for any number of atoms.

We have shown that both types of noise give rise to a characteristic distribution
of the Rydberg excitation number. In the next section, we Vnally discuss implications for
experiments of the two-described section above.
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Figure 3.8: Variance as a function of time for ξ “ 5 in the limit of intermediate interactions and
the presence of (a) local noise or (b) global noise. (c) shows a comparison of both cases [global
noise (GN) and local noise (LN)] forR6 “ 5 calculated by the master equation. Panel (d) shows the
steady-state variance as a function of the atom number N for interacting atoms in the presence
of global (black dots) and local (red dots) noise calculated by the Langevin equation for 5 ˆ 104

realisations. In the presence of global noise (inset), non-interacting atoms (blue dot-dashed) show a
linear increase of the variance with the atom number (exponent : 0.167˘0.01) while for interacting
atoms the variance decreases.

3.6 Implications for experiments

For the Rydberg ensemble in the presence of laser phase noise described in section 3.1,
the dynamics of the Ising-like spin-1

L

2 system can be experimentally realised in a trans-
verse Veld with up to thirty spins, for a variety of geometries in one and two dimensional
lattices, and for a wide range of interaction strengths [111]. The noise can be generated
by the arbitrary waveform generator. The bandwidth of this noise can be controlled by
applying a low-pass Vlter of cut-oU frequency. For the local noise, one should use sepa-
rated single beam which produces uncorrelated beams:. The interaction strength V0 can
be tuned by varying the lattice spacing a and changing the principal quantum number n,
since V0 scales approximately as n11. For a speciVc example, laser excitation of Rb(58S1{2)
Rydberg states with Ω{2π “ 165kHz and Γ{2π “ 0.7MHz yields ξ “ 4 [32]. For a lat-
tice constant of a « 3.45µm these conditions corresponds to R « 1.5, i.e., well within the
parameter region of strong interactions shown in Fig. 3.5(b)-(d). The interaction strength
R can be increased by tuning the laser excitation to higher principle quantum numbers,
for example Rb(67S1{2) yieldsR « 2.0 and Rb(75S1{2) yieldsR « 2.5. The speed up of the
variance relaxation in the limit of weak interactions [see Fig. 3.6] can be observed when
choosing larger lattice spacings a. For laser excitation of Rb(58S1{2), a lattice spacing in
the range of a « 8 ´ 14µm yields R6 « 0.01 ´ 0.35, well within the parameter region
shown in Fig. 3.6 and 3.7. The dependence of the steady-state variance on the number of

: Discussion with Thiery Lahaye
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atoms can be observed by adding up to 30 atoms.



Chapter 4
Rydberg ensembles in the presence
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In the previous chapter, we have considered the dynamics and steady state of a
one-dimensional lattice of two-level atoms in the presence of laser phase noise. There, we
have found intriguing relaxation behaviour and steady-state distributions. An interesting
question is: How do the dynamics and steady state behave when the decoherence origi-
nates from spontaneous decay instead of laser phase noise?. The non-equilibrium physics
of such driven open systems and its relation to universal behaviour [112] in equilibrium
have attracted considerable interests [8, 113, 114]. We show here that driven Rydberg
gases are ideal systems to experimentally access non-equilibrium steady-state phase tran-
sitions.

Previous works predicted the emergence of steady states with antiferromagnetic
(AF) order on the basis of mean Veld theory (MF) assuming nearest neighbour (NN) inter-
actions [33]. Yet, large single-site Wuctuations related to a simple two-level driving scheme
restrict the emergence of such ordering to short length scales in all lattice dimensionalities
[34]. The other driving scheme (e.g. in three-level systems) in a 1D setting fails to realise
crystallisation [34–36]. MF predictions are also in conWict with variational calculations
[37, 38] and Veld-theoretical methods [39]. Hence, the possibility of long-range order in
dissipative Rydberg lattices as well as the physics of the associated phase transition have
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(e)

Figure 4.1: Schematics of a two- (a) and a one-dimensional (e) lattice in which ground-state atoms
(small blue spheres) are laser excited to Rydberg states (large red spheres). The interplay of dissi-
pation and Rydberg-Rydberg interactions (b) can give rise to antiferromagnetic long-range order,
where excitations predominantly occupy one checkerboard sublattice. A possible realisation of
such a two level system with tunable exception rates Γp2qÒ and Γp2qÓ and eUective two-level systems

with tunable excitation rates Γp3qÒ and Γp3qÓ is illustrated in (c) and (d), respectively (see text for
details).

thus far remained an open question.

In this chapter, we address this issue and show that a long-range-ordered AF
phase can be realised in dissipative Rydberg lattices when subjected to appropriate coher-
ent driving. In contrast to the equilibrium physics of the corresponding unitary systems,
which is well described by mean Veld models [67] and NN approximations [68], Wuctu-
ations as well as the weak tail of the rapidly decaying interactions are both found to be
essential for the physics of the dissipative phase transition.

The chapter is organised as follows. In Sec. 4.1, we will describe the setup as-
sociated with Fig. 4.1. In Sec. 4.2, we will investigate the emergence of AF long-range
order for two-level driving scheme in the presence of spontaneous decays, where the Ry-
dberg ensembles are considered as interacting spin-1/2 particles in either in a one- or
two-dimensional lattice. In Sec. 4.3, we then extend the system to three-level driving
scheme in the presence of strongly spontaneous decays from the intermediate state. We
characterise the emergence of AF order and determine the steady-state phase diagram
in Sec. 4.4. Finally, we discuss a possible implications for experiments for the described
systems in Sec. 4.5.
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4.1 Basic Setup

We consider laser-driven atoms on a one- and a two-dimensional lattice [see Fig. 4.1 (a)
and (e)]. In Sec. 4.2, an ensemble of N two-level atoms, each with a ground state |gy and a
highly excited (Rydberg) state |ey [see Fig. 4.1(c)], is placed in neighbouring sites of a one-
or quadratic lattice of length L with lattice spacing a. A pair of excited atoms at sites ri
and rj experiences the van der Waals (vdW) interaction V0{|ri´rj|6 with V0 “ C6{a

6 and
C6 >0. For a one-dimensional (1D) lattice, |ri ´ rj| “ |i ´ j| and for a two-dimensional
(2D) lattice, site ri “ pxi, yiq , xi, yi P r1, Ls. Resonant transitions between two states are
driven by a laser with Rabi frequency Ω, which subject to the spontaneous decay from
state |ey at rate γe.

In Sec. 4.3, instead of two-level driving scheme, we consider a three-level ladder-
type system which is excited and de-excited by two lasers with diUerent Rabi frequencies
Ω1, Ω2 and detuning ∆. The excited, intermediate, and ground states of atom i are denoted
by |epiqy, |ppiqy and |gpiqy, respectively [see Fig.4.1 (a) and (d)]. A pair of excited atoms at
sites ri and rj experiences power law interactions. For a lattice spacing a the nearest-
neighbour coupling is V0 “ Cα{a

α where Cα ą 0 determines the interaction strength.
Dipole-dipole interactions are associated with α “ 3 and α “ 6 with van-der-Waals (vdW)
interactions. In addition, the system undergoes decoherence due to strong spontaneous
decay from state |py at rate γp [see Fig. 4.1 (d)].

4.2 Rydberg lattices with two-level atoms

For the setup described in the previous section, the time evolution of the density matrix
and the Hamiltonian that governs the system are given in Eq. 3.30 and in Eq. 3.22, respec-
tively. The superoperator which describes the spontaneous decay from the state |ey (see
Fig. 4.1 (c)) reads

L rρ̂s “ γe
ÿ

i

„

σ̂piqge ρ̂σ̂
piq
eg ´

1
2tσ̂

piq
ee σ̂

piq
ee , ρ̂u



, (4.1)

with σ̂αβ “ |αyxβ|. The optical Bloch equations for a two-level atom are given by

9ρgg “ i
Ω
2 pρge ´ ρegq ` γeρee

9ρge “ i
Ω
2 pρee ´ ρggq ´ i∆ρeg ´ γeρeg

9ρeg “ i
Ω
2 pρgg ´ ρeeq ` i∆ρge ´ γeρge

9ρee “ i
Ω
2 pρeg ´ ρgeq ´ γeρee.

(4.2)

In the presence of strong decoherence, the quantum dynamics can be reduced to the di-
agonal elements of ρ upon adiabatic elimination of its coherences [106]. The derivation



36 4 Rydberg ensembles in the presence of dissipation

steps in Sec. 3.2 lead to a classical rate equation model in Eq. 3.40. In the presence of
spontaneous decay, the speciVc form of single-atom rates of a two-level atom Γp2qÒÓ reads

Γp2qÒ pδiq “
Ω2γe

γ2
e ` 4δ2

i

(4.3)

and

Γp2qÓ pδiq “
γ3
e `

`

Ω2 ` 4δ2
i

˘

γe

γ2
e ` 4δ2

i

, (4.4)

where Γp2qÒ pδiq and Γp2qÓ pδiq denote the excitation and de-excitation rates, respectively.
The single-atom steady state reads

ρ̄ipδiq “
Γp2qÒ

Γp2qÒ ` Γp2qÓ
“

p0

1` δ2
i {ω

2 , (4.5)

with p0

p0 “
Ω2

pγ2
e ` 2Ω2q

, (4.6)

and ω being Lorentzian width

ω “
γ2
e ` 2Ω2

4 . (4.7)

The interactions enter through an eUective frequency detuning

δi “ ∆´ V0
ÿ

j‰i

Sj
ˇ

ˇri ´ rj
ˇ

ˇ

6 (4.8)

which accounts for the level shift of the ith atom due to its surrounding Rydberg excita-
tions [24]. In order to conVrm the simpliVcation of the time evolution, we have performed
quantum simulations of smaller lattices by means of Monte Carlo wave function (MCWF)
method [115–118], where the detailed algorithm is given in appendix B.1. Fig. 4.2 shows
the fraction of Rydberg atoms fe “ Nee{N as the function of excitation probability cal-
culated by MCWF and dynamic Monte Carlo (DMC) methods. Here, p0 ď 0.5 is the limit
of two-level driving scheme. For p0 ă 0.1, i.e., γe " Ω the dMC is in excellent agree-
ment with MCWF, conVrming the limit of the strong decoherence. As p0 increases to
0.1 ď p0 ď 0.3, the dMC slightly deviates from a MCWF method. The small discrepancy
in the region around ∆ “ 0 is due to the fact that for Ω „ γe, is not fully justiVed to
neglect the nonlinear short-time population dynamics. For p0 ą 0.3, i.e., Ω " γe the
coherence prevails. Consequently, the discrepancy is more apparent compared to the case
Ω „ γe.

In order to detect the AF order, we deVne the order parameter q,

q “
|NA

e ´NB
e |

Nee
, (4.9)

where Nee is the total number of excitation in a lattice. The excited state populations
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Figure 4.2: Fraction of Rydberg atoms in a two-dimensional lattice as a function of excitation
probability p0 calculated by MCWF (rectangular points) and dMC (star points). The simulations
were performed with NN approximation and the remaining parameters are V0 “ 1ω, ∆ “ 0,
α “ 6, and N “ 4ˆ 4 .

on the checkerboard sublattices A and B are denoted by NA
e and NB

e , respectively. As
illustrated in Fig.4.1, q measures the population imbalance on the two sublattices reWecting
a checkerboard ordering, with q ą 0 in the ordered phase and q “ 0 in the disordered
phase that corresponds to a paramagnetic phase.

Fig. 4.3 shows the q parameter as a function of excitation probability p0 under
the assumption of a NN-blockade. For two-level driving scheme, the steady state in the
thermodynamic limit indeed does not exhibit the AF order for 1D and 2D settings [see
Fig. 4.3 (c) and (d), where extrapolations to thermodynamic limit are shown in (a) and (b)].
This is in agreement with [34] in which the large single-site Wuctuations associated with
a simple two-level driving scheme restricts the emergence of that ordering to short length
scales for all spatial lattice dimensions. The above model is also analytically solvable and
shows no long-range order crystallisation [112]. The steady state may exhibits Néel order
provided that p0 „ 0.791. Thus, for simple two-level driving crystallisation is impossible
in any dimension since p0 ď 0.5. Therefore, the population inversion, e.g., via electro-
magnetically induced transparency [119–122], is required for the AF order to occur, i.e.,
the probability of populating the Rydberg state must be greater than 0.5 pp0 ą 0.5q. This
is accomplished in three-level atomic systems in which there are two coherent routes for
absorption that can destructively interfere, thus leading to the cancellation of absorption.
In the next section, we provide the population inversion via three-level driving scheme.
We investigate the dynamics of Rydberg lattices in the limit of strong decoherence.
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Figure 4.3: The extrapolation to the thermodynamic limit, L Ñ 8, for 1D and 2D lattices are
plotted in (a) and (b), respectively. Panels (c) and (d) show q parameter as a function of excita-
tion probability p0 for the case of 1D and 2D, respectively. The simulations were performed with
NN approximation and the symbols show results for Vnite system size given in the legend. The
remaining parameters are ∆ “ 0, V0 “ 5ω, and α “ 6.

4.3 Rydberg lattices with three-level atoms

For the three-level scheme described in the Sec. 4.1, the N -body density matrix is given in
Eq. 3.30 and the Hamiltonian that governs the systems reads

ĤI “
ÿ

i

Ĥi ` V0
ÿ

iăj

σ̂
piq
ee σ̂

pjq
ee

|ri ´ rj|α
, (4.10)

Ĥi “
Ω1

2

´

σ̂piqpg ` σ̂piqgp

¯

`
Ω2

2

´

σ̂piqep ` σ̂piqpe

¯

´∆σ̂piqee . (4.11)

The Vrst part is a local Hamiltonian Ĥi that contains the atom-light interactions. The
second part describes the power-law interactions between two Rydberg atoms. The su-
peroperator which describes the spontaneous decay from the state |ey (see Fig. 4.1 (c)) is
given by

L rρ̂s “ γp
ÿ

i

„

σ̂piqgp ρ̂σ̂
piq
pg ´

1
2tσ̂

piq
pg σ̂

piq
gp , ρ̂u



, (4.12)
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Figure 4.4: The population of the ground state (a) and Rydberg state (b) in the presence (black)
and absence (red) of spontaneous decays from the state |py. The remaining parameters are: ∆ “ 0,
Ω1 “ 4γp, and Ω2 “ 0.2γp.

with the OBE of a single atom for the three level scheme,

9ρgg “ i
Ω1

2 pρgp ´ ρpgq ` γpρpp

9ρpp “ ´i
Ω1

2 pρgp ´ ρpgq ´ i
Ω2

2 pρep ´ ρpeq ´ γpρpp

9ρee “ i
Ω2

2 pρep ´ ρpeq

9ρgp “ ´i
Ω1

2 pρpp ´ ρggq ` i
Ω2

2 ρge ´
γp
2 ρgp

9ρge “ ´i
Ω1

2 ρpe ` i
Ω2

2 ρgp ´ i∆ρge

9ρpe “ ´i
Ω1

2 ρge ` i
Ω2

2 pρpp ´ ρeeq ´ i∆ρpe ´
γp
2 ρpe

9ραβ “ p 9ρβαq
˚ .

