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Abstract

This thesis develops a computationally efficient way of employing Gaussian wave packets to
study laser-induced electron dynamics in atomic and molecular systems by directly solving
the time-dependent Schrödinger equation (TDSE). First, we investigate charge migration
(treating the nuclei classically), high-order harmonic generation (HHG), and single-isolated
attosecond pulse generation in the Hydrogen molecular ion subjected to intense laser fields in
a different range of frequencies with a basis of static coherent states (SCS). Then, seeking for
a smarter way of constructing and guiding a minimal set of time-dependent basis functions,
we introduce a fast and accurate approach for optimizing s-type Gaussian type orbitals
(GTOs) and apply it to calculate electronic states of different 1D and 3D time-independent
systems. Finally, we apply our optimization approach to time-dependent problems. With our
approach we obtain excellent agreement with the exact results for HHG spectra of the 1D
Hydrogen atom and molecular ion exposed to intense laser fields, which is not possible even
with a much larger basis of static s-type GTOs.
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Kurzfassung

Diese Arbeit entwickelt einen numerisch effizienten Ansatz für die Verwendung von Gaußschen
Wellenpaketen zur Untersuchung der laserinduzierten Dynamik von atomaren und moleku-
laren Systemen durch direkte Lösung der zeitabhängigen Schrödingergleichung (TDSE).
Beginnend mit statischen kohärenten Zuständen (SCS) untersuchen wir die Ladungsmigra-
tion (wobei wir die Kerne klassisch behandeln), die Erzeugung von Harmonischen höherer
Ordnung (HHG) und die Erzeugung von isolierten Attosekundenimpulsen im Wasserstoff-
molekül-Ion, das intensiven Laserfeldern in einem unterschiedlichen Frequenzbereich aus-
gesetzt ist. Als Ergebnis der Suche nach einer intelligenteren Methode zur Konstruktion
und zeitabhängigen Anpassung eines minimalen Satzes von Basisfunktionen stellen wir
einen schnellen und genauen Ansatz zur Optimierung von Gauß-Orbitalen (GTOs) vom
s-Typ vor und wenden ihn erfolgreich zur Berechnung elektronischer Zustände verschiedener
zeitunabhängiger 1D- und 3D-Quantensysteme an. Schließlich erweitern wir unseren Op-
timierungsansatz auf zeitabhängige Probleme. Mit unserem Zugang erzielen wir eine
ausgezeichnete Übereinstimmung mit den exakten Ergebnissen für die HHG-Spektren des
1D-Wasserstoffatoms und Wasserstoffmolekül-Ions, die intensiven Laserfeldern ausgesetzt
sind. Dies ist nicht möglich mit einer sogar viel größeren nicht optimierten (statischen) Basis
aus s-Typ GTOs.
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1 Introduction

Recent advances in attosecond technology have paved the way for profound insights into
electron and nuclear dynamics in atomic and molecular systems on their natural timescales
[1, 2] . In particular, the fine-tuned generation of coherent, ultrashort intense laser pulses
makes it possible to control and manipulate electron dynamics and create a wide range of
exciting applications in physics, chemistry, and biology [3–11].

Notwithstanding the impressive experimental accomplishments, obtaining an accurate
and comprehensive interpretation of the time-dependent electron dynamics in atomic and
molecular systems driven by strong light fields requires an extensive theoretical and compu-
tational support [7].

Due to the complexity arising from the laser interaction and the Coulomb forces, among
a wide variety of computational methods for studying atomic and molecular systems exposed
to intense laser fields, the direct solution of the time-dependent Schrödinger equation
(TDSE) is arguably the only accurate theoretical approach. However, this approach is
applicable to systems with a very limited number of degrees of freedom (DOF) in a finite
region of momentum or coordinate space since the required computational resources grow
exponentially with increasing DOF. Different TDSE approaches for simulating the electron
dynamics in one- or two-electron atomic or molecular laser-induced systems have been
introduced in one [12–18], two [19, 20], or three (full) [21–26] coordinate (or momentum)
electronic dimensions. Some of these methods treat the nuclei in their investigated laser-
induced system dynamically [12, 13, 15, 17–20, 24]. Moreover, we note the achievements in
the interaction of two-electron molecules with attosecond pulses in the frequency domain of
the ultraviolet (UV) and extreme ultraviolet (XUV) [27].

The developed numerical techniques for solving the TDSE are either based on the dis-
cretization on a grid or expansions into basis functions. The most recognized approaches
are: discrete-variable representation (DVR) and finite difference discretization [28–32],
momentum-space pseudospectral methods [33], B-spline basis functions [34, 35], hybrid
Gaussian–B-spline basis [36], Gaussian wave packets and the variational multiconfigura-
tional Gaussian (vMCG) approach [37–42], time-dependent configuration-interaction [43–
45], different versions of the multiconfiguration time-dependent Hartree (MCTDH) [46–49],
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and the multiconfiguration time-dependent Hartree-Fock (MCTDHF) [50–52] which takes
into account anti-symmetrization of the electronic wave function in MCTDH.

To avoid heavy computational efforts of directly solving the TDSE, the strong field
approximation (SFA), inherent in the Lewenstein model [53], is widely used as an approx-
imation technique for computing nonlinear phenomena such as the high-order harmonic
generation (HHG) in multi-electron systems subjected to an intense ultrashort laser field.
Although SFA explains key qualitative features of HHG, it is not fully successful in describ-
ing the low harmonic region [53, 54]. Furthermore, using SFA in general implies that only
one electron couples to the laser field. Moreover, the implicit assumption that the internal
structure of the atom does not contribute to HHG, is an oversimplification.

In contrast to SFA, which neglects both the Coulombic potential after ionization and the
influence of the laser field on the bound state, basis set approaches like the static coherent
states (SCS) method and the optimized Gaussian-type orbitals (GTOs) that we have used
in this thesis can treat the electron-nucleus Coulombic and the laser field potentials on the
same footing by directly solving the TDSE.

This thesis aims to explore a cost-efficient approach to construct a set of Gaussian wave
packets that precisely represent the time-dependent electronic wave function of a laser-
induced system. Employing static basis functions alleviates the convergence problem that
the trajectory-guided approaches like the coupled coherent states method (CCS) encountered
in the past [55–57]. However, one might need a huge number of basis functions distributed
in a relatively large volume. Our ultimate goal is to find a smart way of constructing and
guiding a minimal number of basis functions that accurately describe the electronic wave
function driven by an external laser field.

This thesis is structured as follows: In Chap. 2 (Sec 2.1), we expand the wave function
of atomic and molecular systems on the basis of 3D static coherent states which are placed
randomly in phase space. In Sec. 2.2, we apply this approach to investigate the charge
migration in the 3D Hydrogen molecular ion H+

2 exposed to a high-frequency laser field
treating the nuclear motion classically. In Sec. 2.3, we study HHG and the single attosecond
pulse (SAP) generation in the 3D H+

2 subjected to low-frequency intense laser fields.

In Chap. 3, we introduce a procedure to determine the positions and the widths of the
Gaussian wave packets in such a way that a minimal number of basis functions achieves the
desired accuracy goal. To this end, we choose the simplest Gaussian basis functions (s-type
GTOs). In Sec. 3.1, we describe our developed optimization approach for the s-type GTOs.
In Sec. 3.2, we apply the introduced optimization technique to find the optimum exponents
and center-positions of the s-type GTOs which accurately represent a desired electronic state
of different 1D and 3D quantum systems.

In Chap. 4 (Sec 4.1), we extend our optimization approach to the time-dependent
scenarios. In Sec. 4.2, we examine the performance of our time-dependent optimized
basis in the time evolution of two eigenstates and two non-eigenstates of the 1D harmonic
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oscillator. Finally, in Sec. 4.3, we come back to the HHG process treated by the SCS
method in Sec. 2.3. We are now in a position to employ minimal sets of the time-dependent
optimized s-type GTOs for investigating HHG in 1D single-electron atomic (the Hydrogen
atom) and molecular (the Hydrogen molecular ion H+

2) systems exposed to femtosecond
intense laser pulses. We summarize the thesis and present possible future directions in Chap.
5.

We use atomic units (a.u.) (explained in detail in Sec. A), e = ℏ = me = 1, throughout
this thesis unless stated otherwise.



2 Static coherent states for laser-induced
dynamics

During the last two decades, a number of approaches have been developed on the basis of
coherent states (CSs) to solve the TDSE for high-dimensional quantum systems interacting
with intense laser fields and to investigate the related phenomena [38, 56–61]. Among
many advantageous features of coherent states, the most important ones are the flexibility
of generating the initial basis set and the fact that on the basis of CSs Coulombic potential
singularities are removed and replaced by the complex error function. By implementing CSs
for solving the TDSE, Shalashilin et al. introduced the coupled coherent states (CCS) method
[58]. The CCS method was originally developed to simulate systems with distinguishable
particles. For simulating fermionic systems, two different versions of a fermion coupled
coherent state (FCCS) method were introduced [56, 60, 62]. The first version of the FCCS
method, which was introduced by Shalashilin et al., uses a Slater determinant to symmetrize
the CCS equations [56]. The second version of the FCCS method, introduced by Eidi et
al. [60, 62], simplifies the process by (anti)symmetrizing the CSs grid. However, the CCS
method and its derivatives are essentially trajectory-guided. The CCS method was already
employed to compute HHG in a hypothetical laser-induced 1D system with one electron
experiencing a simple Gaussian binding potential [55]. The most important concern regarding
trajectory-guided approaches based on CCS is that they are not completely successful in
getting high-quality convergence in real-time propagation of TDSE in realistic single- or
two-electron systems experiencing an external laser field [55–58]. Due to their semi-classical
character, such issues are tackled in SCS by using static grids of coherent states instead of
trajectory-guided ones [61].