(4.13)

The diagonal elements ραα of the density matrix (populations) indicate the probability of
Vnding the atom at time t in the state |αy. The probability

ÿ

α

ραα “ 1, (4.14)

is conserved at all times. Solving a many body problem either via this single-atom basis or
quantum trajectory is impossible due its complexity. For example, via a quantum trajec-
tory method, for three-level driving scheme the corresponding Hilbert space scales as 3N .
This, of course, limits the simulation to N ă 20 in which for one trajectory of N “ 14
is already time consuming. Fortunately, under the set of corresponding experimental pa-
rameters [123, 124], one can simplify the complexity of many body problem as in Sec. 3.2
and Sec. 4.2 by means of classical rate equation [125]. In the experiment [123, 124], the
upper transition is much more weakly driven than the lower one pΩ2 ! Ω1q, a typical
time intensity separation obtained for typical laser intensities reads

Ω1 " Ω2 and γp " Ω2. (4.15)
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This allows us to deVne two well separated time scales, such that the transition |py Ñ |ey

is slow compared to the transition |gy Ñ |py. As shown in Fig. 4.4, the rabi oscillation
is almost completely eliminated after a short time τm “ γ´1

p . During this period, the
Rydberg state is hardly populated. On the other hand, the dynamics of the weak Rydberg
transition are signiVcantly slower than those of the pump transition. The latter quickly
reaches

`

„ Ω´1
1
˘

a quasi-steady state, which is only slightly aUected by the weak coupling
to the Rydberg level. Afterwards, the dynamics of the system proceed on the slow time
scale, which is determined by Ω´1

2 and will reach steady state for pΩ1{Ω2q
2. During this

period, Rydberg population gradually increases as compared to the completely coherent
case [see Fig. 4.4(b)], which shows that the coherence of the fast transition adiabatically
follow the slow dynamics of the transitions. Under these conditions, the coherences can
be expressed as a function of the populations at each instant of time, i.e., their dynamics
can be eliminated adiabatically [126] by setting

9ραβ “ 0 for α ‰ β (4.16)

Solving the algebraic equations from Eq. (4.13) and (4.16) for the populations, employing
Eq. (4.14), and inserting into the diUerential equation for ρpp and ρee, one obtains

9ρpp “ q1ρpp ` q2ρee ` q3,

9ρee “ q4ρpp ` q5ρee ` q6.
(4.17)

where the coeXcients qk “ qkpΩ1,Ω2,∆, γpq are some functions of the parameters of the
three-level system. For further simpliVcation, we use of a relation (4.14), which leads to

9ρpp ´ 9ρgg “ 2 9ρpp ` 9ρgg “ 0. (4.18)

Hence, the population of the intermediate state in Eq. (4.13) can now be eliminated and we
Vnally obtain a simple linear diUerential equation describing the dynamics of the Rydberg
population,

9ρee “ ´
Γp3qÒ
ρ1

ρee ` Γp3qÒ . (4.19)

where ρ1 denotes the steady-state occupation of state |ey and can be expressed as,

ρ1 “
Ω2

1
`

Ω2
1 ` Ω2

2
˘

pΩ2
1 ` Ω2

2q
2
` 4∆2

`

γ2
p ` 2Ω2

1
˘ , (4.20)

and Γp3qÒ is the rate for populating the Rydberg state for the short time and is expressed
as,

Γp3qÒ “
2γp pΩ2Ω1q

2 `Ω2
1 ` Ω2

2
˘

a0 ` a2∆2 ` a4∆4 , (4.21)
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Figure 4.5: Population of the Rydberg state for the three-level system calculated by rate equa-
tion (4.23) (solid lines) and OBE (4.13) (dashed lines) for diUerent pulse lengths: 0.3 µs (low-
est pair of curves), 1.0 µs (middle pair), 2.0 µs. The remaining parameters in MHz are
pΩ1{2π,Ω2{2π, γp{2πq “ p4, 0.2, 6q in (a) and pΩ1{2π,Ω2{2π, γp{2πq “ p22.1, 0.8, 6q in (b).

with

a0 “
`

Ω2
1 ` Ω2

2
˘

”

`

Ω2
2 ´ 2Ω2

1
˘2
` 2γ2

p

`

Ω2
1 ` Ω2

2
˘

ı

a2 “ 8
`

γ4
p ´ 4Ω4

1
˘

` 4Ω2
2
`

4Ω2
1 ` γ2

p

˘

` 8Ω4
2

a4 “ 32
`

γ2
p ` 2Ω2

1
˘

.

(4.22)

Introducing an eUective ground state ρeffgg “ 1´ ρee, one can write Eq. (4.19) in the form
of a rate equation for an eUective two-level atom

9ρee “ ΓÒρeffgg ´ ΓÓρee, (4.23)

with de-excitation rate

Γp3qÓ “ Γp3qÒ
ˆ

1´ ρ1
ρ1

˙

. (4.24)

A comparison of the solutions of the OBE 4.13 and the rate equation 4.23 rate equation
for the Rydberg population as a function of the detuning is shown in Fig. 4.5 for one pulse
length. The parameters correspond to those of the experiments [123, 124]. The solution of
rate equation is in good agreement with OBE and becomes even better for longer pulses.
The discrepancy in the region around ∆ “ 0 is due to the fact that for Ω1 ă γp, is not
fully justiVed to neglect the nonlinear short-time population dynamics.

The rate equation reproduces the Autler-Townes splitting of the intermediate
level |py manifest in a splitting of the Rydberg line, as the steady state with its single cen-
tral peak is approached for long times when the Rydberg population reaches the saturation
limit. A detailed analysis of the peak structure of the Rydberg populations in this system,
especially the occurrence of the Autler-Townes splitting and its impact on the excitation
blockade, has been given in [106].

Let us now proceed to the case of N atoms. The eUective rate equation for
the joint probabilities ρS1,...,SN of Rydberg excitations being present (Si “ 1) or not
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present (Si “ 0) at the ith site and the corresponding many-body states are connected
by the single-atom excitation [Γp3qÒ pδiq] and de-excitation [Γp3qÓ pδiq] rates reads [47, 106,
127, 128]

9ρS1,...,SN“
ÿ

i

”

p1´ SiqΓp3qÓ pδiq ` SiΓp3qÒ pδiq
ı

ρS1,...,1´Si,...,SN

´

”

p1´ SiqΓp3qÒ pδiq ` SiΓp3qÓ pδiq
ı

ρS1,...,Si,...,SN .

The dynamics of Eq. (4.25) can be solved by dynamic Monte Carlo (dMC) technique where
the algorithm is provided in the appendix B.2. However, in the full three-level case, non-
physical negative rates frequently occur [129]. Although modifying the rates in such a
way that the correct steady state is preserved [127], this technique is rather expensive
and impractical for general systems. Therefore, we use another approach that has been
developed in [128]. There, the calculation of the dynamics of the system was neglected
in favour of the steady-state calculation. In this technique, we use the steady-state of
Rydberg state which is given by

ρ̄i pδiq “
Γp3qÒ

Γp3qÒ ` Γp3qÓ
“

p0

1` δ2
i {ω

2 . (4.25)

where
p0 “ Ω2

1
L `

Ω2
1 ` Ω2

2
˘

(4.26)

and ω denotes Lorentzian width with

ω “
Ω2

1 ` Ω2
2

2
b

γ2
p ` 2Ω2

1

, (4.27)

For the case of N interacting atoms, deriving the interacting part of Hamiltonian 4.10 and
neglecting multi-photon transitions, one ends in the structure of the master equation in
which the interactions enter through an eUective frequency detuning [106]

δi “ ∆´ V0
ÿ

j‰i

Sj
ˇ

ˇri ´ rj
ˇ

ˇ

α (4.28)

which accounts for the level shift of the ith atom due to its surrounding Rydberg excita-
tions. All parameters are scaled by the Lorentzian width ω, the many-body state is fully
described by only four-parameter: the power law exponent α, the resonant excitation
probability p0, laser detuning ∆{ω and the interaction strength V0{ω. For the settings
discussed in here [cf. Fig.4.1 (d)], the rates can be expressed as Γp3qÓ pδiq “ p1 ´ ρ̄iq{T ,

Γp3qÒ pδiq “ ρ̄i{T where T pδiq denotes the relaxation time. In the next section, we discuss
the emergence of long-range AF order in a two-dimensional lattice case.
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Figure 4.6: Panel (a) q parameter as a function of p0 for ∆ “ 0 and V0 “ 5ω in the case of 1D
system and (b) 2D system. The q parameter as a function of ∆ for p0 » 0.95 and V0 “ 5ω in the
case of 2D system. The simulations were performed with NN approximation and the symbols show
results for Vnite system sizes given in the legend. The thick solid line shows the extrapolation to
the thermodynamic limit. LÑ8

4.4 Emergence of long-range order

This section provides the condition in accomplishing the AF order in a three-level driving
scheme. For the one-dimensional lattice case, under the assumption of a NN-blockade, the
above model is analytically solvable and shows no long-range order crystallisation [130].
This is conVrmed in Fig. 4.6(b), 1D indeed shows no AF long-range order for p0 ě 0.5.
The emergence of such ordering only occurs in a few system size, e.g., N ă 30 [131]. As
the system size increases to the thermodynamic limit, q » 0.

In higher dimensions, the steady states of Néel order occur for p0 „ 0.7914 in
2D and p0 „ 0.749 in 3D square lattices [130]. In order to conVrm the analytical result,
we perform ssMC simulation in the NN-approximation. As shown in Fig.4.6(c), the steady
state indeed exhibits Néel order provided that p0 „ 0.7914 for ∆ « 0 and interactions.
This is due to the fact that in the three-level scheme p0 exceeds the limit of two-level
driving scheme p0 ą 0.5 due to the presence of the dark state. The mechanism of the dark
state for lasing without inversion is given in the appendix C and can be found in [120, 132].

To Fig. 4.6, the simulations were performed with NN approximation and shows
that AF order occurs for ∆ » 0 [see Fig. 4.6(d)]. However, when considering the full
range power tail interactions for resonantly driven atoms with varying exponents α and
p0 “ 0.95, as shown in Fig.4.7, we do not observe long-range order for realistic interaction
potentials. In particular, the NN approximation fails qualitatively for the important case
of vdW interactions (α “ 6). Surprisingly, the weak tail of the interactions prevents
crystallisation until a rather larger value α « 11. In fact, the simulations show that
resonantly driven atoms, with vdW interactions remain in the disordered phase for any
values of p0 and V0.

The fact that there is no phase transition on resonance for α “ 6 can be qualita-
tively understood as follows: a macroscopic population imbalance on the two sublattices
each with a lattice constant

?
2a characterises a Néel state. Assuming that an atom on the



44 4 Rydberg ensembles in the presence of dissipation

 0

 0.2

 0.4

 0.6

 0.8

 1

 6  8  10  12  14

o
rd

er
 p

ar
am

et
er

, 
q

power law exponent, α

L = 30
L = 60
L = 150

Figure 4.7: Order parameter q as a function of the power-law exponent α, for p0 “ 0.95 and
V0 “ 5ω and resonant driving ∆ “ 0. The symbols correspond to diUerent system sizes given
in the legend. The thick solid line is the extrapolation to the thermodynamic limit, L Ñ 8. The
Vnite-size scaling shows a linear increase of the order parameter in the critical regime (exponent :
1 ˘ 0.05). (After [40], c© American Physical Society, reproduced with permission.)

(a) (b)

(c)

detuning, �/!

�/!

p0 V
0 /
!

�/!

o
rd
er

p
a
ra
m
et
er
,q

q

1 1.5 2 2.5 3
2

4

6

8

10

-1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.5 2 2.50.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

`
`
`
`
`
`
`
`
`

Figure 4.8: Order parameter q as a function of laser detunings α by means of sSMC (solid line),
meanVeld for NN interaction (dotted line), and full vdW interactions (dashed line). The remaining
parameters are p0 “ 0.96 and V0 “ 5ω. (after [40], c© American Physical Society, reproduced
with permission.)

highly populated sublattice has an average z nearest neighbours, the vdW interactions
cause an energetic shift of zV0{8ω and z « 3 near the crystallisation transition. There-
fore, the laser detuning ∆ must compensate the corresponding energetic shift such that
its excitation probability remains above threshold ρ̄1p∆{ω´ zV0{8ωq ě pc, with ρ̄1 given
in Eq. (4.25). As shown in Fig. 4.8, the phase transition between the AF and paramagnetic
phase occurs for Vnite detunings ∆.

In Fig. 4.8, we identify the advantages of Monte Carlo simulations over mean
Veld methods to quantitatively asses the importance of Wuctuations and the shape of the
interaction potential [33, 35, 36]. The detail about a mean Veld method for three-level
driving scheme with NN and full vdW interaction is provided in the appendix B.3. As
shown in Fig. 4.8, the phase transition is a second order phase transition [40], in contrary
to mean Veld predictions that suggest a Vrst order transition. Furthermore, the AF order
occurs for Vnite detunings ∆, p0 and V0 [see Fig. 4.9]. Néel-type ordering emerges within
a Vnite detuning range and for p0 ą pc « 0.86, only slightly larger than the threshold in
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respectively. ((a) and (b) after [40], c© American Physical Society, reproduced with permission.)

the NN-blockade model [130] [see Fig. 4.9 (a)]. In contrast to ssMC, no threshold is present
[see Fig. 4.9(c)] for a meanVeld method. Néel states are only found in a certain interval of
interaction strengths V0, since the vdW tail prevents long-range ordering beyond a critical
value Fig.4.9(b).

We have shown the emergence of AF long-range order for appropriate coherent
driving and certain interval of interaction strengths V0. The Wuctuations and the shape of
interaction potential are both indeed found to be essential for the physics of the dissipa-
tive phase transition. In the next section, we discuss the relevant parameters towards an
experimental realisation.

4.5 Implications for experiments

In the presence of decoherence due to spontaneous emission, the strong radiative decay of
the intermediate state |py with a rate γp „ MHz drives the relaxation towards the steady
state eq.(4.25), with a tuneable p0 “ Ω2

1{pΩ2
1`Ω2

2q. Such three-level excitation schemes are
utilised in numerous Rydberg atom experiments, either for exploring interaction eUects in
the strong excitation regime (Ω1 ą Ω2) [133–136] or in quantum optics applications in the
opposite limit [77, 137–139]. As a speciVc example, laser excitation of Rb(35S1{2) Rydberg
states via the intermediate Rb(5P1{2) state with Ω1 “ 0.5γp “ 4Ω2 yields p0 « 0.9.
For a lattice constant of a « 2µm these conditions correspond to V0 « 5ω, i.e. well
within the parameter region of the ordered steady state. Rydberg excitation and trapping
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[140] as well as single-site resolved Rydberg atom imaging [86] have been experimentally
demonstrated in 2D lattices with a « 0.5µm. Larger lattice constants can also be realised
in these settings [141] or via single-atom trapping in optical micro-trap arrays [142], such
that the creation and probing of the predicted dissipative phase transition appears to be
well within experimental reach.
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Having discussed the dynamics of Rydberg atom lattices in the previous chap-
ters, we now describe an application of the strong interactions in such systems for quan-
tum information processing (QIP). More speciVcally, we show how the special properties
of Rydberg atoms can be employed to construct a coherent interface to transfer the quan-
tum states of a superconducting qubit to an atomic quantum memory – a key component
for hybrid quantum computing architectures.

A QIP platform should allow one to prepare, manipulate and read out the quan-
tum states of a multi-qubit system. Moreover, such a platform should be scalable, i.e.,
the more qubits can be added and coupled in order to perform more complex calcula-
tions. Superconducting (SC) qubits satisfy these requirements and present one of the most
promising current implementations [143–147]. However, the corresponding qubit states
are prone to environmental noise from extrinsic (e.g., local electromagnetic environment)
and intrinsic (e.g., low frequency noise) decoherence sources, leading to short qubit life
times. A hybrid quantum computer presents an attractive solution to this problem by
using another physical system in order to store the quantum information for long times.
Cold atomic ensembles serve as a suitable quantum memory. Their hyperVne ground
states feature transitions in the GHz range and can thus be coupled to the quantum states
of microwave photons conVned in typical superconducting cavities. In principle, such a
setting permits to process quantum information rapidly using well developed SQUID tech-
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Figure 5.1: Illsutration of Rydberg atoms coupled to SC cavity (a) and atomic level scheme in the
presence of noise and spontaneous decay from the state |py and |sy (b). (see text for the parameters)

nology while storing quantum information for a long times in the hyperVne ground states
of atomic ensembles [148]. While a superconducting cavity provides a virtual ideal inter-
face between the SQUID quantum states and the atomic quantum memory, the remaining
outstanding challenge is to achieve an eXcient and coherent transfer between quantum
states encoded in microwave photons in the superconducting cavity and atomic exciton of
the quantum memory.

Typically the solid-state qubit is placed at the antinode of a coplanar SC mi-
crowave cavity while the atomic ensemble is trapped above the cavity surface [149] and
their hyperVne states couple to the evanescent cavity Veld [150–152]. In order to achieve
strong coupling , the atoms must be placed very close to the metallic surface, which ex-
poses them to harmful surface eUects, such as static magnetic Veld noise. Even though
one can achieve long coherence times, „ 1 ms, which can be achieved for µm atom-
surface separations [153], the resulting coupling strengths in the kHz-range are not strong
enough to facilitate for a coherent transfer and, even more so, compete with the decoher-
ence time, „ 1µs, of SC qubits.

A promising alternative to enhance the atom-cavity coupling is to utilise the
large transition dipole moments of highly excited Rydberg states [51, 56–59]. For example,
nS´nP transitions of alkaline precisely fall into the microwave regime, thus, are ideal for
coupling atomic Rydberg excitations to coplanar MW cavities [51–55]. Moreover, the use
of Rydberg states relaxes the requirement of placing the atoms very close to the surface
and thereby eliminates the detrimental eUects of magnetic surface Velds. However, as
the dipole moment increases

`

9n2˘ the dipole polarisability also increases
`

9n7˘. This
renders the atom more susceptible to electric surface Velds, as we show in the chapter,
leads to additional decoherence.
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5.1 The Jaynes-Cummings Model

The interaction of a single Rydberg atom with a near-resonant microwave cavity can be
describe by the Jaynes-Cummings model, which represents one of the most simple and
central models in quantum optics. As illustrated in Fig. 5.1 (a), we consider an atom with
relevant states |sy and |py which represent two |nSy and |n1P y Rydberg states whose
transition frequency is assumed to be near-resonant with the cavity frequency. Further
introducing the creation operator â: of cavity photons the atom-cavity Hamiltonian can
be written as

Ĥ “ ~g
`

âσ̂ps ` â:σ̂sp
˘

` ~ωspσ̂pp ` ~ωcâ:â (5.1)

where we have used the rotating wave approximation.

The Hamiltonian consists of three parts: the atom-cavity coupling with coupling
strength g determined by the dipole matrix element µ̂sp and the electric Veld per photon
εc “

a

~ωc{ε0Vc within the eUective cavity volume Vc “ 2πw2L [see Fig. 5.1 (a)] at the
surface of the cavity,

g “ µ̂spεc{~. (5.2)

The second part describes the energy diUerence ~ωsp between the two atomic states, and
the third the energy ~ωc of a cavity photon. The length L “ λc determines the cavity
frequency through

ωc “
2πc
λc
?
εr
, (5.3)

where c, λc, and εr denote the light speed in vacuum, the wavelength of microwave photon
and the medium relative electric permittivity, respectively. We assume that the cavity is
initially populated with only one photon and has a lifetime 1{κ (typically ď ms) larger
than any other timescales in the system, so we can safely neglect it. Diagonalising Eq. (5.1)
yields the dressed eigenstates of the coupled atom-cavity system

|`, npy “ sin θnp |s, npy ` cos θnp |p, np ´ 1y,
|´, npy “ cos θnp |s, npy ´ cos θnp |p, np ´ 1y (5.4)

with the mixing angle

tan θnp “
?
npg

∆{2`
b

g2np ` p∆{2q2
(5.5)

The associated energies are given by

Enp,˘ “ npωc `
1
2

´

∆˘
a

∆2 ` 4npg2
¯

, (5.6)

and depend on the number np of photons in the cavity. For much of the present consid-
erations the photon number is restricted to 1. In the absence of atom-cavity interactions,
g “ 0, the bare eigenstates are linear functions of the cavity detuning ∆ “ ωsp ´ ωc
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Figure 5.2: Panel (a) shows eigenenergy of bare (black dashed) and dressed states (red line) as the
function of switchable detuning. (b) shows schematic of eigen energy of collective states.
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cavity as the function of time.

[Fig. 5.2(a)]. Upon turning on the atom-cavity coupling the two states are split by 2~g on
resonance.

The dynamics of the coupled atom-cavity system follows straightforwardly from
this eigenstate structure. Starting from a fully occupied cavity, i.e. an initial state

|ψpt “ 0qy “ |s, 1y, (5.7)

the resonant dynamics

|ψptqy “
1
?

2
`

|`, 1y ` |´, 1ye2igt˘ , (5.8)

corresponds to simple Rabi oscillations with a frequency 2g. This permits a complete
quantum transfer between the cavity and the atomic excitation on a timescale „ g´1

Thus one should place the atom as close as possible to the cavity surface in
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order to speed up the transfer process while keeping surface-induced decoherence at a
minimum. Decoherence due to electric and magnetic Veld noise close to metallic surfaces
has been studied thoroughly for many decades. For instance, adatoms are shown to be the
major cause of electrostatic Velds in atom chip surfaces [60, 64]. Moreover, black-body
(BB) radiation induces spontaneous transitions to other undesired states [153, 154], al-
though this eUect is greatly reduced at SC temperatures [155]. Finally, Wuctuating electric
and magnetic Velds are also present in metallic components, such as the ones used in atom
chips, ion trap electrodes, and coplanar MW cavities [156–159].

The detailed mechanism causing electric Veld noise close to metal surfaces is
not completely understood. However, there is broad consensus that the resulting noise
exhibits an inverse power-law dependence on the noise frequency [61, 159, 160]. In the
following, we therefore present a brief discussion of such noise processes and their nu-
merical generation.

5.2 1/f noise

Let us consider an electric Veld Wuctuation Fptq at the position of a Rydberg atom. Due
to the diUerent polarisabilty of the S and P Rydberg states (αS and αP , respectively) the
transition under consideration will experience a diUerential Stark shift

∆Eptq “ 1
2 |αS ´ αP |Fptq2. (5.9)

Fptq resembles 1{f noise and a detailed generation of Fptq is given in Ref. [161, 162]. This
kind of noise is characterised by a power spectral density [Spωq],

Spωq “
1
T

tďT
ż

t“0

dt xgp0qgptqy e´iωjt, (5.10)

where for the continuous notation it is given by

Spωq “ S0pdq{ |ω|
κ . (5.11)

The noise amplitude S0 scales with the distance to the noise source d with a power law
S09d

´α, with α taking values of 1/4, 2, or 1 depending on the model and the distance
itself, while κ takes values 1, 1/2 depending as well on the model and the frequency range
considered [see [163] chapter 3].

In order to determine the noise amplitude and the scaling exponents we follow
Ref. [61], and make use of the analytical model derived in Refs. [164, 165], where the
dephasing rate of Ramsey and Hahn spin-echo experiments due to 1{f noise is obtained.
In particular for noise producing a quadratic Stark shift and at long evolution times the
coherence is found to decay as exp p´Γf t{2q where the decoherence rate is deVned as
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Γf “
ˆ

1
2
B2ωif
BF2 S0

˙1{κ

. (5.12)

Here B
2ωif
BF2 is the polarisability diUerence between the two Rydberg states. For instance, in

Ref. [163], where the states used are 48S1{2´ 49S1{2, one has
B2ωif
BF2 “ 2πˆ 600 Hz m2/V2.

From Ramsey/Hahn echo experiments, Γf can be experimentally determined and use the
obtained value for estimating the noise amplitude S0 and the scaling law. The results
obtained in [61], which use atom-chip surface distance of 150 µm, give 1{Γf “ 5.3 ˘ 2
µs which is consistent with values of 20 (V/m)2ď S0 ď 40 (V/m)2 for κ “ 1. Thus, we
assume from now κ “ 1. Next, for the scaling with the surface distance we use the values
obtained in Ref. [166] for copper surface (with a thin layer of oxide) which Vt into a quartic
dependence of the form

Spω, dq “
S0pdq

ωκ
”

s0

d4ωκ
. (5.13)

which is also consistent with the model of patch Velds in Ref. [114]. From the data shown
there we obtain s0 » 4ˆ 10´17 (Vm)2, which at 15 µm leads to S0 “ 790 (V/m)2.

In order to simulate the 1{f noise, we follow the procedure described in Ref. [161–
163]. This consists of (i) Fourier transforming a Gaussian distributed white-noise signal,
(ii) dividing the data by ω1{2, and (iii) inverse Fourier transforming back to time domain.
Since the power spectral density (5.10) diverges at low frequencies, some cut-oU must be
considered. A natural cutoU is given by the integration time itself: when the signal is sam-
pled the lowest frequency threshold is ωir “ 2π{T . For high frequencies there seems to be
in general no strong dependence in where the cutoU is placed as the spectrum decays fast
enough, and thus the largest frequency components do not play a role in the decoherence.
For numerical simulations however, this cut oU is imposed by the number of samples N ,
such that ωc “ 2πN{T .

Fig. 5.4 shows the power spectral density as a function of angular frequency ω
for various distances d from the SC cavity surface in a log-log scale. As the Rydberg atom
is placed away from the surface of cavity, S pω, dq decreases. This shows that the noise
model can quantitatively describe the spectral density of noise when an atom is placed
away from the surface. In the next subsection, we investigate atom-cavity coherence in
the presence of 1{f noise.

5.3 Noise eUects on single-atom dynamics

We have shown that the presence of the Veld g induces the splitting between dressed states
leading to the Rabi oscillations. We now investigate the presence of a local Wuctuating 1{f
noise that causes the energetic shifts of dressed states [Fig. 5.6 (a)]. As an atom is placed
d µm away from the surface of cavity, we use an approximation for the decay of the Veld
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Figure 5.4: Power spectral density as the function of angular frequency for a principal quantum
number n “ 50 and various distances between the cavity surface and the atom .

leaking out from the cavity [151], i.e.,

g pdq “ g0e
´d{x (5.14)

where gp0q is given in Eq. (5.2), d denotes the distance of atom-cavity surface and x “
ps ` wq{2 [see Fig. 5.1]. Following experimental parameters from Ref. [167, 168], the
electrode distance w » 10 µm creates the eUective cavity volume Vc » 6.2 ˆ 10´12

m3. Choosing m “ 2 yields λc “ 2L
L

m » 1 cm, and m ` 1 Veld antinodes. With
eUective dielectric constant εc » 6, the mode frequency is » 2π ˆ 12 GHz. For s = 20

 0
 2
 4
 6
 8

 10
 12

 0  10  20  30  40  50  60  70
z (µm)

2π
 ×

M
H

z

d(µm)

g
/2
⇡
(M

H
z)

Figure 5.5: Atoms-cavity coupling as the function of atoms-cavity surface distance
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Figure 5.6: Cavity population as the function of time in the presence of noise for d » 37.5 µm
(red line) and d » 15 µm (blue line) (see text for details).