In this chapter, initially we briefly review the the static coherent states (SCS) method
[61, 63] and its formulations. In the SCS method, in contrast to the CCS approach and other
older methods that use an evolving grid of CSs [38, 64–67], the CSs grid remains constant
throughout the whole simulation. For all SCS calculations, two complementary CS grid
boxes form the static CS grid. CSs that are distributed in an internal box are suitable for
simulating the ground state of the system. As in the SCS approach the CS grid is static,
we need to enlarge the grid to insure getting a good result from computations of excited
electronic states or real time simulations of the system exposed to an external laser field. To
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do so, an additional number of CSs are distributed differently in an external box. The external
box plays a crucial stabilizing role in the real time propagation of TDSE in the absence
or presence of an external laser field considering classical nuclear dynamics. However,
both of the internal and external boxes participate in all simulation procedures. In contrast
to trajectory guided approaches such as the CCS method, which has serious convergence
problems in real time simulations, we extend our static CS grid by adding a number of static
coherent states (external box) with a distribution scheme suited especially for the real time
simulations.

In Sec. 2.2, by implementing classical nuclear dynamics, we compute the electronic-state
potential energy curves of 3D H+

2 in the absence and presence of an external ultrashort
(high-frequency) laser pulse and study the charge migration phenomenon. Next, in Sec.
2.3, we apply the SCS method to investigate the high-order harmonic generation and single
attosecond pulse generation in 3D H+

2 induced by a relatively low frequency laser field.

2.1 Theory for molecular systems

2.1.1 Quantum description of electronic motion

In the static coherent states method (SCS), to simulate a single (or two) -electron system,
using a Gaussian distribution function a static grid of three (or six) dimensional coherent
states (CS) is constructed in the phase space. Having generated the CS grid, it remains
constant throughout the whole simulation. To do so, for each dimension of every electron in
the system, the same number of one-dimensional coherent states is generated using

z =
γ1/2√

2
q + i

γ−1/2

√
2ℏ

p, (2.1)

where γ tunes the width of coherent states in phase space. In Eq. (2.1), q is the position and
p is the momentum of the 1D coherent state. Using the fact that coherent states are eigenkets
of the annihilation operator and eigenbras of the creation operator ,

â |z⟩ = z |z⟩ , ⟨z| â† = ⟨z| z∗. (2.2)

It is simple to verify that these two operators are related to the position and momentum
operators in each dimension in such a way that

q̂ =
γ−1/2

√
2

(
â† + â

)
, p̂ = iℏ

γ1/2√
2

(
â† − â

)
. (2.3)

For one-electron systems, a set of 3D coherent states is constructed from 1D coherent
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states of each dimension of the electron

|Z⟩ = |z1⟩ ⊗ |z2⟩ ⊗ |z3⟩ = |z1z2z3⟩ . (2.4)

For two-electron systems, two sets of 3D coherent states corresponding to each electron
form a set of 6D coherent states

|Z⟩ = |Ze1⟩ ⊗ |Ze2⟩ = |z1z2z3z4z5z6⟩ . (2.5)

For two electron systems, as the system is a fermionic one, the CS grid should be constructed
in such a way that the total wave function of the system becomes anti-symmetric [56, 60, 62].
For example in the ground state of a two-electron system where the spin wave function is anti-
symmetric, the spatial wave function should be symmetric. Since SCS method deals with
the spatial wave function, the static CS grid should be symmetrized (or anti-symmetrized) to
produce symmetric (or anti-symmetric) electronic states of a two-electron system [60, 62].

Coherent states are not orthogonal and form an over-complete basis set with the overlap
matrix elements of

ΩZZ′ = ⟨Z|Z′⟩ =
3n∏
j=1

exp

(
−1

2

(
|zj|2 +

∣∣z′j∣∣2)+ z∗j z
′
j

)
. (2.6)

where n is the number of electrons in the system.

The wave function of a single (or two) electron system can be represented as a superposi-
tion of N three (or six) dimensional coherent states

|Ψ⟩ =
N∑
k=1

Dk |Zk⟩ , (2.7)

with coefficients

Dk =
N∑
l=1

Ω−1
kl Cl, (2.8)

where
Cl = ⟨Zl|Ψ⟩ , (2.9)

and Ω−1 is the inverse of the overlap matrix Ω. Applying the identity operator of coherent
states [58, 62]

I =
N∑

k,l=1

|Zk⟩Ω−1
kl ⟨Zl| (2.10)

to the TDSE, we get

⟨Zj|
d |Ψ⟩
dt

=
−i
ℏ

N∑
k,l=1

⟨Zj|H |Zk⟩
(
Ω−1

)
kl
⟨Zl|Ψ⟩ . (2.11)
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Since in the SCS method, coherent states ⟨Zj| are time-independent, Eq. (2.11) with the
help of Eqs. (2.8) and (2.9) reduces to

dCj

dt
=

−i
ℏ

N∑
k=1

⟨Zk|H|Zl⟩Dk , (2.12)

where H is the Hamiltonian of the system.

For m nuclei fixed at position Rj with the atomic number Zj , the general Hamiltonian
for a n-electron system, dipole-coupled to a laser field, H = Te+Ven+Vee+Vnn+V

Lg/V g
l ,

reads

H =
n∑

i=1

|pi|2
2

−
n∑

i=1

m∑
j=1

Zj

|ri −Rj|
+

n∑
i=1

n∑
i′>i

1

|ri − ri′ |
+

m∑
j=1

m∑
j′>j

ZjZj′

|Rj −Rj′|
+V

Lg/V g
l .

(2.13)
In Eqs. (2.13), the first term is for the kinetic energy of n electrons, Te , and the second
term is for the electron-nuclear Coulombic potentials,Ven. For multi-electron systems one
should also compute the third term which incorporates the repulsive potentials between the
electrons, Vee. For multi-center systems the fourth term accounts for the repulsive potentials
between the nuclei, Vnn. In the presence of an external laser field, considering the dipole
moment approximation, depending on the length or velocity gauges, for VLg/V g

l we have

V
Lg/V g
l =



n∑
i=1

ri · E(t) Length gauge

n∑
i=1

A(t) · pi +
A(t)2

2
Velocity gauge

, (2.14)

where E(t) is the electric field and A(t) is the corresponding vector potential.

For the matrix elements of the kinetic energy of electrons in Eq. (2.13) on the base of a
3n dimensional CS grid, employing Eqs. (2.2) and (2.3), one obtains〈

Zk

∣∣∣∣∣
n∑

i=1

|pi|2
2

∣∣∣∣∣Zl

〉
= −γ

2
⟨Zk|Zl⟩

3n∑
j=1

(
z∗k

2
j + zl

2
j − 2zk

∗
jzlj − 1

)
, (2.15)

where j is the dimension number. The matrix elements of electron-nuclear Coulombic
potentials in Eq. (2.13) can be also calculated analytically [62, 68]〈

Zk

∣∣∣∣ Zj

|ri −Rj|

∣∣∣∣Zl

〉
= ⟨Zk|Zl⟩

Zj√
|ρij|2

erf

(√
γ|ρij|2

)
, (2.16)
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where i, j are the index numbers of electrons and nuclei, respectively and

ρij =
Z∗

ki
+ Zli√
2γ

−Rj. (2.17)

The matrix elements of the electron-electron Coulombic potential in Eq. (2.13) gives [62,
68] 〈

Zk

∣∣∣∣ 1

|ri − ri′ |

∣∣∣∣Zl

〉
= ⟨Zk|Zl⟩

1√
|ρii′|2

erf

(√
γ|ρii′|2

)
, (2.18)

where

ρii′ =
Z∗

ki
+ Zli√
2γ

−
Z∗

ki′
+ Zli′√
2γ

. (2.19)

As it is evident from Eqs. (2.16) and (2.18), one of the most important features of coherent
states is that they remove the singularity of Coulombic potentials and replace it with the

complex error function (erf).

For the matrix elements of the external laser potential (Eq. (2.14)) exerted on each
electron, using Eqs. (2.2) and (2.3), one can easily verify that

〈
Zk

∣∣∣HLg/V g
lei

∣∣∣Zl

〉
=


⟨Zk|Zl⟩ 1√

2γ
(Z∗

k + Zl) ·E(t) Length gauge

⟨Zk|Zl⟩
(
i
√

γ
2 (Z

∗
k − Zl) ·A(t) + A2(t)

2

)
Velocity gauge

. (2.20)

In order to compute the time-dependent expectation value of any observable O on the
basis of a static grid of coherent states, by employing the identity operator of coherent states
from Eq. (2.10), one can write

⟨Ψ |O|Ψ⟩ =
∑
jklm

⟨Ψ |Zj⟩Ω−1
jk ⟨Zk|O|Zl⟩Ω−1

lm ⟨Zm|Ψ⟩ . (2.21)

Finally, by employing Eqs. (2.8) and (2.9) in Eq. (2.21) we get

⟨Ψ |O|Ψ⟩ =
N∑

k,l=1

⟨Zk|O|Zl⟩D∗
kDl. (2.22)

To obtain the ground state of the system at a fixed inter-nuclear distance, one has two
options: either propagating the time-dependent Schrödinger equation Eq. (2.12) in imaginary
time (ITP) until the expectation value of the field-free Hamiltonian, Eq. (2.22) without the
last term, converges to the lowest accessible value [62, 69] or solving the generalized
eigenvalue problem (GEVP).