µm and w “ 10 » µm results x = 15 µm [54, 151]. The dipole matrix of neighbouring
Rydberg states scales as µ̂ « ea0n

2. For n » 50 and d = 15 µm, g{2π » ˆ4 MHz [see
Fig. 5.5], and spontaneous decays of the |sy and |py state are γs » 7 kHz and γp » 4 kHz,
respectively [70].

The dynamics of the system in the presence of Wuctuating noise and sponta-
neous decay from the state |sy can be simulated by means of stochastic Schrödinger equa-
tion (SSE). Since the decay rate of γs and γp is in kHz range, we can safely neglect it. A
single realisation of the time dependent wave function evolves as

i| 9ψpkqy “
”

Ĥ ` εptq
ı

|ψpkqy, (5.15)

where Ĥ is given in (5.1) and εptq denotes an energetic shift due to 1{f phase noise.
Starting from a fully occupied cavity, i.e., an initial state given in (5.7), for M realisations
|ψpkqy, we determine the cavity population and take its average

Cp “
1
M

M
ÿ

k“1
xps, 1qpkq|ps, 1qpkqy, (5.16)

the resonant dynamics

|ψptqy “
1
?

2

´

|`, 1y ` |´, 1ye2iεptq
¯

, (5.17)

corresponds to incoherent oscillations due to an energetic shift εptq “ E˘,1 ` φptq, with
φptq being phase of Wuctuating noise. Fig. 5.6 shows the dynamics of cavity population for
an atom placed d µm away from the surface of cavity. We compare the cavity population
for two diUerent d: d » 37.5 µm and d » 15 µm. As d is close to the surface of SC
cavity [60, 169], the coherence is completely destroyed, leading to Cp “ 1{2.
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We have shown that although the coupling is stronger due to the Rydberg states,
their strong dipole polarisability causes an atom being prone to the surface noise. There-
fore, we need another scheme that can compensate decoherence due to Wuctuating noise
from the surface of SC cavity. In the next section, we use of Rydberg lattice to overcome
this problem. We will show that the presence of interactions in the Rydberg lattice, i.e.,
dipole-dipole interactions, can be employed to overcome ineXcient interfacing between
SC cavity and Rydberg atoms.
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In the previous chapter, we have shown the possibility to enhance the atom-
cavity coupling by exploiting the large dipole moment of highly excited Rydberg states.
However, the large polarisability (9n7) of Rydberg states also makes them more suscep-
tible to spurious electric Velds parasitising the metallic cavity surface. For a single atom
coupled to SC cavity with typical atom-cavity distance [54, 55, 61, 169], the system indeed
undergoes strong decoherence.

In this chapter, we propose a noise-resistant interface between a collection of
Rydberg atoms and a single photon in a SC cavity by means of (resonant) dipole-dipole
interactions (DDI). Instead very large atoms clouds (N » 106 atoms) [60], we use an
atomic lattice with up to hundreds atoms. In such system, DDI are exploited to compensate
dephasing of Rydberg states due to Wuctuating electric Veld from the SC cavity surface. We
show that this scenario is not only robust to the Wuctuating noise from the cavity surface
but also robust to the dissipative processes that originates from spontaneous emission
from the state |nsy.

This chapter is organised as follows. In Sec. 6.1, we will start with a simplest
case : the interface between SC cavity and non-interacting atoms in the presence of noise.
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Figure 6.1: (a) Schematic picture of the Rydberg atom lattice coupled to a SC cavity via a single-
MW photon. (b) Energy levels of a Rydberg atom. The atoms, initially in the ground state (c), are
all pumped to the excited state |sy (d) and (e) the cavity photon drives one of the atoms to state |py.

As the mechanism causing electric Veld noise to metal surface is not completely clear, we
Vrstly use the type of noise described in chapter 3. Next, in Sec. 6.2, we include the DDI
on Rydberg lattices. Here, we compare the noise-resistant coupling of Rydberg lattices
and a SC cavity in the presence of DDI to the one in the absence of it. To ensure the
geometrical dependence, we will discuss the comparison for a 1D lattice and a 2D lattice
scenario. Next, in Sec. 6.3, we include the spontaneous decay from the state |nsy and |npy
to investigate the eUect of atom loss. In order to assure the performance of our system,
we provide another Vgure of merit in Sec. 6.4. Finally, we discuss realistic parameters in
Sec. 6.5, where 1{f noise model is used instead of the type of noise described in chapter 3.
We use two types of noise to ensure that our scenario is robust against two diUerent types
of noise.

6.1 Noise eUects on non-interacting ensembles

This section is aim at presenting theoretical description of the interface between the non-
interacting Rydberg atoms and SC cavity in the presence of Wuctuating noise. We model
atoms-cavity interactions by means of cavity quantum electrodynamics where the Hamil-
tonian that governs the system is typically described with Tavis-Cummings model.
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6.1.1 The Tavis-Cummings Model

The interaction of Rydberg ensemble with a near-resonant microwave cavity can be de-
scribed by the Tavis-Cummings model. As illustrated in Fig. 6.1 (a), we consider a square
lattice of atoms, with site spacing a and one atom per site, held at a distance d from the sur-
face of a coplanar superconducting-microwave cavity. All the atoms are initially pumped
from the ground to the |sy state [see Fig. 6.1(c) and (d)] and that the lattice spacing is large
enough such that the second-order van der Waals interaction between atoms in |sy states
is negligible. This state is given by

|φ0y “

˜

â:
N
ź

i“1
σ̂piqsg

¸

|vacy ”
N
ź

i“1
|siy|1cy, (6.1)

with σ̂piqαβ “ |αpiqyxβpiq|. The operator â: denotes creation of a single photon, |vacy de-
notes the "vacuum state", i.e., the ground state of atoms with zero photon in the cavity
`

|vacy “ |gpiqy|0y
˘

, and |1cy denotes a single photon present in the cavity. The cavity
photon collectively excites one of the atoms to the state |py [see Fig. 6.1 (d) and (e)], and
the state is written as

|piy “ âσ̂piqps |φ0y. (6.2)

with â denotes the annihilation operator of a single photon. We Vrstly consider the sim-
plest case, i.e., in the absence of decay from state |sy and the state |py. This implies that no
atom loss to the ground state of atom (see Fig. 6.1 (b)), and hence the coherence process
can be considered as an eUective two-level system that consists of Eq. (6.1) and Eq. (6.2)
as an eUective ground and excited state, respectively. The Hamiltonian that governs the
system is the Tavis-Cummings Hamiltonian which reads [126] :

Ĥac “ ~g
N
ÿ

i“1

´

âσ̂piqps ` â:σ̂piqsp

¯

` ~∆
N
ÿ

i“1
σ̂piqpp . (6.3)

For much of the present considerations, we set Planck’s constant ~ “ 1. The Vrst part of
Hamiltonian denotes the atom-cavity coupling with a rate g

?
N , where N is the number

of atoms in the lattice and g is given in Eq. (5.14). The second part of Hamiltonian (6.3)
is a switchable detuning ∆ that can be switched on- and oU-resonance by means of, e.g.,
external Velds. The Rydberg states, in the absence of noise, have a bare energy separation
ωsp ” ωp ´ ωs close to the cavity frequency such that initially ∆ ” ωsp ´ ωc » 0. This
energy separation is aUected by external spurious electric Velds due to the polarisability
diUerence between the two Rydberg states, as we will describe later. We have assumed a
typical decay length of the evanescent Veld on the order of the gap width [54, 151] and
that all the atoms experience the same coupling strength to the cavity.

We determine the quantum dynamics of Hamiltonian (6.3) by means of Schördinger
equation. For a single realisation, we calculate the cavity population,

Cp “ xφ0|φ0y. (6.4)
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Figure 6.2: Panel (a) shows schematic of coupling between single photon state and the collective
states of single-atom excitation. The blue and red lines denote symmetric and non-symmetric
states, respectively. (b) shows the population of single photon in the cavity as the function of time
for N = 16.

As shown Fig. 6.2, Rabi oscillation occurs due to the coupling to the symmetric state [see
Fig. 6.2 (a)]. For N atoms, the symmetric state is written as

|φ1y “
1
?
N

N
ÿ

i“1
|piy. (6.5)

As the number of non-interacting atoms increases, the coupling strength increases „
?
Ng, producing faster oscillation than a fewer atom case [see Fig. 6.2 (b)] [126]. The

coupling strength between the atomic ensemble and the cavity Veld gN can be deVned as
the matrix element of the Vrst part in Hamiltonian 6.3. This matrix elements read

gN “ g
N
ÿ

j“1

N
ÿ

i“1
xφ0|âσ̂

piq
ps ` â:σ̂piqsp |φjy “

?
Ng, (6.6)

where |φjy denotes collective states which read

|φjy “
N
ÿ

i“1
c
piq
j |piy, (6.7)

with cpiqj “ ˘1{
?
N and j denotes the state indices.
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For the simplest case, we have shown that the increased number of atoms leads
to the increase of atom-cavity coupling strength„

?
N . In the next subsection, we include

the presence of noise and discuss its consequences.

6.1.2 The Langevin equation

In this subsection, we study the quantum dynamics of SC cavity coupled to non-interacting
atoms in the presence of noise. The presence of noise causes the energetic shift εpiqptq of
Rydberg states that leads to decoherence. The Hamiltonian of noise is given by

Ĥln “

N
ÿ

i

εpiq ptq σ̂piqpp (6.8)

with σ̂pp denotes the projection operator to the state |py. Here the noise acts locally, i.e.,
xεiεjy “ Cδij . Although the most typical type of noise for SC cavity is 1/f noise [60,
66, 149, 170–172] (see Subsec. 5.2), in this subsection we Vrstly discuss the laser phase
noise [173, 174] that has been described in Sec. 3.2. To remind the math symbols, we
rewrite the Langevin equation as in Sec. 3.2

9ε “ ´γε` F ptq , (6.9)

where Wuctuations of energetic shift ε ptq acts as time-dependent detuning in which the
correlation time τc “ 1{γ. The Gaussian white noise F(t) denotes a rapidly Wuctuating
force with zero ensamble average F ptq “ 0 and F pt1qF pt2q “ 2Dδpt2 ´ t1q with D
describes the magnitude of Wuctuating forces and δ pt2 ´ t1q is Dirac delta function. Here
D and γ characterises the spectral width Γ of Lorentzian line shape [173]

Γ “ 2D
γ2 (6.10)

The dynamics of this system is described by the Langevin equation in which a single
realisation k of the time dependent wave function evolves as i| 9ψpkqy “ Ĥ|ψpkqy. For M
realisations |ψpkqy of the trajectories over N atoms, we calculate a cavity population

Cp “
1
M

M
ÿ

k“1
xφ
pkq
0 |φ

pkq
0 y. (6.11)

For suXciently largeM , the average of Cp (cavity population) converges. Fig. 6.3 shows
the comparison of quantum dynamics in the absence and the presence of noise. In the
absence of Wuctuating noise Rabi oscillations occur perfectly between the atoms and the
cavity. However, in the presence of Wuctuating noise, Rabi oscillations decrease exponen-
tially, exhibiting decoherence of quantum dynamics. This can be understood as follows: In
the absence of the noise, the eUective ground state |φ0y couples to the symmetric state but
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Figure 6.3: Panel (a) shows schematic of coupling between single photon state and the collective
states of single-atom excitation. The blue and red lines denote symmetric and non-symmetric
states, respectively and the curved arrows show the population transfer between a symmetric
states and non-symmetric states. (b) shows the cavity population as the function of time for N =
100 in the absence of noise (red line) and the presence of noise (blue line) for Γ “ 5g and γ “ 14g.

uncouples to the non-symmetric states [see Fig. 6.3(a)]. The non-symmetric states read

|φją1y “

N
ÿ

i“1
c
piq
j |piy. (6.12)

When the noise is present, the population transfer occurs from a symmetric state into
non-symmetric states, leading to a damping of Rabi oscillations [see Fig. 6.3(b)].

We have shown that the presence of noise causes the coupling between a sym-
metric and non-symmetric states, leading to the damping of Rabi oscillations. To this
section, we have not included the presence of DDI. In the next section, we investigate a
noise-resistant interface between a collection of Rydberg atoms and a single photon in a
SC cavity (see Fig. 6.1) by means of (resonant) DDI.

6.2 EUects of dipole-dipole interactions

Strong DDI occurs between Rydberg states with similar principal quantum number but
diUerent angular momentum. It has been shown to yield coherence population exchange
between diUerent atoms [53]. Most previous works dealing with Rydberg atoms driven
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by a microwave-cavity photon had considered the cloud of atom with a single Rydberg
atom [51, 52, 54, 55, 60, 61], and hence the exchange interaction has not been eUectively
exploited so far. In addition, our numerical simulations in Sec. 5.3 and Subsec. 6.1.2 show
that for both a single atom and non-interacting atoms which couple to the SC microwave
cavity, the system undergoes strong decoherence. Therefore, in this section we investigate
the role of DDI in compensating decoherence due to Wuctuating noise from the surface of
SC cavity. We also identify the advantages of the combination between SC cavity and the
ensemble of atoms placed for two-diUerent geometrical lattices.

As described in Sec. 6.1, we consider a two-dimensional lattice where all the
atoms are initially pumped to a particular Rydberg state. Consequently, the cavity photon
can excite one of the atoms to a diUerent angular momentum Rydberg state, which in turn
is coupled to all the nearby atoms via DDI. In this situation, the typical Hamiltonian which
describes the DDI is given by

Ĥdd “ ~V0{2
ÿ

i,j‰i

σ̂
piq
ps σ̂

pjq
sp

|ri ´ rj|3
(6.13)

with the operators denote the exchange state |sy and |py between an atom i and an atom j.
A pair of excited atoms at site i and j experiences the DDI V0{|ri´ rj|3 with V0 “ C3{a

3.
For a one dimensional lattice, ri and rj is simply i and j, in which V0{|i ´ j|3. For a two
dimensional lattice, two atoms located at site ri “ pxi, yiq , xi, yi P r1, Ls and rj pi ‰ jq

are separated by a distance |ri ´ rj|.

We now consider the dynamics of system in the presence of Wuctuating noise
and DDI. The total Hamiltonian that governs the system consists of atom-cavity interac-
tion in Eq. (6.3), Wuctuating noise in Eq. (6.8) and DDI in Eq. (6.13). It reads

Ĥtot “ Ĥat ` Ĥln ` Ĥdd. (6.14)

We simulate trajectories of Eq. (6.14) with the same procedure as in subsec 6.1.2. We
subsequently compare the cavity population in the presence of DDI for 2D lattice to the
case of non-interacting atoms in the presence of noise.