The higher electronic states of the system can be gained either by employing the Gram-
Schmidt algorithm in the basis of coherent states [60] or directly from the solution of the
GEVP. For a two-nuclei system, propagation of TDSE in imaginary time for a constant inter-
nuclear distance would lead to the ground state of the system at that specific inter-nuclear
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distance. Implementing this approach for two-nuclei systems, it is necessary to repeat this
process for a wide range of inter-nuclear distances to accurately get the potential energy
curve of different electronic states of the system [60]. This is quite cumbersome from the
computational perspective.

Here, using the SCS method, we introduce another approach which can obtain the
electronic state potential energy curves of a two-nuclei system in the absence or presence of
an external laser field. This approach only needs the electronic states of the system for an
initial inter-nuclear distance where the nucleus-nucleus force is high enough to dissociate the
two nuclei. Electronic states of other inter-nuclear distances are computed by propagating
the TDSE in real time in the basis of the initial static CS grid considering classical dynamics
for the two nuclei.

2.1.2 Classical nuclear motion

Here, to treat the nuclei in the system dynamically, using the well-known Ehrenfest theorem

d ⟨pj⟩
dt

=
〈
−∇V j

〉
=
〈
Fj

〉
=Mj

d2 ⟨Rj⟩
dt2

, (2.23)

we compute the expectation value of the position of each nucleus ⟨Rj⟩ [61]. In Eq. (2.23),
Mj is the nucleus mass, V j is the sum of second and fourth terms of the Hamiltonian in Eq.
(2.13) and correspondingly Fj is the total force exerted on the nucleus j.

The expectation value of the electron-nucleus attractive forces can be computed by
employing Eq. (2.22)

⟨Fij⟩ =
∑
kl

FijklD
∗
kDl. (2.24)

From Appendix (B) it is straightforward to verify that

Fijkl = Zj

(
4γ3

π

)1/2

ρijF1

(
γ|ρij|2

)
⟨Zk|Zl⟩ , (2.25)

where F1 is the first order Boys function. For the repulsive force between the nuclei we also
have

Fjj′ = ZjZj′
Rj −Rj′

|Rj −Rj′ |3
, Fj′j = −Fjj′ . (2.26)

We have applied the classical nuclear dynamics approach to achieve the potential energy
curves of the ground state (1sσg) and the first excited state (2pσu) of H+

2 . At first, we
computed the ground and the first excited states of the system at an initial inter-nuclear
distance (R = |R1 −R2| = 1.0 a.u.). Then, we propagated each of these electronic states
in real time in the absence of any external field by considering classical nuclear dynamics.
The initial velocity of the two nuclei is set to zero. The simulation results for dynamic nuclei
approach (DN) are plotted in Fig. 2.1 and compared to the results from the static nucleus
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Figure 2.1 Potential energy curve of the ground state (1sσg) and the first excited state
(2pσu) of H+

2 computed employing the new dynamic nucleus (DN) approach. DN results
have been compared to the static nucleus approach results (SN) [61] and the exact values
[70] . SN results (exact values) are adopted with permission from Journal of Computational
Chemistry (Atomic Data and Nuclear Data Tables) ; published by John Wiley and Sons
(Elsevier), 2018 (1970).

approach (SN) [61] and the exact values [70]. It is evident from Fig. 2.1 that the DN results
present a good agreement with the exact values [70]. In Fig. 2.1, for the ground state, the
computation speed for the low inter-nuclear distances (below 1.5 a.u.) is high in that the
nuclear dynamics at low inter-nuclear distances are fast. As the inter-nuclear distance gets
larger (especially above 4 a.u.) the nuclear dynamics (and consequently the computation
speed) becomes slower.

The implemented static CS grid in this section and the next one, which consists of 1000
CS in the internal box and 500 CS in the external box, has been generated using the Gaussian
distribution function with γ = 0.7, compression parameters [62] for the internal box = 0.9
and for the external box = 1.0. Coherent states in the internal box are randomly distributed
in the phase space around the origin in x, y, px, py and pz directions and between (-6 a.u.,6
a.u.) in z direction. Coherent states in the external box are randomly distributed in the phase
space between (-2.5 a.u.,2.5 a.u.) in x, y, px and py directions, between (-10 a.u.,10 a.u.) in z
direction and between (-5 a.u.,5 a.u.) in pz direction. A similar phase space illustration of
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the used coherent state grid can be found at Fig. 2.9.

2.2 High frequency light-matter interaction

For the next round of our investigation, the ground state of H+
2 at R = 1.45 a.u. is subjected

to a 5-cycle ultra-short attosecond laser pulse using a wavelength of λ = 70 nm and different
intensities. Attosecond pulses are needed to probe the electronic dynamics which typically
takes place on sub-femtosecond time scales. We have assumed that the external laser field is
linearly polarized along the z-axis and that the shape of the electric field is given by

E(t) = f(t)E0 cos(ωt)k̂. (2.27)

In Eq. (2.27) E0 is the maximum amplitude of the laser field, ω is the angular field frequency
and f(t) = sin2( t

τ
π) is the envelope shape with the full width half maximum (FWHM)

duration of τ .

0 10 20 30 40 50 60 70 80 90 100
-0.06

-0.04

-0.02

0.00
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E z
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.u
.)
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Figure 2.2 The shape of the implemented laser pulse: a 5-cycle attosecond laser pulse
with wavelength of 70 nm and intensity of 1014 W/cm2.

The shape of the used laser pulse is plotted in Fig. 2.2 for the intensity of 1014 W/cm2.
The corresponding energy for a single photon excitation (17.712 eV = 0.6509 a.u.) can be
high enough for exciting the ground state of the system to the first excited state at R = 1.45

a.u..
In Fig. 2.3 the ground state of H+

2 is exposed to laser fields with different intensities
(from 0.1 × 1014 W/cm2 to 2.0 × 1014 W/cm2). When the internuclear distance reaches
R = 1.45 a.u., the system experiences the maximum amplitude of the laser fields.
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Figure 2.3 Potential energy curve of the electronic states of H+
2 in the presence of ultra-

short laser field with different intensities compared to the ground state and the 1st excited
state of the system.

2.2.1 Charge migration in 3D H+
2

An interesting phenomenon which could happen here is the charge migration between the
ground state and the first excited state of the system [21, 71]. The wave function of the
resulting coherent superposition state which corresponds to a spatial displacement of the
electronic charge is generally expressed by

Ψs(r, t;R) = cg(t) exp(−iEg(R)t)Ψg(r;R) + cu(t) exp(−iEu(R)t)Ψu(r;R). (2.28)

In general, the inter-nuclear distanceR = |R| = |R1 −R2| can be varied in time considering
classical nuclear dynamics. It is easy to verify that the time-dependent electron density
which can migrate from one atom to the other is given by

|Ψs(r, t;R)|2 = |cg(t)|2|Ψg(r;R)|2 + |cu(t)|2|Ψu(r;R)|2 + 2|A| cos(α(r;R)) (2.29)

where
A = c∗g(t)cu(t)Ψ

∗
g (r;R)Ψu(r;R), (2.30)



Chapter 2. Static coherent states for laser-induced dynamics 13

α(r,R) = (Eu(R)− Eg(R))t = ∆E(R)t. (2.31)

One prerequisite for the occurrence of the charge migration, is the existence of the spatial
overlap (the third term in Eq. (2.29)) between the electronic wave functions describing the
charge in each of the ground and the first excited states [71]. From the periodicity condition
of the cos function in the third term of Eq. (2.29), one can easily compute the migration
period of the electron density from one atom to the other one as

T =
2π

Eu(R)− Eg(R)
. (2.32)

In order to compute the population of each electronic state Ψg/u in the coherent superposition
state Ψs, implementing the identity operator of coherent states (Eq. (2.10)) one should
compute ∣∣〈Ψg/u

∣∣Ψs

〉∣∣2 = ∣∣∣∣∣∑
kl

〈
Ψg/u

∣∣Zk

〉
(Ω−1)kl ⟨Zl|Ψs⟩

∣∣∣∣∣
2

. (2.33)

Applying Eqs. (2.8) and (2.9) we arrive at

∣∣〈Ψg/u

∣∣Ψs

〉∣∣2 = ∣∣∣∣∣∑
k

C∗
g/uk

Dsk

∣∣∣∣∣
2

. (2.34)

T	
(a
s)

R	(a.u. )

Figure 2.4 The charge migration period (T) computed by employing Eq. (2.32) for
different inter-nuclear distances (R) in H+

2 in the absence of an ultra-short intense laser field.
As it can bee seen from Fig. 2.4, by employing Eq. (2.32) we have computed the period

of charge migration between the two nuclei in H+
2 in terms of the inter-nuclear distance. This

figure shows that higher inter-nuclear distances correspond to higher charge migration times
between the two nuclei. In Fig. 2.4, the charge migration period in inter-nuclear distances
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Table 2.1 Population of the ground state and the 1st excited state in coherent superposition
states for different intensities computed at a long time after turning off the laser.

Intensity ( W
cm2 ) Ground state 1st Excited state

0.1× 1014 0.980 0.020
0.5× 1014 0.895 0.102
1.0× 1014 0.801 0.191
2.0× 1014 0.671 0.298

between 1-2 a.u. is relatively low (about 200-300 as) and it gets larger as the inter-nuclear
distance grows.

From the population results in Table. 2.1 which are computed (at a long time after turning
off the laser) using Eq. (2.34) one can deduce that as the intensity of laser increases, the
population of the ground state in the coherent superposition state gets lower and population
of the excited states gets higher. In agreement with this deduction, it can be also seen from
Fig. 2.3 that coherent superposition states created by lasers with lower intensity are closer
to the ground state. Higher laser intensities lead to coherent superposition states with more
contributors. For example, the coherent superposition state created by using a laser field
with the intensity of 2.0× 1014W/cm2 (in Fig. 2.3) has more contributors. Table (2.1) and
Fig. 2.3 demonstrate that after exposing the ground state of system to an attosecond pulse,
some of the population goes to the excited states. As the intensity of the attosecond laser
field is increased, a larger population is transferred to the excited states.

Fig. 2.5 shows the expectation value of the electron coordinate along z axis experiencing
ultra-short intense laser pulses with four different intensities. One can see that the amplitude
of the coordinate expectation value is larger for higher intensities. However, until 2.0 fs the
period seems to be the same for all intensities. As the dissociation rate of the two nuclei
increases, the period becomes larger for higher intensities (above t = 2.0 fs). In addition, we
have calculated the change rate of the inter-nuclear distance for the ground state and the first
excited state in the absence of a laser field and for the ground state induced by ultra-short
laser pulses with different intensities. The results, depicted in Fig. 2.6, show that the lowest
(highest) rates of dissociation correspond to the ground (first excited) state in the absence of
a laser field.

So far, the implemented static CS grid which consist of a total number of 1500 CS, was
enough for studying the physics behind the classical nuclear motion and quantum dynamics
of the single electron in H+

2 in the absence of an external laser field (Sec. 2.1.2) and the
charge migration in the presence of an ultra-short (70 nm) intense laser field (Sec. 2.2.1). It
was because of the fact that the quiver motion of the single electron was not considerable for
such a high frequency laser field.

In the next section, we would discuss how static coherent states perform for H+
2 induced
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Figure 2.5 Expectation value of the position of the single electron in a laser induced H+
2

along the z axis. Ultra-short intense laser fields (with four different intensities) strike the
ground state of the system in a specific time.
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Figure 2.6 Initiating from the ground state, considering classical nuclear dynamics, the
inter-nuclear distance of an ultra-short laser induced H+

2 reaches faster from 1 a.u. to 8 a.u.
than the field-free case (the red line). The results are also compared to the fastest one which
is related to the 1st excited state of the system in the absence of a laser field (the black line).
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by a low-frequency (800 nm) intense laser field, which brings about a much higher quiver
radius for the single electron.

2.3 Low frequency light-matter interaction

By exposing atomic and molecular systems to an intense low frequency laser field, among a
wide range of phenomena, a remarkable phenomenon occurs in which coherent radiations
with high-order multiples of the fundamental frequency of the driving field are generated.

In Sec. 2.3.1, we employ the SCS approach to investigate the so-called high-order
harmonic generation (HHG) in the three-dimensional molecular hydrogen ion H+

2 interacting
with a linearly polarized optical field. Next, in Sec. 2.3.2, using the known polarization
gating technique we explore the single isolated attosecond pulse generation in H+

2 .

Same as Sec. 2.2, in both of these applications of the SCS method, we utilize two
complementary internal and external CS grid boxes. However, here we need a higher total
number of CS to fill a larger physical space in that the system interacts now with a low
frequency laser field causing the electron to wander in a larger space.

2.3.1 High-order harmonic generation in 3D H+
2

The underlying physics of the non-perturbative HHG process, which is a highly nonlinear
response of matter to the ultrashort intense laser fields, can be explained by invoking the
well-known semi-classical three-step model [54, 72, 73], with quantum mechanical treatment
given within the so-called Lewenstein model [53]. In these models, the electron which is
freed to the continuum through tunneling ionization is accelerated back by the external
laser field and a harmonic photon is emitted via recombination of the electron and its
parent ion. The three-step model is schematically depicted in Fig. 2.7. It was predicted
theoretically and demonstrated experimentally that the produced HHG spectrum, which falls
rapidly in the first few harmonics, produces a broad plateau that ends with a sharp cutoff.
This cutoff which corresponds to the maximum kinetic energy Kmax that an electron can
gain upon recombination, can be calculated by the semi-classical three-step model or its
quantum-mechanical correction (the Lewenstein model) [53, 74]

ncutoff =
Kmax

ℏω0

=
1

ℏω0

(
3.17Up + f

( Ip
Up

)
Ip

)
, (2.35)

where Ip is the ionization potential, Up = E2
0/4ω

2
0 is the ponderomotive potential, ω0 is the

angular frequency of the laser field, and E0 is the electric field amplitude. Based on the
Lewenstein model, f( Ip

Up
) tends to 1.32 as Ip

Up
→ 0 and as Ip

Up
→ ∞ it approaches to 1, and

subsequently the Lewenstein model reduces to the semi-classical three-step model. Third
order polynomial fitting to the function curve in Fig. 5 of [53], one can obtain the following
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function for f( Ip
Up
)

f

(
Ip
Up

)
= −0.03592

(
Ip
Up

)
+ 0.00610

(
Ip
Up

)2

− 0.00056

(
Ip
Up

)3

+ 1.31875 (2.36)

which is relatively accurate for Ip
Up
< 10.

Figure 2.7 Schematic illustration of the HHG process by the semi-classical three-step
model. Adopted from [75, 76] .

In this section, starting the real time propagation (RTP) process from the ground state of
H+

2 at two different fixed initial inter-nuclear distances R = 2 a.u. and R = 3 a.u., we study
the HHG in the length and the velocity gauges exposing the system to a trapezoidal 800 nm
5-cycle linear (along the z axis) laser pulse with the intensity of I = 1014 W/cm2. Such a
laser field is depicted in Fig. 2.8 and has the same propagation form of Eq. (2.27). For the
applied intensity, ncutoff for H+

2 at internuclear distances R = 2.0 a.u. and R = 3.0 a.u. are
predicted by the 3-step model (Lewenstein model) to be approximately 32 (36) and 28 (32),
respectively.

Here, we have used a total number of 8000 3D CSs distributed randomly around the
two nuclei (zx/yini = 0 and zzini = ±R/2). The nuclei are considered to be fixed along the z

direction. We exclude high energy coherent states and keep coherent states with energies
⟨Z|H|Z⟩ < 1.5 a.u. for the internal box and ⟨Z|H|Z⟩ < 2.0 a.u. for the external one. 3D
coordinate (a) and momentum (b) representations of such grid are depicted in the left panel
of Fig. 2.9 while the 2D phase space representations of the grid are illustrated in the right
panel. Because the induced laser has a polarization along z direction, coherent states are
distributed more widely along the z direction than x and y directions. The external box
(5000 CSs) is considered to be three times larger than the internal box in all dimensions to
capture phenomena occurring beyond the effective Coulombic range. The gamma parameter
is set to γ = 1. The region in proximity of the nuclei should involve more CSs to capture
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Figure 2.8 Our used trapezoidal 5-cycle 800 nm femtosecond laser pulse with the intensity
of 1014 W/cm2. The envelope amplitude rises in the first cycle, remains constant in the
following three cycles and falls in the last cycle.

short-range phenomena such as Coulombic potential effects. The size of the constructed
grid is considered to be approximately three times larger than the predicted quiver amplitude
αp =

E0

ω2 = 16.45 a.u. (for the intensity of I = 1014 W/cm2).

To get the HHG spectrum D(ω) one needs to compute the squared magnitude of the
Fourier transforms (FT) of the expectation value of the electron dipole acceleration Ae (Eq.
(2.39))

D(ω) =

∣∣∣∣∫ T

0

⟨ψ|Ae|ψ⟩H(t)e−iωtdt

∣∣∣∣2, (2.37)

where T is the total pulse duration and

H(t) =
1

2

[
1− cos

(
2π

t

T

)]
(2.38)

is the Hanning function which filters nonphysical features (non decaying components) from
the HHG spectrum as the Fourier transform is applied over a finite time.

The expectation value of the dipole acceleration of the single electron in H+
2 can be

computed using again the Ehrenfest theorem

⟨ψ|Ai|ψ⟩ =
〈
−∇V i

〉
=
〈
Fi

〉
(2.39)

where V i is the sum of the second, the third and the last terms of the Hamiltonian in Eq.
(2.13) and correspondingly Fi is the total forces exerted on the electron i.