In the previous section we mention that the presence of Wuctuating noise leads
to the damping of Rabi oscillations and the lost of coherence. The coherence lost, however,
can be overcome by means of DDI. As shown in Fig. 6.4 (a), the DDI causes the energetic
shift of collective states, preventing the population transfer from the symmetric state into
non-symmetric states. As the energies of the non-symmetric states are well separated
from the symmetric state, the atomic frequencies are now far oU resonance from the single
cavity mode. Therefore, ωc must be chosen diUerently to compensate the corresponding
energetic shift such that the atomic and cavity frequencies are in resonance. In order
to determine ωc, we will later choose the value for ωc which equals to the eigenenergy
of the symmetric state. Therefore, we perform diagonalisation of Eq. (6.13) to obtain the
eigenenergies and eigenstates of collective states. For the case of many atoms and resonant
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driving, the collective states read

|ϕjy “
ÿ

i“1
w
piq
j |biy (6.15)

where wpiqj “ ˘1
L?

N for j denotes the state indices and j P r1, Ns. Here |biy is similar
to |piy, but in the absence of a single photon state. Its basis is given by

|biy “ σ̂piqps |ϕ0y, (6.16)

for which |ϕ0y “
ś

i“1
|spiqy. The coupling strength of collective states of atoms can be

deVned as the matrix element given by

G̃pjq “ g
N
ÿ

i“1
xϕ0|σ̂

piq
ps ` σ̂piqsp |ϕjy, (6.17)

where the total collective coupling is given by,

G̃ pEq “
1
N

N
ÿ

j“1
|G̃pjq|2δE,Ej , (6.18)

with δE,Ej is a kronecker delta and Ej are eigen energies of the collective states. The
numerical results of Eq. (6.18) is depicted in Fig. 6.4 (b), showing the probability of collec-
tive coupling G̃ pEq as a function of collective-state energy (E). We deVne ∆E, denoting
the energy separation between the eigenenergy of addressed symmetric state E1 and the
closest non-symmetric state energy E2. It is given by

∆E “ |E1 ´ E2|, (6.19)

[see also Fig. 6.4 (b)]. We now choose the value of ωc determined from the eigenenergy
of addressed symmetric state. Switching ωc to it indeed restore the coherent oscillation
between the microwave cavity and the atoms. This is depicted in Fig. 6.4 (c), showing
the eUect of the protection mechanism by plotting the cavity population as a function of
time in the presence (dashed line) and absence (solid line), e.g., large lattice spacing, of
interactions. In the absence of interactions, the coupling between the state |φ0y and |φ1y

leads to Rabi oscillations of the cavity population at a frequency g
?
N [175], damped due

to the dephasing induced by the local noise Wuctuations. This damping is of the form
exp r´t{τcohs with τcoh » 0.2 g´1. In comparison, the case where the DDI is present
exhibits 25 times longer coherence time τcoh » 5 g´1.

We should note that the eigenstates in Eq. (6.15) do not necessarily coincide in
general with the collective basis |φjy introduced in Eq. (6.7). So in practice, even after
readjusting the detuning to compensate the shift of the addressed symmetric state, its
resonant coupling to the cavity will not be perfect and the cavity will partially couple
to other non-symmetric state. Nevertheless, tuning the system on resonance to the peak
with the largest G̃, i.e., E » 87.58g in the Fig. 6.4 (b), guarantees that the coupling to
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Figure 6.4: Panel (a) shows the scheme of coupling between microwave photon in SC cavity with
an eUective collective states of 10ˆ10 atoms. The collective states in the absence of interactions are
denoted by red lines while in the presence of interactions are denoted by green lines. The thickness
of arrow line corresponds to the strength of coupling to the collective states. Panel (b) shows
the probability of the collective states as the function of their eigenenergies. The highest peak
corresponds to the eigenenergy of addressed symmetric state Esym “ E1 while others correspond
to the coupling of non-symmetric states. The energy separation between E1 and the adjacent non-
symmetric state E2 is denoted by ∆E . Panel (c) shows Rabi oscillation between SC cavity and the
ensemble of 10 ˆ 10 atoms for Γ “ 5g, γ “ 14g, V0 “ 25g, ∆ “ ´87.58g and γs “ 0 in the
absence of interactions (black line) and the presence of interactions (black dashed) obtained from
103 realisations of a single trajectory calculated by Langevin equation.

other non-symmetric states will still be weak as long as ∆E is larger than both g
?
N and

the noise strength (Γ).

We Vnally identify the advantages of the coherence of atom-cavity coupling for
the case of 2D lattice. We compare the case of 2D lattice to 1D lattice scenario. As shown
in Fig. 6.5, the lattice geometries indeed determine the coherence lifetime. The cavity
population for a 2D lattice exponentially decreases slower (τcoh » 5 g´1) than 1D lattice
case (τcoh » 0.6 g´1). In comparison, the coherence lifetime of 2D lattice case is 8 times
longer than 1D lattice case. This can be understood from Fig. 6.6 (a) and (b), showing
the coupling of collective states G̃ pEq as the function of eigen energies for two diUerent
dimensional lattices.

For 1D lattice [see Fig. 6.6 (a)], the energy separation ∆E is much smaller than
2D lattice [see Fig. 6.6 (b)]. Therefore, for 1D lattice, although the presence of DDI, the
population transfer easily occurs from the symmetric state to non-symmetric states due
to Γ „ ∆E . In contrary to 1D lattice, 2D lattice exhibits large energy separation such
that ∆E " Γ. We should note that the energy of addressed symmetric state for 1D lattice
saturates faster than 2D as the increase of atom number [see Fig. 6.6 (c)]. As the increase
of atom number, the discreet energy becomes densely packed which is shown by the sat-
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Figure 6.5: Cavity population as the function of time for Γ “ 5g, γ “ 14g, N “ 10 ˆ 10, and
V0 “ 25g. Red line shows the coherence for the case of non-interacting atoms while blue and black
dashed show the coherence of atomic ensembles placed in 1D lattice and 2D lattice, respectively.
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Figure 6.6: Collective coupling of atoms as the function of eigen energies for for (a) 1D lattice and
(b) 2D lattice. The energy of symmetric state and ∆E as the function of atom number is shown
in (c) and (d), respectively. The rest parameters are N “ 100 and V0 “ 25g. The vertical black
dashed for N “ 100 will correspond to the explanation in Fig. 6.10 (d).

uration of energy of symmetric state and the decrease of ∆E for the case of 1D and 2D
[see Fig. 6.6 (d)]. Consequently, as the atom number increases, the addressed symmetric
state is likely to couple to the non-symmetric states. On the other hand, the atom-cavity
coupling increases as the atom number increases. The interplay between g, ∆E and Esym
signiVcantly inWuences the coherence lifetime of the system. The consequences of this
interplay will be discussed later.

To this section, we have not considered another source of decoherence which
originates from atoms. In this case black body radiation induces spontaneous transitions
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Figure 6.7: A single trajectory of cavity population as the function of time for γs “ 0.1g, γp “ 0,
and N “ 4. The dashed shows the agreement with the cavity population for N “ 3 (blue dashed)
and N “ 2 (black dots) in the absence of decay.

to other undesired states [55, 153] , although this eUect is greatly reduced at SC temper-
atures [155]. In the next section, we will study the dynamics of system in the presence
decoherence due the spontaneous decays from the state |sy and |py [see Fig. 6.1 (b)], in-
stead of noise.

6.3 EUects of dissipative processes

In this section, we consider the presence of spontaneous decays from state |sy and state
|py with the rate γs and γp [see Fig. 6.1 (b)], respectively. We simulate the dynamics of
the system by means of quantum jump algorithm [see appendix B.1 and [115–118]]. It
requires more eUorts to perform this numerical calculation, as we need to add more basis
than the case of the absence of decays. The additional basis is needed due to the atom loss
from the state |sy or |py to the ground state |gy of atom. Thus, this is similar to considering
three-level ladder system without the presence of driving force between the state |gy and
state |sy.

When an atom loss occurs from the state |sy, the basis |φ0y also changes into
new basis state which reads

|Gpjqy “ σ̂pjqgs

«˜

â:
ź

i‰j

σ̂piqsg

¸

|gpiqy|0y

ff

, (6.20)

where the microwave cavity still couples to the state |Biy but with less coupling strength
which is given by

|Biy “ âσ̂piqps |G
pjqy (6.21)

As a test, we simulate a single trajectory for γs “ 0.1g and γp “ 0.0g in the absence of
DDI for N “ 4. We will show that the atom loss leads to the decrease of amplitude and
frequency, as it equals to g

?
N . For a single trajectory |ψp1qywithN atoms, we calculate a



68 6 Noise-resistant quantum interface

(a) 

(b) 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5
Time (gt)

Ca
vi

ty
 p

op
ul

at
io

n ξ = 0.1g, V0 = 25g

E s
ym

(C
3/a

3 )
 

 50

 60

 70

 80

 90

 0  1  2  3  4  5

Time (gt) 

Figure 6.8: Panel (a) shows the dynamics of cavity population for N “ 10 ˆ 10 and (b) shows
the shift of symmetric state energy for N “ 10 ˆ 10 (red line) and for N “ 4 ˆ 4 (blue line) as
the function of time. The simulations were performed for M “ 103 and the rest parameters are
γs “ 0.1g, γp “ 0.1g, Γ “ 0, and V0 “ 25g.

cavity population similar to Eq. (6.11). Fig. 6.7 shows a single trajectory of non-interacting
atoms in the absence of interactions (see caption) with the initial state reads |φ0y. When
the Vrst atom loss occurs from state |sy to state |gy, the oscillation frequency changes
from 2g to the

?
3g (N “ 4 Ñ N “ 3), accompanied by the decrease of amplitude due

the loss of an atom. We perform another single trajectory for N “ 3, yet in the absence
of decay, to conVrm the decrease of frequency. The blue dashed (N “ 3) is in agreement
with the change of frequency after Vrst atom loss, conVrming the change of frequency
and amplitude. For the second check, the black dots (N “ 2) also in agreement with the
change of frequency after second atom loss.

We now simulateM realisations of trajectories forN “ 10ˆ10 in the presence
of DDI and compare it to the case of N “ 4ˆ 4 (see caption in Fig. 6.8 for detail). Techni-
cally, performing numerical simulations for this larger systems increase the dimension of
Hilbert space which leads to the high time-consuming of calculations. Fortunately, since
the absence of driving force between the state |sy and |gy, we can perform truncations of
unpopulated states. The detail of truncations is given in Appendix D.

Fig. 6.8 shows the average of cavity population (a) and the shift of eigenenergy
of symmetric state (b) as a function of time for N “ 10 ˆ 10 (red line), N “ 4 ˆ 4
(blue line), and M “ 103 (see caption for details). We observe the decrease of cavity
population due to the change of amplitude and frequency during the decay processes [see
Fig. 6.8 (a)]. The damping of oscillation is accompanied with the shift of eigenenergy of
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addressed symmetric state oU resonance with the cavity frequency [see Fig. 6.8 (b)]. For
this time window, the atom loss from the state |sy with rate γs “ 0.1g yields „ 40% atom
loss. Despite that loss, the coherence persists. This is due to the fact that for the large
number of atoms, e.g., N ą 16, the shift of energy is smaller than the case of N ď 16.
Fig. 6.8 (b) shows the comparison the shift of eigenenergy of addressed symmetric state
for N “ 10 ˆ 10 and N “ 4 ˆ 4. We observe that with 40% atom loss, N “ 10 ˆ 10
produces smaller shift than the case of N “ 4ˆ 4.

We have shown that the system for large number of atoms produces relatively
small shift of eigenenergy of addressed symmetric state. Despite the presence of atom
loss, the system is suXciently robust for the large number of atoms. Although τcoh in the
previous section already provides a Vgure of merit to asses the performance of our system,
we are interested in the transfer of the photon from the cavity to the atoms, and after a
certain period of time back to the cavity. In the next section, we study the eXciency of
the retrieval process as a function of the storage time in the presence of decoherence not
only due to the presence of spontaneous decays but also due the presence of noise.

6.4 Transfer Vdelities

This section is aim at investigating the eXciency of retrieval process in the presence of de-
coherence due to Wuctuating noise and spontaneous decays. In practice this can be realised
by switching the detuning oU-resonance at half of a Rabi oscillation [see Fig. 6.9(a)]. After
a time interval Tstor the atom-cavity system can be tuned on-resonance again and wait
until the cavity population reaches its maximum, i.e., the retrieval eXciency η. This pro-
cess can be performed for several realisations varying the storage time Tstor [see diUerent
curves in Fig. 6.9(a)]. The ability to store the photon in the Rydberg transition for a long
Tstor is important since ideally during the storage stage one would temporarily transfer
all the excited atoms to hyperVne ground states, where the lifetime can be further ex-
tended and the noise is less harmful. The longer the time window to perform this transfer
process, the more eXciently can be done by means of, e.g., adiabatic population-transfer
techniques.

By plotting the retrieval eXciency as a function of the storage time [Fig. 6.9(b)]
we compare the performance of our protocol for interacting and non-interacting atoms.
We note that the storage lifetime, denoted as τstor, in the absence of interaction is τstor »
0.2g´1 and the presence of DDI is τstor » 4.6g´1. This shows that τstor in the presence of
DDI is 23 times longer than in the absence of interactions for the chosen parameters. We
observe that the slow decrease of the eXciency for the interacting case is accompanied by
small oscillations. We attribute those not only to an imperfect resonant coupling to the
symmetric state, but also weak driving of nearby non-symmetric states [see Fig. 6.4(b)].

The maximum retrieval (η0) and storage lifetime (τstor) can be further improved
by increasing the interaction strength. This is shown in Fig. 6.10 (a) and (c), respectively.
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Figure 6.9: Panel (a) shows the storing and retrieving of microwave photon in the absence of
interaction, but in the presence of noise for γs “ 0.01g, γp “ 0.01g, Γ “ 5g and γ “ 14g. Panel
(b) shows the comparison between the lifetime of cavity population in the presence (cross) and the
absence of interactions (dot).