For the expectation value of the nucleus (j) - electron (i) attractive forces Fji, with the
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Figure 2.9 Left panel: (a) 3D coordinate space and (b) 3D momentum space representa-
tions of a random CS grid (with a total number of 8000 CSs) used for simulating HHG in H+

2
(at R = 3 a.u.) induced by a 5-cycle linearly polarized laser field in the z- direction (with λ =
800 nm). Right panel: Phase space representations of the same grid.

help of Appendix (B) one can get

⟨Fji⟩ =
∑
kl

FjiklD
∗
kDl (2.40)

where

Fjikl = −
(
4γ3

π

)1/2

ρijF1

(
γ|ρij|2

)
⟨Zk|Zl⟩ (2.41)

and F1 is the first order Boys function (Eq. (B.15)).

To prevent nonphysical effects due to the reflection of the wave packet from the bound-
aries, the coefficients Ck corresponding to each coherent state k are multiplied by a mask
function with the form [77]

Mkj =


1

∣∣qkj ∣∣ < Qj

cos
1
8

(
π
2

||qkj |−Qj|
bj

) ∣∣qkj ∣∣ > Qj

(2.42)
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Figure 2.10 The HHG spectrum of H+
2 , calculated by the SCS method in the length and

the velocity gauges at R = 2.0 a.u. (left panel) and R = 3.0 a.u. (right panel), induced by a
5-cycle trapezoidal 800 nm laser field with the intensity of I = 1014 W/cm2 in comparison
with the a 3D Cartesian USO length gauge solution of TDSE . The observed deviation
between SCS results and those of the Cartesian USO solver in the above cutoff region are
slightly improved by increasing the number of averaged random simulations from Na = 1
(a) up to Na = 100 (c). The red and the blue vertical dashed lines plot the cut-off harmonics,
predicted by the 3-step and the Lewenstein models, respectively.

where Qj gives the boundary point in the jth direction, bj is the length of absorbing region
and qkj is the position of the kth coherent state in the jth direction.

In Fig. 2.10, we have depicted the resulted HHG spectrum for H+
2 interacting with a

trapezoidal laser field at R = 2 a.u. (left panel) and at R = 3 a.u. (right panel) in length
and velocity gauges which are compared to the length gauge results of a 3D Cartesian
unitary split operator (USO) solver of the TDSE [63]. Since coherent states are generated
randomly, simulations with the same settings would lead to different grids of coherent
states. Consequently, by repeating the simulation and averaging the expectation values of
the acceleration of the electron along the z-direction, a lot more CSs can be used. This is
an important characteristics of the SCS method which notably improves the results at a
relatively small computational cost.

The averaging factor, Na, defines the number of recurring random simulations. As can
be seen in Fig. 2.10, even with only 8000 CS (Na = 1) the HHG spectra obtained from SCS
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is in agreement with that of 3D Cartesian USO in the low harmonic regions. In addition,
the consistency of SCS with 3D Cartesian USO is acceptable in the plateau region (below
cutoff). The inconsistency which arises after cutoff can be slightly improved including more
CS into the simulation, i.e. increasing Na (cf. Fig. 2.10). As it is evident from Fig. 2.10,
increasing Na and hence including more CS into the simulation (up to 800,000 for Na=100),
the results show a better agreement with those of 3D Cartesian USO method. Nevertheless,
no sensible changes were seen in the HHG results of SCS as we enlarged the external box or
increased the total number of CSs participated into a single simulation (higher than 8000
CSs).

For the 3D Cartesian USO solution of TDSE the grid size is considered to be almost
the same as those we used in SCS. However, a total number of 42,250,000 grid points (324,
324 and 400 grid points in the x, y and z directions, respectively) are taken into account.
Using such a high number of grid points to compute HHG spectrum of the system is not
computationally cost-effective. One can instead exploit the 3D cylindrical USO solution of
TDSE [78], which due to its intrinsic cylindrical symmetry is less costly and requires fewer
grid points (a total number of 259,200) compared to 3D Cartesian USO.

As can be concluded from the last row of Fig. 2.10, we see an acceptable agreement,
especially between the length and the velocity gauges results. Above the cutoff region,
there can be many reasons for the incoherency in the harmonic spectrum. The complete
consistency between results of different approaches might be unattainable, and it might be
reasonable to expect deviation in the calculated spectrum from other methods. Among the
possible inconsistency reasons, we could imply the choice of absorption boundaries as a
crucial role in lowering the needed box sizes and the inherent differences between dissimilar
numerical techniques. It might be the case that the applied mask function Eq. (2.42) is not
efficient for reducing the physical box size, and consequently, the number of used static
coherent states is not enough to cover the whole space. In Sec. 4.3, we would discuss a more
efficient absorber for investigating HHG in the basis of optimized Gaussian basis sets.

2.3.2 Single attosecond pulse generation in 3D H+
2

Finally, to evaluate the SCS approach in simulations of more complex laser-induced scenarios,
the single isolated attosecond pulse (SAP) generation is investigated in H+

2 using the well-
known polarization gating technique [79]. Such a polarization gate is generated without
spatial filtering in the central part of the pulse by superposing two left (−) and right-hand
(+) circularly polarized Gaussian pulses propagated in the z direction

E±(t) = E0 e
−2 ln 2((t−td/2)/τp)

2

(cos(ωt+ ϕ)x̂± sin(ωt+ ϕ)ŷ) (2.43)

in which E0, td, τp, ω and ϕ are the field amplitude, time delay between two left (−) and
right-hand (+) circularly polarized pulses, the full width at half maximum (FWHM) of the
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the Gaussian shaped pulse, the carrier frequency and the carrier-envelope phase, respectively.

Having computed the α = x, y component of the dipole acceleration A(t) via Eq. (2.39),
the profile of the attosecond pulse for each direction is obtainable superposing different
harmonic orders [80]

Iα(t) =

∣∣∣∣∣∑
q

aα(q)e
iqωt

∣∣∣∣∣
2

(2.44)

where
aα(q) =

∫
aα(t)e

−iqwtdt. (2.45)

The time-frequency profiles of the high harmonics w(ω, t) are obtained via a Morlet wavelet
transform of the time-dependent dipole acceleration

w(ω, t) =

√
ω

π
1
2σ

∫ ∞

−∞
aα(t

′)e−iω(t′−t)e−
ω2(t′−t)2

2σ2 dt′ (2.46)

where we set the Gaussian width σ = 2π in this work.

In order to study how SAP is generated in H+
2 at R = 3 a.u. using SCS, the system is

simulated in the presence of a 800 nm 10-cycle laser field which has a polarization gating
in the middle of the pulse. Such laser field is formed by combining two 8-cycle left and
right-hand circularly polarized Gaussian pulses with both time delay td and FWHM of the
Gaussian envelope τp equal to 2 cycles (i.e., 5.33702 fs or 220.64 a.u.) and the intensity of
I = 3× 1014 W/cm2 for ϕ = 0 and ϕ = π/2 similarly to [80].

In Fig. 2.11, we have illustrated the SAP achieved from the SCS approach using the
polarization gating technique for carrier envelop phase ϕ = 0 (left panel) and ϕ = π/2 (right
panel). The simulation results in Fig. 2.11 obtained by averaging the expectation value of the
acceleration of the single electron along the x and the y directions over 40 different random
simulations (each contains a total number of 12000 CSs = 3000 internal CSs + 9000 external
CSs). In the first row of Fig. 2.11 we plot the x and the y components of 10-cycle laser
pulses for carrier envelope phases ϕ = 0 (left) and ϕ = π/2 (right). In the second row of
Fig. 2.11 we have depicted the profile of the SAP pulse generated from high-order harmonic
spectrum of H+

2 for carrier envelope phases ϕ = 0 (left) and ϕ = π/2 (right) both in the x

and the y directions. The x and the y components of the SAP are created by superposing the
the 30th to the 50th orders of plateau harmonics. The third row of Fig. 2.11 delineates the
absolute squared of the corresponding Morlet wavelet time profiles in the x direction.

As it is apparent, at the central part of both fields (Fig. 2.11a and Fig. 2.11d)) which
are defined as polarization gate, the y component Ey(t) is suppressed and consequently
ellipticity of both pulses is changed from circular to linear. Therefore the x component of the
pulse Ex(t) becomes the main driving field and hence at the central portion of both pulses,
isolated attosecond pulse is generated. This conclusion is in agreement with extremely low
intensity taps generated in the y direction for both ϕ = 0 (Fig. 2.11b) and ϕ = π/2 (Fig.
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Figure 2.11 Single isolated attosecond pulse generation. Left panel (a-c) for carrier
envelop phase ϕ = 0: and right panel (d-f) for carrier envelop phase ϕ = π

2
. The first row

(a,d) plots x (blue) and y (red) components of 10-cycle electric field constructed by combining
two 8-cycle left and right-hand circularly polarized Gaussian pulses with both time delay
td and FWHM τp equal to 2 cycles and I = 3× 1014 W/cm2. The second row (b,e) depicts
isolated attosecond pulse from H+

2 in the x (blue-colored) and the y (red-colored) directions.
Since at the gate both fields are primarily polarized in the x direction, the generated pulse
amplitudes in the y direction are significantly weaker than their corresponding x counterparts.
The last row (c,f) illustrates absolute squared of the corresponding Morlet wavelet time-
frequency profiles in the x direction.

2.11e). In the x direction, for the laser pulse with ϕ = 0, two pulses are generated with a
comparable intensity (with duration of 165 as and 205 as), while for the case of ϕ = π/2,
only one pulse with a comparable intensity (with duration of 226 as) is left.



3 Adaptive Gaussian basis sets for
time-independent problems

In the previous chapter, to study the HHG in H+
2 (Sec. 2.3.1) we used 8000 random CSs in a

single simulation, where for the SAP in Sec. 2.3.2 we used 12000 CSs. Even employing
a high number of CSs, we have witnessed that static coherent states were not completely
successful in describing HHG of H+

2 exposed to intense laser fields. The question arises:
should we use an even higher number of basis functions to accurately capture the physics
behind such laser-induced phenomena? Is there a more elegant and cost-effective approach
in which a minimal basis set is constructed and guided to the regions where they are most
needed?

In this chapter, as an essential and preliminary step for the time-dependent studies
(Chapter 4), we seek to address these questions by introducing an optimization algorithm
that quickly finds the optimum configuration of the basis sets and represents the time-
independent wave-function of a desired electronic state of the system with high accuracy.
The goal is to keep the number of basis states as low as possible and obtain highly accurate
values for the electronic state energies of the system.

For the sake of simplicity and because of the fact that coherent states are complex
Gaussian wave packets, in Eq. (B.6), we chose s-type Gaussian type orbitals (GTOs)
Gs
i (r, ri, αi) = e−αi(r−ri)

2

to construct a basis. Functions that resemble hydrogen atomic
orbitals, Slater type orbitals (STOs), might seem to be a better option as they correctly
describe the cusp at the nuclei, and the asymptotic long-range behavior of the wave-function.
However, the GTOs introduced by Boys [81] which are the most common basis sets in
quantum chemistry for performing numerical calculations on atoms and molecules, have
the advantage of solving molecular integrals analytically and consequently being far less
computationally expensive than the STOs.

This work solely represents the wave function on the basis of spherically symmetric
s-type GTOs. For optimizing the exponent αi and the center-position ri of each s-type GTO,
we employ the first-order Taylor expansion. Doing so, as explained in Secs. 3.1.2 and
3.1.3, during the optimization process, we require the first derivatives of each s-type GTO
with respect to the exponent and the center-position. The first derivative with respect to the
exponent corresponds to an s-type GTO with the shifted position squared, (r− ri)

2, as the

24
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prefactor. This terms is nothing but the summation of three Cartesian d-type GTOs. The first
derivative with respect to the position in each direction results in an s-type GTO multiplied
by the shifted position in that direction. These terms are simply p-type GTOs along the x, y,
and z coordinates.

Many quantum chemistry packages that work with the Cartesian GTOs can provide
the Hamiltonian and the overlap matrix elements between different type of GTOs. That is
what we need during the optimization procedure presented in this work. It means that our
optimization approach has the potential to be integrated into the standard quantum chemistry
packages where the variational principle is the primary optimization method.

This chapter is organized as follows: In Sec. 3.1, we briefly explain how one can
calculate an electronic state of a quantum system with a high precision using the s-type
Cartesian GTOs (Sec. 3.1.1). Next, we discuss the main steps of our developed optimization
algorithm in more details: optimization of the exponents of the s-type GTOs in Sec. 3.1.2
and their positions in Sec. 3.1.3. Then, in Sec. 3.2, we apply the introduced optimization
technique to different quantum systems. In this chapter, our systems of interest are: 1D
harmonic oscillator (Sec. 3.2.1), 1D Morse oscillator (Sec. 3.2.2), 1D Hydrogen atom (Sec.
3.2.3), 1D Hydrogen molecular ion H+

2 (Sec. 3.2.4), 3D Hydrogen atom (Sec. 3.2.5), and 3D
Hydrogen molecular ion H+

2 (Sec. 3.2.6).

3.1 Theory: accurate computation of a desired electronic state

We represent the wave function of the quantum system as a superposition of N s-type GTOs
Gs
i (r, ri, αi) = e−αi(r−ri)

2

ψ(r) =
N∑
i=1

DiGs
i (r, ri, αi). (3.1)

The coefficients Di and the eigenenergies are calculated by solving the generalized
eigenvalue problem (GEVP) of the Schrödinger equation, HD = EΩD, where H and Ω,
respectively are the Hamiltonian and overlap matrices in the basis of GTOs.

As motivated before, our objective is to find the optimum exponents αi as well as the
optimum center-positions ri of a set of the s-type GTOs in such a way that using a minimal
number of basis functions we reach a high accuracy for the electronic state energy of the
system.

To do so, as described in Fig. 3.1, we have developed a three-step iterative optimization
scheme: initially, using only the s-type GTOs, the system’s wave function is computed. In
the second step, explained in Sec. 3.1.2, having added an equal number of auxiliary d-type
GTOs to the s-type ones, we re-calculate the wave function. Doing so, we correct all the
exponents of the s-type GTOs (∆i). In the last step, described in Sec. 3.1.3, after updating
the exponents of the s-type GTOs, we re-compute the wave function by implementing a
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set of auxiliary p-type GTOs along x, y, and z directions with the same exponents and
center-positions as the s-type ones. Accordingly, corrections for the center positions of the
s-type GTOs (δi) are evaluated and applied. This procedure is iterated until the desired
accuracy for an electronic state energy of the system is obtained.

Start Initial distribution 
of s-type GTOs

Solving GEVP 
using s-type GTOs

Energy
Converged?

End

α!"#$ = α! + ∆!
Obtaining corrections ∆! by solving GEVP in 

the basis of s- and d-type GTOs

yes

no

𝐫!"#$ = 𝐫! +𝛅!
Obtaining corrections 𝛅!	by solving GEVP 

in the basis of s- and p-type GTOs

Figure 3.1 Our proposed optimization algorithm for s-type Gaussian basis sets.

3.1.1 Cartesian Gaussian type orbitals (GTOs)

GTOs, unlike STOs, are separable in the Cartesian coordinates. The Gaussian product rule
upon which the product of two Gaussians centered at A, and B is itself a single Gaussian
centered at C = αA+βB

α+β
:

exp (−α(r−A)2) exp (−β(r−B)2) = exp
(
− αβ

α+β
(A−B)2

)
exp (−(α + β)(r−C)2),

(3.2)
and the separability of the Gaussians in Cartesian coordinates greatly simplify the atomic
and molecular integrals.

The general form for 3D Cartesian GTOs [82] reads

Gm
i (r, ri, αi) = Nm

i (x− xi)
mx(y − yi)

my(z − zi)
mz exp

(
−αi

(
(x− xi)

2 + (y − yi)
2 + (z − zi)

2)).
(3.3)

Solving
∫
Gm
i (r, ri, αi)Gm

i (r, ri, αi)dr ≡ 1, for the normalization factors of real-parameter
GTOs (Nm

i ), one can verify that

Nm
i =

(
2αi

π

)3/4

(4αi)
lm
2 [(2mx − 1)!!(2my − 1)!!(2mz − 1)!!]−1/2, (3.4)

where (2m− 1)!! = (2m− 1) · (2m− 3) · · · 5 · 3 · 1. Moreover, in Eqs. (3.3) and (3.4),
m = mxx̂+myŷ +mz ẑ, and lm = mx +my +mz defines the angular momentum of the
basis functions. lm = 0 leads to the 3D Cartesian s-type GTOs with the spherical symmetry,

Gs
i (r, ri, αi) = N s

i exp
(
−αi

(
(x− xi)

2 + (y − yi)
2 + (z − zi)

2)), (3.5)
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while putting lm = 1, we have three different options for the 3D Cartesian p-type GTOs
possessing axial symmetry. Considering lm = 2 one has six different possibilities for the 3D
Cartesian d-type GTOs. As mentioned before, the first derivative of the s-type GTO with
respect to the exponent αi corresponds to a linear combination of three Cartesian d-type
GTOs, Gdx

i (mx = 2), Gdy
i (my = 2), and Gdz

i (mz = 2),

Gd
i (r, ri, αi) = N d

i

(
(x− xi)

2 + (y − yi)
2 + (z − zi)

2) exp(−αi(r− ri)
2). (3.6)

The resulting function which possesses spherical symmetry, Eq. (3.6), is actually an s-type
GTO. However, to distinguish it from a normal s-type GTO, Eq. (3.5), we call it d-type GTO
in this work. Using Eq. (C.9), it is straightforward to verify that N d

i = 4αi√
15

(
2αi

π

)3/4.
Reducing the 3D forms to 1D, for 1D Cartesian GTOs we get

Gm
i (x, xi, αi) = Nm

i (x− xi)
m exp

(
−αi(x− xi)

2), (3.7)

where the normalization factor Nm
i reads

Nm
i =

(
2αi

π

)1/4

(4αi)
m
2 [(2m− 1)!!]−1/2. (3.8)

Although the concept of the angular momentum is irrelevant in 1D, for the sake of consistency,
we call the Gaussian functions corresponding to m = 0, m = 1, and m = 2 as 1D s-type
GTOs, 1D p-type GTOs, and 1D d-type GTOs, respectively.