The maximum retrieval η0 in the presence of spontaneous decay γs “ γp “ 0.01g is equal
to the case of the absence of spontaneous decay [see Fig. 6.10(a)]. This is due to the fact
that only a few percent of atom loss occurs after a single Rabi oscillation. Fig. 6.10 (c)
shows the τstor as the function of the interaction strength. As the interaction strength
increases, the τstor for both cases show quadratically increase. The quadratic growth of
storage lifetime is associated with the geometry of the lattice, i.e., a two-dimensional lat-
tice. In the case of a one-dimensional lattice, the growth is linear. The increase of τstor
for both cases is equal for C3{a

3 ă 25g and diUer for C3{a
3 ě 25g. The diUerence can

be understood as follows: for C3{a
3 ě 25, although produces larger ∆E compared to ∆E

for C3{a
3 ă 25, the atom loss yields the large energetic shift of collective states. Conse-

quently, during the process of atom loss the energetic shift of collective states leads the
system to more far-oU resonant than the case of C3{a

3 ă 25, and hence the τstor is shorter
than the one in the absence of spontaneous decay.

Finally, we also analyse the maximum retrieval eXciency η0 and the storage
lifetime τstor as a function of the number of atoms in the systems [see Fig. 6.10 (b) and
(d), respectively]. In these Vgure, we not only compare the 2D lattice case in the presence
(crosses) and the absence (triangles) of decays, but also compare them to the case of 1D
lattice (squares) and non-interacting atoms (stars). In Fig. 6.10 (b), we observe that for the
non-interacting case the cavity population after a single Rabi oscillation η0 increases as
we include more atoms in the system. This is due to the enhancement of the collective
coupling factor

?
N which reduces the time in which the noise acts on the atoms during

the Vrst oscillation. Note that at this timescales (1{g
?
N ) the spontaneous decay does not
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Figure 6.10: Panel (a) and (c) shows the maximum retrieval η0 and the storage lifetime τstor as the
function of interaction strength in the absence (triangles) γs “ 0 and the presence of spontaneous
decay (crosses) γs “ 0.01g, γp “ 0.01g for a 2D case . (b) and (d) shows of η0 and τstor as
the function of atom number in the absence (stars) and the presence of interactions (1D-squares,
2D-triangles) for V0 = 25g. The rest of parameters are Γ = 5g and γ = 14g

play a signiVcant role.

In comparison, we observe that η0 is larger for interacting case. For 1D lattice
case, η0 increases as the atom number increases. For 2D lattice case, we observe that
η0 increases for small-intermediate atom numbers and decreases for large atom number.
The decrease can be understood as follows: as we have seen in Fig. 6.6 (d) if an excessively
large number of atoms is considered, the energy gap between the diUerent collective states
becomes smaller than the coupling strength. Thus the cavity can be strongly coupled to
many of them, introducing an additional dephasing mechanism besides the noise :.

Fig. 6.10 (d) shows the storage lifetime τstor of the excitation stored in the atoms.
For 1D lattice, although the increase of the atom number increases η0, its τstor shows less
eXcient retrieval process [see Fig. 6.10 (d)] compared to 2D lattice case. The ineXcient
retrieval process for 1D lattice can be understood as follows: despite the larger the size
of the lattice, the energy separation of symmetric state to the closest non-symmetric state
∆E1D „ Γ ! ∆E2D [see Fig. 6.6 (d)]. Consequently, the presence of DDI in 1D lattice case
is insuXcient to strongly compensate decoherence due to Wuctuating noise. In contrast
to 1D case, 2D lattice case exhibits ∆E2D " Γ " g

?
N [see Fig. 6.6 (d)], and hence the

presence of DDI in 2D lattice case is suXcient to strongly compensate decoherence.

We now compare the case of the presence and the absence of decays. As shown
: Atom loss can also play a role since the more atoms we prepare in the |sy state the more likely is that some
of them begin to spontaneously decay. This loss creates holes in the lattice that change the eigenenergies
of the collective states and the collective enhancement

?
N , thus deteriorating the system performance.

However, for our parameters the dominant decoherence mechanism is the Wuctuating noise.
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in Fig. 6.10 (d), in the absence of decays (triangles), the storage lifetime increases as the
number of atom increases toN “ 10ˆ10 and decreases for large atom number. We Vnd an
optimal number of atomsN „ 100 for which a compromise is reached between the energy
splitting ∆E due the interaction and the enhanced coupling strength g

?
N [see vertical

dashed in Fig. 6.6 (d)]. We should note that the condition for compensating decoherence
not only ∆E " Γ but also ∆E " g

?
N . In the presence of decays (triangles), despite

shorter τstor than the absence of noise, the increase of storage lifetime is not followed by
the decrease of it for large atom number. For small-intermediate atom number, the shorter
τstor is due to 5% atom loss. However, for large number of atoms, e.g., N “ 11ˆ 11, the
atom loss can shift ∆E to the regime where ∆E ą g

?
N [see Fig. 6.6 (d)]. Consequently,

the optimal number of atoms may change in the presence of decays.

We have shown that 2D Rydberg lattices in the presence of DDI close to the
surface of a SC cavity are a promising route towards eXcient interfacing between cold
atoms and SC qubits. For the chosen parameters, the system is suXciently robust against
decoherence due to local Wuctuating noise and spontaneous decay. Although we have
provided parameters corresponding to the model, we need to know to which state the
atoms should be driven and at which distance the 2D lattice should be placed from the
cavity surface. In the next section, we address the realistic parameters for atom-cavity
interactions g, C3, the amplitude of 1{f noise and decay rate γs.

6.5 Robustness against 1{f noise

In this section, we discuss the realistic parameters of Fig. 6.1 [51, 167, 168]. Instead of con-
sidering laser phase noise such in the previous sections, we focus into local noise model
with typical 1{f spectrum and investigate the parameters that optimise the coherence
lifetime and retrieval eXciency when the cavity photon is stored in the atomic transi-
tions. The physical system that we consider has been described in the Sec. 6.1. For a SC
cavity with stripline length L » 1 cm and electrode distance w » 10 µm [Fig. 6.1], the
eUective cavity volume is Vc » 6.2ˆ 10´12 m3. Choosingm “ 2, the mode wavelength is
λc “ 2L

L

m » 1 cm, and there arem`1 Veld antinodes. With eUective dielectric constant
εc » 6, the mode frequency is » 2π ˆ 12 GHz. The dipole moment of the Rydberg transi-
tion µ̂sp with principal quantum numbers n scales as µ̂sp „ n2a0e. Thus, for w » 10µm,
s » 20µm, n » 50 and d » 15 µm away from the cavity surface yields gsp » 2π ˆ 4
MHz.

Additional to Sec. 6.1, we should note that the atom-cavity coupling strength
depends not only on the principal quantum number n through the dipole moment

`

» n2˘

but also indirectly through the cavity frequency. Here, we intend to Vx ωc » ωps » n´3

the cavity length (and thus the volume) must be adapted to match the transition frequency.
This leads to the coupling strength decreasing as g „ n´1, and hence Rydberg states
of arbitrarily high principal quantum number should not be considered. Therefore, we
consider a lattice of 10ˆ 10 87Rb atoms excited to the state |sy “ |50S1{2,1{2y that couples
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Figure 6.11: Panel (a) shows cavity population as a function of time in the absence (black line)
and presence (black dashed) of interactions. The parameters for (b) and (c) are N “ 100, n “ 50,
for L = 1 cm and w “ 15 µm at d » 15 µm from the surface produces g » 2π ˆ 4 MHz,
αnp ´ αns » 0.0274 MHz/pV {mq2, S0 pdq » 790 pV {mq2, V0 “ 2π ˆ 101.1 MHz, γp » 4
kHz, and γs » 7 kHz obtained from 103 realisations of a single trajectory calculated by Langevin
equation. (b) shows the storage lifetime and maximum retrieval eXciency in the absence (black
dots) and the presence (rectangulars) interactions.

by means of microwave Veld to |py “ |50P3{2,1{2y. The diUerent electric polarisability
between the state |sy and state |py is αnp ´ αns » 0.0274 MHz/pV {mq2 and the surface
noise amplitude is S0 pdq » 790 pV {mq2 [114]. The spontaneous decays produced from
the state |sy and state |py possess the typical rate γs » 7 kHz and γp » 4 kHz [70]. For
lattice spacing a » 3 µm, the DDI of |50S1{2,1{2, 50P3{2,1{2y C3 » 2π ˆ 101 MHz [101,
176].

We have now complete parameters to perform numerical simulations. Similar
to the previous section, we Vrstly consider τcoh as a Vgure of merit and secondly determine
η and τstor to gain the information of retrieval eXciency. Fig. 6.11(a) shows the average of
cavity population as a function of time forM “ 103 (see caption for detail). We compare
weakly interacting Rydberg atoms for lattice spacing a “ 30 µm „ C3{a

3 » 2πˆ0.1 MHz
(black line) to the strongly interacting Rydberg atoms for a “ 3 µm „ C3{a

3 » 2π ˆ 101
MHz (black dashed). In the presence of weak interaction, the local Wuctuating noise of
1{f spectrum leads to damping of oscillations. This is due to the fact that in the presence
of weak interaction, as similarly illustrated in Fig. 6.4 (b), the energetic shift of collective
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states is negligible, and thus cannot prevent the population transfer from a symmetric
state to non-symmetric states.

On the other hand, in the presence of strong interaction, i.e., for a lattice spac-
ing a “ 3 µm, the energetic shift of the collective states are large compared to the one
with the weak DDI [see Fig. 6.4 (b) red dashed], preventing the population transfer from
a symmetric state to non symmetric states. Due to the shifts of collective states, we need
to tune ∆ to the energy of symmetric state such as that the coherence is restored. As
shown in Fig. 6.11 (a) (black dashed), the presence of strong DDI also compensate deco-
herence due to local Wuctuating noise with 1{f spectrum. The coherence lifetime in the
presence of strong DDI » 4µs, which is » 7.4 times longer than the presence of weak
DDI τcoh » 0.54µs. We should note that the coherence is restored as long as the en-
ergy separation between a symmetric state and closest non-symmetric state is larger than
the power spectral density of 1{f noise ∆E " S0 p15µmq, and the energy separation is
larger than atom-cavity coupling ∆E " g

?
N . Despite the presence of the weak tails of

1{f spectrum noise, as long as the noise acts locally on the Rydberg state, the presence
of DDI is suXciently robust against decoherence due to local Wuctuating noise with 1{f
spectrum.

Having determined τcoh as one of Vgure of merit, we now determine η and τstor.
In Fig. 6.11 (b), we compare the retrieval eXciency between weak (black dots) and strong
DDI (squares). We note that the storage lifetime in the presence of strong DDI is » 2.53
µs and the weak one is » 0.13 µs. This shows that τstor in the presence of strong DDI
is „ 19 times longer than the weak one. We also observe that the slow decrease of the
eXciency for the interacting case is accompanied by small oscillations. As described in
the previous section, we attribute those to an imperfect resonant coupling to the target
state |ϕ1y and to a weak driving of nearby collective states [see Fig. 6.4(a)-(b)].

The performance of our system can be further improved by reducing the lat-
tice spacing, and thus increasing the interaction strength C3{a

3. This is demonstrated in
Fig. 6.12, where we plot (a) the maximum retrieval eXciency η0 and (b) the storage lifetime
τstor as a function of the lattice spacing a. We observe that the decrease of lattice spacing
causes the increase of both η0 and τstor. We should note that for 2 ď a ă 3 µm, although
the ns´ ns van der Waals interaction is still weak in this regime, the oU-diagonal C6{a

6

coeXcient starts to play role in the dynamics of system. Therefore, we only consider the
case a ě 3 µm.

We Vnally analyse η0 (c) and τstor (d) as a function of the number of atoms/sites
in the system. Here we only compare the case of the presence of strong (squares) and
weak (triangles) DDI. The rate of γs and γp introduced in the beginning of this section, is
small compared to the case in Fig. 6.10 (b) and (d). Consequently, the results are similar
to the non-decay case in the previous section. Fig. 6.12 (c) shows η0 as a function of atom
number. For the case of weak DDI, a » 30 µm (triangles), we observe that η0 increases
as the number of atoms increases. In comparison, for interacting case, η0 is larger for
small-intermediate atom numbers and starts to decrease for large atom numbers.
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Figure 6.12: Panel (a) and (b) show eXciency oUset and the storage lifetime as the function of
lattice spacing a, respectively, for N “ 10 ˆ 10. Panel (c) and (d) show eXciency oUset and the
storage lifetime as the function of atom number for two diUerent lattice spacing (square denotes
a » 3 µm and triangular denotes a » 30 µm). The rest parameters are the same as in Fig. 6.11.

Focusing on the storage lifetime [see Fig. 6.10 (d)], we note that the one with
strong DDI clearly outperforms the weak one. For the weak DDI, τstor slightly decreases as
the number of atoms increases, although the eUect is not signiVcant. This means that the
Veld Wuctuations are the dominant decoherence mechanism even at large atom numbers.
This slight decrease for increasing atom number is mainly due to the fact that the more
atoms in the system the larger the number of non-symmetric states where the population
can be incoherently pumped by the Wuctuating noise. This is not the case for the strong
one (squares), where the lifetime is several times larger than in the non-interacting case.
Moreover, for our parameters, we also Vnd an optimal number of atoms N „ 100. This
shows that for the parameters in the current section, the atom loss is still negligible.

We should note that, overall, the scheme is very challenging to be implemented,
as the as light scattered onto SC cavity hampers Q factor and SC cavity lifetime [177].
However, recent progress via optical microtraps arrays [178–183] are still very promising
for realising this hybrid system. Alternatively, the two-dimensional Rydberg ensembles
can also be trapped on two-dimensional magnetic microtraps that allows the atoms to
be individually addressed in a lattice of » 5µm and feasible to be scaled-up on a single
chip [184–186]. For example, Recent works shows that a two-dimensional array of traps
can accommodate more than 500 atom clouds with lattice spacing » 5µm [184, 186] that
holds promise for the development of hybrid quantum system. Using the similar parame-
ters as described in the previous paragraph, it is possible to achieve the eXcient interfacing
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with z “ 15µm owing to the development of current eUorts based on magnetic trapping
of atoms above SC cavity [169].