GTOs are not orthogonal, and some of them may become linearly dependent if their
overlaps get too large. This causes the overlap matrix to lose its positive definiteness.
Consequently, the GEVP can no longer be numerically solved. Since our procedure freely
optimizes the s-type GTOs, this problem can be sometimes circumvented by adapting the
correction percentage parameters, hα Eq. (3.21a), and hr Eq. (3.21b), to values smaller than
one. From a numerical point of view, the mentioned problem occurs more frequently using
unnormalized GTOs.

Normalized GTOs are only applicable to time-independent scenarios, and somewhat
stabilize the possible numerical issues that one can get by leaving the normalization pro-
cedure to the GEVP solvers. For the time-dependent scenarios in Chapter 4, however, the
GTOs would acquire complex parameters and using the normalization factors Nm

i for the
complex-parameter s-type GTOs violates the complex differentiability condition which is
essential to our optimization algorithm. To tackle this problem, we have to work with the
unnormalized GTOs (Nm

i = 1) and leave the normalization to the GEVP solvers. Hence,
we use unnormalized GTOs unless mentioned otherwise.



28 3.1. Theory: accurate computation of a desired electronic state

3.1.2 Optimizing the exponents of s-type GTOs
To optimize exponents of s-type GTOs, as described in the second step of our optimization
scheme in Fig. 3.1, we represent the wave function of the system as a superposition of s-type
GTOs with slightly shifted exponents αi +∆i

ψ(r) =
N∑
i=1

DiGs
i (r, ri, αi +∆i). (3.9)

First-order Taylor expansion of Gs
i (r, ri, αi +∆i) around the exponent correction ∆i leads

to a linear combination of one s-type GTO Gs
i (r, ri, αi), and a function which can be written

as the d-type GTO Gd
i (r, ri, αi) introduced in Eq. (3.6),

Gs
i (r, ri, αi +∆i) = (1 +∆iNs

i )Gs
i (r, ri, αi)−∆iNd

iGd
i (r, ri, αi). (3.10)

Hence, substituting Eq. (3.10) in Eq. (3.9), the wave function becomes a superposition of
2N GTOs consisting of N s-type and N d-type GTOs,

ψ(r) =
N∑
i=1

Ds
iGs

i (r, ri, αi) +
2N∑

i=N+1

Dd
i Gd

i (r, ri, αi), (3.11)

where Ds
i = Di(1 +∆iNs

i ), and Dd
i = −Di∆iNd

i . Using the normalized GTOs, one can
verify that

3D GTOs

Ns
i =

3
4αi

Nd
i =

√
15

4αi

, 1D GTOs

Ns
i =

1
4αi

Nd
i =

√
3

4αi

, (3.12)

while employing unnormalized GTOs, one can get

Ns
i = 0 , Nd

i = 1. (3.13)

Having evaluated the elements of Hamiltonian (H) and overlap (Ω) matrices over s- and
d-type GTOs with the help of Appendix C, we compute the coefficients Ds

i and Dd
i solving

the GEVP of the Schrödinger equation
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Accordingly, the exponent corrections ∆i are calculated with

∆i = − 1

Nd
i
Ds

i

Dd
i
+ Ns

i

. (3.14)
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3.1.3 Optimizing the center-positions of s-type GTOs

Next, to evaluate the center-position corrections δi, as the last step of our optimization
scheme, we represent the wave function of the systems as a superposition of exponent-
updated s-type GTOs with slightly shifted center-positions ri + δi

ψ(r) =
N∑
i=1

DiGs
i (r, ri + δi, αi). (3.15)

First-order Taylor expansion of Gs
i (r, ri + δi, αi) around the center-position correction δi

leads to a linear combination of one s-type GTO Gs
i (r, ri, αi), and a set of functions which

can be written as the p-type GTOs Gp
i (r, ri, αi) along the x, y, and z coordinates,

Gs
i (r, ri + δi, αi) = Gs

i (r, ri, αi) + Np
i

∑
j=x,y,z

δjiG
pj
i (r, ri, αi). (3.16)

Accordingly, substituting Eq. (3.16) in Eq. (3.15), the wave function becomes a superposition
of 4N GTOs consisting of N s-type and 3N p-type GTOs,

ψ(r) =
N∑
i=1

Ds
iGs

i (r, ri, αi) +
2N∑

i=N+1

Dpx
i Gpx

i (r, ri, αi)

+
3N∑

i=2N+1

D
py
i Gpy

i (r, ri, αi) +
4N∑

i=3N+1

Dpz
i Gpz

i (r, ri, αi),

(3.17)

where Ds
i = Di, and Dpj

i = DiNp
i δ

j
i . For the normalized and the unnormalized GTOs we

respectively get
Np

i =
√
αi, (3.18)

Np
i = 2αi. (3.19)
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Employing Appendix C, we evaluate the Hamiltonian (H) and the overlap (Ω) matrix
elements over s- and p-type GTOs. Subsequently, solving the GEVP of the Schrödinger
equation gives us the coefficients Ds

i , D
px
i , Dpy

i and Dpz
i . Then, we compute the center-
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position corrections δji using

δji =
D

pj
i

Np
iD

s
i

. (3.20)

3.1.4 Handling large corrections

As we truncate the Taylor expansion after the first order in Eqs. (3.10), and (3.16), the
coefficients Dd

i , and Dpj
i should be much smaller than their corresponding coefficients Ds

i to
ensure reasonable exponent corrections ∆i, and center-position corrections δji . Otherwise,
the corrections might get too large and bring about numerical problems. Updating exponents
and center-positions of GTOs, to tame possible numerical issues that primarily take place in
the time-dependent scenarios, we apply an adapted percentage (hα, hr ≤ 1) of the computed
exponent ∆i and center-position δi corrections

αi = αi + hα∆i, (3.21a)

ri = ri + hrδi. (3.21b)
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3.2 Systems of interest

In this section, we will see how our optimization approach performs in finding the optimum
configuration of minimal grids of s-type GTOs which accurately represent electronic state
wave functions of the following 1D and 3D systems: 1D harmonic oscillator (Sec. 3.2.1),
1D Morse Potential (Sec. 3.2.2), 1D Hydrogen atom with soft-core potential (Sec. 3.2.3),
1D Hydrogen molecular ion H+

2 with soft-core potential (Sec. 3.2.4), 3D Hydrogen atom
(Sec. 3.2.5), and 3D Hydrogen molecular ion H+

2 (Sec. 3.2.6).
Here, s-type GTOs are initially distributed equidistantly along the x axis between −Xmax

and +Xmax with initial α = αini. Moreover, the correction parameters hα = hx are equal to
one everywhere unless mentioned otherwise.

3.2.1 1D harmonic oscillator

We begin with the simplest system, the 1D harmonic oscillator

H = −1

2

d2

dx2
+

1

2
kx2, (3.22a)

Em =

(
m+

1

2

)
ω, (3.22b)

ψm(x) =
1√
2mm!

(ω
π

)1/4
e−

ωx2

2 Hm

(√
ωx
)
, (3.22c)

with eigenenergies Em, and eigenfunctions ψm. From the Hermite polynomials,

Hm(x) = (−1)mex
2 dm

dxm

(
e−x2

)
, (3.23)

the exact ground state wave-function ψ0(x) is easily verified to be a single s-type Gaussian.
We consider the oscillator angular frequency ω =

√
k = 1.

First, by optimizing s-type GTOs with respect to the ground state of the 1D harmonic
oscillator, using the associated coefficients Di for determining the corrections, we have
examined how many s-type GTOs are needed to reach the accuracy of 10−10 for all the first
five electronic energies of the system. Details are reported in Table 3.1.

As explained in Table 3.1, expectedly, just N = 1 optimized s-type GTO is sufficient to
get a highly accurate energy for the ground state while after the full optimization, allowing
the single Gaussian to move, it still stays at x = 0. Note that only N = 9 optimized s-type
GTOs are needed to reach an accuracy of 10−11 for the first three electronic states, whereas
using the equidistant GTOs, as reported in [83], N = 241 s-type GTOs were necessary to
reach the same accuracy. Based on our investigation, to obtain an accuracy of 10−10 for the
first five electronic states, N = 19 optimized s-type GTOs are needed.

For N = 15, and N = 19 we have used the position correction parameters hx = 0.6,
and hx = 0.5, respectively.
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Table 3.1 1D harmonic oscillator: the ground state is represented by optimizing up to N = 19 s-type GTOs
(distributed equidistantly between −Xmax and Xmax with initial α = αini). The relative errors RE for the first
five Eigenenergies Ei of the system are also listed. The fourth column gives the relative error for the ground
state energies corresponding to the initial unoptimized basis sets. The fifth column provides the number
of optimization iterations. The last column presents the computation time of each optimization procedure
(performed on a Core i7-9700 Linux workstation).