Conclusions and Outlook

The Vrst aim of this dissertation was to study non-equilibrium phenomena of many-body
physics using systems of Rydberg atoms. Rydberg atoms feature a number of exaggerated
properties[69], such as large dipole polarisability and a strong van der Waals interaction,
which allow us to create controllable interaction potentials [22, 23]. Together with coher-
ent driving and decoherence, this can lead to non-equilibrium relaxation[24–28], which
was also observed experimentally [29–32], and, to non-equilibrium steady-state phase
transitions [33–45]. Laser phase noise is one of decoherence source and it acts globally
on the excited states of atoms. However, most of previous works considered the local
noise [24–28, 46–50], marked in contrast to the nature of laser phase noise.

In chapter 3, we studied the consequences of global noise on the dynamics of
driven atom lattices which was compared to local noise. We have shown that although
the steady-state excitation number is identical, the excitation distributions diUer consid-
erably for both types of noise. Moreover, they feature a dependence on the interaction
strength. For weak interaction strength, the relaxation of the number of excitation as well
as its variance for local noise is independent of the interaction strength, while for strong
interaction strength it does depend on the interaction strength. In contrast to that, the
relaxation in the presence of global noise shows a dependence for weak and strong inter-
action strength. We found that steady-state Wuctuations of the number of excitation are
suppressed as the number of atoms increases, while for local noise, the Wuctuations are
constant.

Decoherence also arise due to dissipative processes. The interplay of coherent
laser excitation, strongly interacting Rydberg atoms and dissipative processes can lead to
the non-equilibrium steady-state phase transitions [33–45]. In chapter 4, we have shown
that Rdyberg atom lattices can indeed undergo a dissipative phase transition to a long-
range ordered antiferromagnetic phase. The use of three-level schemes that go beyond
the inversion limit of a simple two-level driving and a Vnite laser detuning are key re-
quirements to counteract the eUects of the power-law tail of the interaction potential. In
addition, Wuctuations as well as the weak tail of the rapidly decaying interactions are both
found to be essential. This stands marked contrast to equilibrium physics of the corre-
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sponding unitary systems, which often is well described by mean-Veld models [67] and
nearest neighbour approximations [68].

In the above cases, decoherence leads to the intriguing non-equilibrium phe-
nomena of many-body physics. However, decoherence is a long-standing problem of cou-
pling quantum states in atoms to solid state devices [148, 167, 168]. The second aim of
dissertation was to propose a solution for that problem [51–55]. In chapter 5, we have
shown the possibility to enhance the atom-cavity coupling by exploiting the large dipole
moment of highly excited Rydberg states. However, the large polarisability (9n7) of Ry-
dberg states also makes them more susceptible to spurious electric Velds parasitising the
metallic cavity surface. For a single atom coupled to SC cavity with typical atom-cavity
distance [54, 55, 61, 169], the system indeed undergoes strong decoherence. Therefore,
in chapter 6, we proposed a noise-resistant interface of a collection of Rydberg atoms
and a single photon in a SC cavity by means of (resonant) dipole-dipole interactions. In-
stead very large atoms clouds (N » 106 atoms) [60], we use an atomic lattice with up to
hundreds atoms. In such system, dipole-dipole interactions are exploited to compensate
dephasing of Rydberg states due to Wuctuating electric Veld from the SC cavity surface.

We have shown that a two-dimensional Rydberg lattice in the presence of dipole-
dipole interactions close to the surface of a SC cavity are a promising route towards ef-
Vcient interfacing of cold atoms and superconducting qubits. The dipole-dipole interac-
tion protects the coherent dynamics of the atoms-cavity coupling against local electric
Veld Wuctuations arising from the surface. This leads to an enhancement of the retrieval
eXciency of the MW photon into the cavity for small to moderate atom numbers and
long lifetimes of the excitation stored in the atoms compared to the situation with non-
interacting atoms. Moreover, for the parameters considered, we have shown that a strong
coupling of the cavity and the atoms is possible, allowing to interface our system with a
superconducting qubit, and that the atom loss due to spontaneous emission is negligible
even for large atom numbers.

6.6 Future perspective

The previously discussed results have generated new questions and ideas that call for fur-
ther investigations. Below, a few speciVc ideas are outlined, which might provide promis-
ing avenue of research.

Rydberg ensembles in the presence of phase noise

In chapter 3, we investigated the consequences of global noise on the dynamics of driven
atom lattices which was compared to local noise. We have shown that although the
steady-state excitation number is identical, the excitation distributions diUer consider-
ably for both types of noise. This generates an open question of the statistics distribution
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due to the presence of global noise. The experimental demonstration of atom counting
statistics have been recently investigated by means of Rydberg gases [29–32]. While most
previous works considered local noise [24–28, 46–50], it would further be great interest
to investigate the consequences of global noise of those systems and gain insight of atom
counting statistics. Moreover, the use of Langevin equation in chapter 3 limits the calcu-
lation up to N ă 20. Thus, for N ą 20, the use of another numerical method in the basis
of matrix product states is required to determine excitation distributions in the presence
of global noise.

The experimental demonstration of local and global noise can also be performed
in the lattices. The experiments have reached the stage where individual atoms can be
trapped in one or two dimensional arrays of optical microtraps with arbitrary geometries.
The Vlling fractions range from 60 to 100% [111]. The noise can be generated by the
arbitrary waveform generator. The bandwidth of this noise can be controlled by applying
a low-pass Vlter of cut-oU frequency. For the local noise, one should use separated single
beam which produces uncorrelated beams:.

Rydberg ensembles in the presence of dissipation

While we have focused on neutral-atom settings with Vnite-range van der Waals inter-
actions (α “ 6), eUective quantum magnets with variable power-law interactions [187]
are currently attracting great interest in the context of laser-cooled ion crystals in which
various spin models [188] with α “ 0 . . . 3, can be realised in one and two dimensions
[189–191]. This systems inherently feature dissipation [192] and thus provide an interest-
ing platform to explore the dissipative phase transition in the non-equilibrium steady state
also in the long-range interaction regime. In light of the demonstrated inadequacy of mean
Veld theory, for example in the presence of suXciently strong dissipation [37], it would
further be of great interest to investigate other dissipative phase transitions predicted by
mean Veld treatment [8, 35, 43] and gain insight into their validity for open systems as
well as the critical dimension for long-range order in such related spin lattices.

Noise-resistant quantum interface

In the chapter 6, we have shown that a two-dimensional Rydberg lattice in the presence of
dipole-dipole interactions close to the surface of a SC cavity are a promising route towards
eXcient interfacing of cold atoms and superconducting qubits. However, despite the re-
cent progress regarding atoms in optical microtraps arrays [178–183] for the implementa-
tion of the system proposed here setups without strong optical Velds would be preferable
as scattered photons can easily destroy the superconducting qubit state. For instance,
atoms can be trapped individually addressed in two-dimensional magnetic microtraps on
atom chips [184–186] or in the evanescent Veld of optical nanoVbers [193, 194]. Those

: Discussion with Thiery Lahaye
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systems would represent a promising avenue for implementing a noise-resistant hybrid
interface of Rydberg atoms and superconducting qubits in microwave cavities.
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Appendix A
The multipole expansion of
dipole-dipole interactions

A.1 Multipole expansion of dipole-dipole interactions

We calculate the multipole expansion of Vdd
´

R̂, r̂1A, r̂2B

¯

. We set

fpxq “
1

R̂ ´ x̂
, (A.1)

hence
Vdd

´

R̂, r̂1A, r̂2B

¯

“ f p0q ´ f pr̂1Aq ´ f pr̂2Bq ` f pr̂1A ´ r̂2Bq . (A.2)

In addition we expand f :

fp0q “ 1
R

Bifpxq “
Ri ´ xi

|R̂ ´ x̂|3

Bifp0q “
Ri
R3

Bijfpxq “
δij

|R̂ ´ x̂|3
`

3 pxi ´Riq pxj ´Rjq

|R̂ ´ x̂|5

Bijfp0q “
δij
R3 `

3RiRj
R5 .

Inserting these expression to the multidimensional Taylor expansion

fpx̂q “ fp0q `
3
ÿ

i“1
xiBif p0q `

1
2

3
ÿ

i,j“1
xixjBijfp0q `O

`

x3˘ , (A.3)
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we Vnd the second order approximation

fpxq “
1
R
`

1
R3

3
ÿ

i“1
xiRi `

1
2

3
ÿ

i,j“1
xixj

ˆ

´
δij
R3 `

3RiRj
R5

˙

“
x̂ ¨ R̂
R3 `

3
2R5

´

x̂ ¨ R̂
¯2
´

x2

2R3 .

Inserting this second order approximation to (A.3) yields

Vdd

´

R̂, r̂1A, r̂2B

¯

“ ´

˜

r̂1A ¨ R̂
R3 `

3
2R5

´

r̂1A ¨ R̂
¯2
´
r2

1A
2R3

¸

´

˜

´r̂2B ¨ R̂
R3 `

3
2R5

´

r̂2B ¨ R̂
¯2
´
r2

2B
2R3

¸

`
pr̂1A ´ r̂2Bq ¨ R̂

R3 `
3

2R5

”

pr̂1A ´ r̂2Bq ¨ R̂
ı2
´
pr̂1A ´ r̂2Bq

2

2R3

“
r̂1A ¨ r̂2B

R3 `
3
R5

´

r̂1A ¨ R̂
¯´

r̂2B ¨ R̂
¯

.

(A.4)

Finally we arrive at the dipole-dipole interaction Ĥdd in the limit of R " ri

Ĥdd “
µ̂1A ¨ µ̂2B ´ 3 pµ̂1A ¨ nq pµ̂2B ¨ nq

4πε0R3 , (A.5)

where the dipole moment operator is deVned as µ̂ “ er̂i and n “ R̂{R.



Appendix B
Simulation Methods

B.1 Quantum simulations of smaller lattice

The quantum simulation based on quantum jump approach [115–118] is a numerical sim-
ulation technique which involves a stochastic evolution of wave functions. This method
is equivalent to density matrix master equation and is fascinating due to the following
advantages: (i) In comparison to the density matrix master equation, the dimension of
corresponding Hilbert space scales as 2N rather than 22N . (ii) It allows us to gain a new
physical insight, e.g., two-time correlation function, that cannot be gained by the density
matrix master equation.

Monte Carlo wave functions consist of two elements: (i) evolution with a non-
Hermitian Hamiltonian, (ii) random jumps, followed by wave function renormalisation.
More precisely, a non-hermitian Hamiltonian including the anti-commutator of Linblad
terms in (4.12) is given by,

Ĥnh “ Ĥ ´
i

2

N
ÿ

α“1
Ĉ:
pαqĈpαq (B.1)

with Ĉα “
?
γeσ̂

´ [see Fig. 4.1(c) for the illustration]. For the two-level system that
consists of a ground |gy and an excited state |ey with a lifetime γ´1

e , the operator σ̂ can
be written in the form σ̂: “ |eyxg| and σ̂ “ |gyxe|. The time evolution of the many-body
wave function |ψ ptqy for an inVnitesimal time step δt is given by

|ψ1 pt` δtqy “
´

1´ iĤnhδt
¯

|ψ ptqy (B.2)

which is simply the expansion of the time translation operator exp
”

´iĤnhδt
ı

to Vrst

order in δt and the prime 1 is introduced to indicate the unnormalised wavefunction. As
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Ĥnh is non-hermitian, the latest wavefunction is not normalised. The square of norm
reads

xψ1 pt` δtq |ψ1 pt` δtqy “ xψ ptq |
´

1´ iĤnhδt
¯´

1´ iĤnhδt
¯

|ψ ptqy

“ 1´ iδtxψ ptq |
´

Ĥnh ´ Ĥ:

nhδt
¯

|ψ ptqy

“ 1´ δtxψ ptq |C:αCα|ψ ptqy

“ 1´ δp.

(B.3)

where δp reads as

δp “
ÿ

α

δpα with δpα “ xψ ptq |C:αCα|ψ ptqyδt ě 0. (B.4)

Here δp denotes the probability of having a jump and the time step δt is adjusted such
that the Vrst order calculation is valid. In particular, it requires δp ! 1 and hence the
second order term δt2 is neglected. In order to determine the occurrence of the jump,
the probability of having a jump is compared to the a quasi-random number r, uniformly
distributed between 0 and 1. If r ă δp, the quantum jump occurs and we choose a new
normalised wavefunction at t` δt according to δpα{δp

|ψ pt` δtqy “ Ĉα
|ψptqy

a

δpα{δt
(B.5)

if r is larger than δp, which occurs in most cases since δp ! 1, no quantum jump occurs
and we take the following for the new normalised wavefunction at t` δt.

|ψ pt` δtqy “
|ψ1 pt` δtqy
?

1´ δp
. (B.6)

This procedure can be translated into numerical algorithm shown in shown in the algo-
rithm 1. Following the description in the chapter 4, for M realisations |ψpkqy, we calculate
the excited state population xσ̂k,αee y “ xψ

pkq|σ̂
pαq
ee |ψpkqy and take its average

Nee “
1
M

M
ÿ

k“1

N
ÿ

α“1
xσ̂pk,αqee y, (B.7)

where N is the atom number. For suXciently large M, the average converges.

We now show that the monte Carlo wave functions are equivalent to the density
matrix master equation. In particular, we consider the quantity ρptq obtained by averag-
ing ρptq “ |ψptqyxψptq| over M realisations at time t of the single trajectory starting in
|ψp0qy. For a single trajectory |ψptqy at time t ` δt, the average value of ρ pt` δtq over
the evolution in the presence of the jump processes reads

ρ pt` δtq “ p1´ δpq
|ψ1 pt` δtqy
?

1´ δp

xψ1 pt` δtq |
?

1´ δp
`
ÿ

α

δpα
Cα|ψ ptqy
a

δpα{δt

C:αxψ ptq |
a

δpα{δt
(B.8)
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for many realisations do
Initialise the system in the ground state;
while t ď tmax do

Calculate the probability of jump δp “
N
ř

α“1
δpα;

Draw a random number r1 P r0, 1s if δp ă r1 then

Calculate the non-Hermitian time evolution exp
”

´iĤnhδt
ı

;

else
Draw a random number r2 P r0, 1s;
Determine the jump with probability δpα{δp ;
Collapse the wave function

end
Normalise the wave function Update the time tÑ t` δt

end
end
Average over the quantum trajectories

Algorithm 1: Monte Carlo wave function algorithm

Inserting (B.2) to (B.8) we Vnd

ρ pt` δtq “ ρ ptq ´ iδt
”

Ĥ, ρ ptq
ı

`
ř

α

`

´1
2C

:
αCαρ ptq ´

1
2ρ ptqC

:
αCα ` Cαρ ptqC

:
α

˘ (B.9)

For a small time step δt, this is simply the master equation with the time derivative written
as a diUerence quotient,

Btρ ptq “
´

ρ pt` δtq ´ ρ ptq
¯

{δt “ ´
”

Ĥ, ρ ptq
ı

`
ÿ

α

L pCαq
”

ρ ptq
ı

(B.10)

where we averaged over the density matrix at time t as well. If the initial conditions of
master equation and the quantum jump approach coincide, the exact density matrix and
the one obtained by averaging, Eq. (B.10), coincide as well, at any time t [115].

We Vnally compare the result of monte Carlo wave function and density matrix
master equation. We consider the case of two interacting atoms, each with a ground state
|gy and an excited state |ey. A pair of excited atoms at sites α and β experiences the
repulsive van der Waals (vdW) interaction V0{|α ´ β|6 with V0 “ C6{a

6 and C6 ą 0.
Resonant transitions between the two states are driven by a laser with Rabi frequency
Ω, which cause the spontaneous decay from the excited state |ey with the decay rate
γe. Fig. B.1 shows the fraction of Rydberg atoms, fe “ Nee{N , as the function of time
calculated by monte carlo wave function and density matrix master equation for the case
of a single atom B.1 (a) and two interacting atoms B.1 (b). The results produced by monte
Carlo wave functions are in well agreement with the density matrix one for large number
of realisationsM .
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Figure B.1: The fraction of Rydberg atoms as the function of time for a single atom (a) and two
interacting atoms with V0 “ 1Ω (b). The fraction of Rydberg atoms from density matrix master
equation (DM) is compared to the result of monte carlo wave equation (MCWF). The rest parame-
ters are γe “ 0.1Ω (see the legend for details).

B.2 Dynamic and Steady-state Monte Carlo

In this section, we describe the algorithms of dynamic and steady-state Monte Carlo. For
dynamic Monte Carlo, we use kinetic Monte Carlo (KMC) [195, 196] algorithm, while
for the steady-state evolution we use steady-state Monte Carlo (ssMC) [128]. KMC is the
developed monte Carlo algorithm which is intended to overcome the time scale problem in
the metropolis algorithm [197]. It is widely used in the variety of subjects, such as, surface
adsorption, diUusion and growth [198–200] as well as statistical physics [201, 202]. Here,
KMC is used to eXciently solve the time-dependent rate equation (4.25), which is given
by,

9ρS1,...,SN“
ÿ

i

”

p1´ SαqΓp3qÓ pδαq ` SαΓp3qÒ pδαq
ı

ρS1,...,1´Sα,...,SN

´

”

p1´ SαqΓp3qÒ pδαq ` SαΓp3qÓ pδαq
ı

ρS1,...,Sα,...,SN , (B.11)

where eUective rate equation for the joint probabilities ρS1,...,SN of Rydberg excitations
being present (Sα “ 1) or not present (Sα “ 0) at the αth site and the corresponding
many-body states are connected by the single-atom excitation [Γp3qÒ pδαq] and de-excitation
[Γp3qÓ pδαq] rates [47, 106, 127, 128]. In the many-body basis B´tpS1, ...., SNq |S P t0, 1uu,
we can rewrite the rate equation (B.11) as [195]

dσν
dt
“
ÿ

ν1

pΓνν1σν1 ´ Γν1νσνq (B.12)

with σν P B, which denoting the probability for conVguration ν, Γνν1 the respective
excitation rates to the many-body state σν and Γν1ν the respective rates of being escape
from the many-body state σν . As the master equation is loss-gain equation, Γνν “ 0.
DeVning the matrices pTqνν1 “ Γνν1 , pUqνν1 “

ř

ν̃ Γν̃ν1 for ν “ ν 1 and zero otherwise, we
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Vnd Eq. (B.12) can be written as the matrix notation given by

dσ

dt
“ ´pU´Tqσ. (B.13)

We deVne the matrix R ptq “ exp r´Uts to determine the probability that the system has
not yet escaped from the conVguration ν:

pν ptq “ pRqνν ptq “ exp
“

´pUqνν t
‰

. (B.14)

Hence, the probability that the system has escaped from the conVguration ν pν̄ ptq “

1 ´ pν ptq, which has the probability distribution Btpν̄ “ pUqνν exp
“

´pUqνν t
‰

. The
average time for escape τ is only the Vrst moment of the probability distribution,

τ “

8
ż

0

tpν̄dt “
1
U
. (B.15)

We can thus draw the time of the Vrst change of the system by solving pν̄“r, where r is a
uniform random number on the unit interval [195], which gives simply exp

“

´pUqνν t
‰

“

r, or, solved for t,
t “ ´ln rrs

L

pUqνν . (B.16)

In our simulation, with respect to our rate equation (B.11), the change of state depends of
to the total rate ΓÒÓ, where the ΓÒ denotes the excitation rate and ΓÓ denotes de-excitation
rate. The time for the next change of the system is then calculated via t “ ´ln rrs

L

ΓÒÓtot.
The algorithm of numerical implementation is shown in algorithm 2. For M number of
realisations, the observables converge. The typical number of realisations to produce the
reasonable data is in the order of thousands.

When we solve the Eq. (B.11) by means of KMC, non-physical negative rates
frequently occur [129]. Although modifying the rates in such a way that the correct steady
state is preserved [127], this technique is rather expensive and impractical for general
systems. Therefore, we use another approach that has been developed in [128]. There,
the calculation of the dynamics of the system was neglected in favour of the steady-state
calculation. In this technique, we use the steady-state of Rydberg state instead of the
single-atom rates in Eq. (4.21). The detail of ssMC method including its algorithm is given
in Ref. [128].

B.3 Mean Veld

In the chapter 4, we identify the advantages of rate equations over the mean Veld method.
Here, we brieWy describe the mean Veld method that we used in Fig. 4.8 and Fig. 4.9.
The essence of this method is the neglect of any correlation to simplify the complexity
of full quantum problem. This method is relevant for high dimensional problems, but
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for many realisations do
Initialise the system in the ground state;
while t ď tmax do

for α ď N do
Calculate ∆eU based on the current conVguration;
if stateα is in excited state then

Calculate ΓαÓ ;
else

Calculate ΓαÒ ;
end

end
Draw random numbers r1, r2 P r0, 1s;
Determine δt “ ln rr1s {ΓÒÓtot, update time;
Determine atom β that changes its state via
β´1
ř

α“1
ΓαÒÓ ď r2ΓÒÓtot ă

β
ř

α“1
ΓαÒÓ;

Change state of atom β;
end

end
Average over the quantum trajectories
Algorithm 2: Kinetic Monte Carlo algorithm for the rate equation

not an accurate method for low dimensional problem. For equilibrium spin models, mean
Veld method can eXciently predict the existence of various phases [203]. For the current
nonequilibrium case, we use the approach of [113, 204]: factorise the density matrix by
site, ρ “

Â

j ρj , and work with the reduced density matrices, ρj “ Tr‰jρ. This accounts
for on-site quantum Wuctuations but not inter-site Wuctuations: for atom j, the interaction
|eyxe|j b

ř

k |eyxe|k, is replaced with the mean Veld, |eyxe|j
ř

k ρk,ee. In high dimensions,
this is a good approximation since Wuctuations of the neighbours average out. Then the
evolution of each ρj is given by

9ρj,gg “ i
Ω1

2 pρgp ´ ρpgq ` γpρpp

9ρj,pp “ ´i
Ω1

2 pρgp ´ ρpgq ´ i
Ω2

2 pρep ´ ρpeq ´ γpρpp

9ρj,ee “ i
Ω2

2 pρep ´ ρpeq

9ρj,gp “ ´i
Ω1

2 pρpp ´ ρggq ` i
Ω2

2 ρge ´
γp
2 ρgp

9ρj,ge “ ´i
Ω1

2 ρpe ` i
Ω2

2 ρgp ´ iδeUρge

9ρj,pe “ ´i
Ω1

2 ρge ` i
Ω2

2 pρpp ´ ρeeq ´ iδeUρpe ´
γp
2 ρpe

9ραβ “ p 9ρβαq
˚ .

(B.17)

where δeU ” ∆ ´ V0
ř

k ρk,ee denotes the eUective two-photon detuning. The rest of
the symbols have been described in chapter 4. The equations above have a steady-state
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solution and its stability. The stability analysis of steady-state solution has been studied
in [33, 36]. We use the order parameter q [see Eq. (4.9)] to characterise the phase transi-
tions. As mentioned in Sec. 4.2, the lattice is divided into two sublattices, i.e., sublattice A
and B. We thus have

9ρA,gg “ i
Ω1

2 pρgp ´ ρpgq ` γpρpp

9ρA,pp “ ´i
Ω1

2 pρgp ´ ρpgq ´ i
Ω2

2 pρep ´ ρpeq ´ γpρpp

9ρA,ee “ i
Ω2

2 pρep ´ ρpeq

9ρA,gp “ ´i
Ω1

2 pρpp ´ ρggq ` i
Ω2

2 ρge ´
γp
2 ρgp

9ρA,ge “ ´i
Ω1

2 ρpe ` i
Ω2

2 ρgp ´ i p∆´ V0ρB,eeq ρge

9ρA,pe “ ´i
Ω1

2 ρge ` i
Ω2

2 pρpp ´ ρeeq ´ i p∆´ V0ρB,eeq ρpe ´
γp
2 ρpe

9ρB,gg “ i
Ω1

2 pρgp ´ ρpgq ` γpρpp

9ρB,pp “ ´i
Ω1

2 pρgp ´ ρpgq ´ i
Ω2

2 pρep ´ ρpeq ´ γpρpp

9ρB,ee “ i
Ω2

2 pρep ´ ρpeq

9ρB,gp “ ´i
Ω1

2 pρpp ´ ρggq ` i
Ω2

2 ρge ´
γp
2 ρgp

9ρB,ge “ ´i
Ω1

2 ρpe ` i
Ω2

2 ρgp ´ i p∆´ V0ρA,eeq ρge

9ρB,pe “ ´i
Ω1

2 ρge ` i
Ω2

2 pρpp ´ ρeeq ´ i p∆´ V0ρA,eeq ρpe ´
γp
2 ρpe

9ραβ “ p 9ρβαq
˚ .

(B.18)

As illustrated in Fig. 4.1 (a), the order parameter q characterise the population imbalance
on the two sublattices, with q ą 0 in the ordered phase and q = 0 in the disordered phase.
Here, due to the conservation probability [see Eq. (4.14)], the q is deVned as q “ |ρAee´ρ

B
ee|.

Following the parameters scaling in the chapter 4, we use the following parameters :

Ω2 “ Ω1

c

1´ p0

p0
, (B.19)

and

γp “

c

1
2 pΩ

2
1 ` Ω2

2q
2
´ 2Ω2

1. (B.20)

For the mean Veld results in Fig. 4.8, the parameters that we use are p0 “ 0.96, Ω1 » 3ω,
and V0 “ 5ω. For Fig. 4.9, we Vx Ω1 and vary p0 and V0.





Appendix C
The population inversion due to the
presence of dark state

Here we brieWy discuss a concise way of expressing the single-atom eigenstates of Hamil-
tonian 4.11 is in terms of the "mixing angles" θ and φ that are dependent in a simple way
upon the Rabi couplings. For multi-photon resonance, the mixing angles are given by

tan θ “ Ω1{Ω2 (C.1)

tan 2φ “
a

Ω2
1 ` Ω2

2

M

∆ (C.2)

The eigenstates can then be written in terms of the bare atom states:

|a`y “ sin θ cosφ|gy ` cosφ|py ` cos θ sinφ|ey (C.3)

|a´y “ sin θ cosφ|gy ´ sinφ|py ` cos θ cosφ|ey (C.4)

|a0y “ cos θ|gy ´ sin θ|ey. (C.5)

When |a0y remains at zero energy, the pair states |a`y and |a´y are splitted by an amount
~ω˘,

~˘ “
~
2

´

∆˘
a

∆2 ` Ω2
1 ` Ω2

2

¯

. (C.6)

The states |a˘y pertain an element of all of the bare atomic states. In contrast to a states
|a˘y, state |a0y has no contribution from |py and is therefore the dark state. Due to this
state, there is no possibility of excitation to a state |py and subsequent spontaneous de-
cay.

Evolution into the dark state via optical pumping (through spontaneous decay
from |py) can be a means to trap population in this state that is well known in laser spec-
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troscopy and laser-atom manipulation. Electronically induced transparency (EIT) oUers
an alternative, adiabatic, and much more rapid passage to evolve into this state. For the
population inversion, the system starts with all the amplitude in the ground state |gy
via Ω1 ! Ω2. Furthermore, Ω1 is gradually increased while Ω2 is gradually decreased
and hence Ω1 " Ω2. When the probe is on resonance p∆ “ 0q, the dark state becomes
|a0y “ ´|ey and |a˘y “

`

1{
?

2
˘

p|py ˘ |eyq becomes a ground state. Consequently, the
system becomes the eUective two-level driving scheme [see Fig. 4.1(d)] and the population
is now fully pumped to the state |a0y “ ´|ey.



Appendix D
State truncation

|sgi

|ggi

|pgi

|ssi

|sgi |gsi
|ggi

|spi |psi
|pgi|gpi

First decay 

Figure D.1: The truncation of states due to the absence of driving force between the state |gy and
|sy.

In this appendix, we describe the truncation of the states due to the absence of
the driving force between the ground state |gy and the state |sy. For the sake of simplicity,
we consider two-atom case. Suppose the initial condition of the system is |ssy “ 1 and
the total number of states before the atom loss processes is Ns “ 8 (see Fig. D.1). When
the Vrst event of spontaneous decay occurs, e.g., state |ssy to state |sgy. The state |sgy
subsequently couples to the state |pgy. Consequently, the rest of the states, excepts |sgy
and |pgy, can be truncated. In numerical implementation, this can be performed by trun-
cating the state during dynamical process. As shown in Fig. D.1, the truncation of states
leads to the 5 states reduction.
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