N αini Xmax Initial RE(E0) no. iter RE(E0) RE(E1) RE(E2) RE(E3) RE(E4) time (s)

1 1.0 0.0 2.5× 10−1 6 2.2× 10−16 4.9× 10−5 1 1 1 0.051
3 1.0 2.5 2.3× 10−1 8 0.0∗ 1.9× 10−4 2.4× 10−5 1 1 0.052
5 1.0 2.5 1.0× 10−2 8 2.2× 10−16 7.4× 10−5 2.3× 10−6 1.3× 10−2 4.2× 10−3 0.052
7 2.0 2.5 1.4× 10−3 12 2.2× 10−16 1.5× 10−7 1.0× 10−8 3.0× 10−5 2.2× 10−6 0.055
9 3.0 2.5 1.4× 10−4 12 1.7× 10−15 5.1× 10−11 1.2× 10−11 1.3× 10−9 1.2× 10−7 0.058

11 3.0 3.0 3.7× 10−5 14 0.0∗ 4.7× 10−12 1.4× 10−11 1.5× 10−9 4.2× 10−9 0.062
13 3.0 3.5 1.6× 10−5 10 1.1× 10−16 6.9× 10−14 2.7× 10−12 1.1× 10−10 3.8× 10−9 0.060
15 3.0 4.0 8.5× 10−6 12 3.3× 10−15 1.1× 10−13 1.9× 10−12 5.4× 10−11 9.8× 10−10 0.062
17 3.0 4.0 6.5× 10−8 7 1.9× 10−15 8.1× 10−14 7.0× 10−13 2.3× 10−11 6.7× 10−10 0.072
19 3.0 4.5 6.5× 10−8 7 9.9× 10−16 4.5× 10−13 1.3× 10−12 1.8× 10−11 2.6× 10−10 0.076

∗ RE = 0.0 means that the double precision machine accuracy is reached.

In Fig. 3.2 (a)-(c), we have plotted the initial and optimum configurations of s-type GTOs
and their corresponding probability densities for N = 5, N = 9, and N = 19, respectively.
In these figures, the left vertical axis is related to the ground state probability densities and
the potential function, whereas the right vertical axis corresponds to the exponents of s-type
GTOs. Furthermore, the error bars outline the coefficients |Di|, i.e., the contribution of
s-type GTOs in the wave function.

In Fig. 3.2 (a)-(c), the s-type GTOs located at the two ends of the optimized configurations
do not represent the ground state wave function as their contributions to the ground state
wave function are negligible. These s-type GTOs are essential for representing higher
electronic state wave functions with a high precision. As one can conclude from the length
of error bars, the middle ones, on the other hand, have the main contribution in describing
the ground state wave function.

Moreover, for the mentioned grids of s-type GTOs, the iterative optimization procedures
are delineated, respectively in Fig. 3.3 (a)-(c). In Figs. 3.2 and 3.3, it is worthwhile to note
that both of the optimized center positions and the optimized exponents keep the symmetry
x→ −x during all optimization iterations. This symmetry is required by the potential. As
can be seen in Fig. 3.3 (a) and (c), although the exponents of some of the s-type GTOs tend
to increase in the first iteration, all of them end up having close exponents. Besides, the
center-positions of s-type GTOs get closer to each other at the end.

Additionally, in Fig. 3.4 (a)-(c), we have depicted the resulting relative error convergence
for the first five electronic state energies versus the number of optimization iterations. One
can note in Fig. 3.4 (a)-(c) how our optimization approach substantially improves the
accuracy of the first five electronic state energies in just a few iterations.
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Figure 3.2 1D harmonic oscillator: initial (the blue-colored circles) versus optimum (the
orange-colored diamonds) configurations of (a) N = 5, (b) N = 9, and (c) N = 19 s-type
GTOs and their corresponding ground state probability densities. The left vertical axis
corresponds to the probability densities as well as the potential function, while the right
vertical axis is related to the exponents of s-type GTOs. Error bars depict the ground state
associated coefficients |Di|. The black, the blue, the orange, and the thick green lines show
the potential shape, the initial probability density, the optimum probability density, and the
exact probability density, respectively.
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Figure 3.3 1D harmonic oscillator: the center-positions xi, and the exponents αi of (a)
N = 5, (b) N = 9, and (c) N = 19 s-type GTOs that are iteratively optimized with respect
to the ground state energy.
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Figure 3.4 1D harmonic oscillator: the relative error of the first five electronic state
energies are iteratively improved optimizing (a) N = 5, (b) N = 9, and (c) N = 19 s-type
GTOs with respect to the ground state.
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Figure 3.5 1D harmonic oscillator: (a) N = 4 equidistant s-type GTOs (blue-colored) are
iteratively optimized (orange-colored) to specifically represent the first excited state wave
function with a high precision. This figure shares similar properties as Fig. 3.2. (b) Iterative
optimization of the center-positions xi, and the exponents αi. (c) The resulting relative error
for the first excited state energy during the iterative optimization procedure.
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Next, by optimizing s-type GTOs with respect to the first excited state, we show that
N = 4 s-type GTOs are adequate for obtaining an accuracy better than 10−12 exclusively
for the first excited state of the system. We have plotted in Fig. 3.5 (a), the initial and
optimum configurations, their associated probability densities, and the potential shape,
wherein error bars indicate the coefficients |Di|. In addition, the iterative optimization
procedure is depicted in Fig. 3.5 (b), while the relative error convergence of the first excited
state energy is portrayed in Fig. 3.5 (c). For the first excited state, there is no need having a
GTO on the center in the initial configuration. After the full optimization, none of the GTOs
would end up around the center as well. As it is shown in Fig. 3.5 (a), this is simply because
the first excited excited state wave function is zero on the center. In addition, the significant
improvement of the first excited energy after 1200 iterations is noticeable in From Fig. 3.5
(c). We can conclude that the more s-type GTOs used the fewer number of iterations are
needed for getting a comparable accuracy.

For the harmonic oscillator, no matter which electronic state is used for the optimization
procedure, the optimum configuration is symmetric. i.e. the GTOs centered at opposite
positions end up having the same exponents.

3.2.2 1D Morse Potential

In the next step, we apply our optimization algorithm to the 1D Morse oscillator

H = −1

2

d2

dx2
+De(1− e−ax)2, (3.24a)

Em = a
√

2De(m+
1

2
)− 1

2
a2(m+

1

2
)2. (3.24b)

Since this anharmonic potential explicitly includes the effects of bond breaking, in
comparison with the quantum harmonic oscillator, it provides a better approximation for
the vibrational structure of a diatomic molecule. The exact energies are given by Em. Here,
similar to [84], we have considered De = 150 (a.u.), and a = 0.288 (a.u.).

As depicted in Figs. 3.6 (a) and (b), we initially distribute N = 5 s-type GTOs equidis-
tantly along the x axis with Xmax = 2.0, and αini = 3.0. This configuration produces a
relative error of 1.53× 10−2 for the ground state energy. As it is shown in Fig 3.6 (c), after
optimizing the Gaussian basis set in 122 iterations, our procedure obtains the optimum
configuration with a relative error better than 10−10 for the ground state energy. Since the
Morse potential is not symmetric, in contrast to the quantum harmonic oscillator, the final
configuration is also found to be not symmetric. As it can be seen in Fig. 3.6 (b), exponents
of some GTOs are sharply increased during the first iterations. That is mainly due to the fact
that the coefficients Di associated with the s-type GTOs get much smaller than their auxiliary
d-type counterparts. However, they ultimately find their best values as the center-positions
are optimized.
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Figure 3.6 1D Morse oscillator: N = 5 equidistant s-type GTOs (blue-colored) are
iteratively optimized (orange-colored) to accurately represent the ground state wave function.
This figure shares similar properties as Fig. 3.2. (b) Iterative optimization of the center
positions xi, and the exponents αi. (c) The resulting relative error for the ground state energy
during the iterative optimization procedure.
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3.2.3 1D Hydrogen atom with a soft-core potential

Now, we apply our optimization procedure to obtain a highly accurate ground state energy
for the Hydrogen atom modeled by the following 1D soft-core Hamiltonian

H = −1

2

d2

dx2
− 1√

x2 + 2
, (3.25a)

ψ0(x) = 0.9748
(
1 +

√
x2 + 2

)
e−

√
x2+2[85], (3.25b)

which gives rise to the exact 3D ground state energy (E0 = −0.5 a.u.).

For this system, in Figs. 3.8, 3.9 and 3.7, and Table 3.2, we show that our algorithm
optimizes s-type GTOs no matter if the initial configuration is atomic-centered (even-
tempered: xi = 0, αi = αiniγ

ki , ki = −n−1
2
, · · · , n−1

2
, αini = 0.35, and γ = 2) or

equidistantly distributed (αini = 5.0, and Xmax = 5.0).

Table 3.2 1D Hydrogen atom with a soft-core potential: representing the
ground state by atomic and distributed s-type GTOs.

Configuration hα hx Initial RE(E0) Optimum RE(E0) no. iter

9 Atomic 0.5 0.5 1.08× 10−9 8.67× 10−13 7
9 Distributed 0.5 0.5 1.74× 10−1 1.49× 10−8 247

19 Distributed 0.5 0.5 2.10× 10−3 3.14× 10−13 204
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Figure 3.7 1D Hydrogen atom: iterative improvement of the ground state energy using
(a) N = 9 atomic-centered (even-tempered), (b) N = 9 equidistantly distributed, and (c)
N = 19 equidistantly distributed s-type GTOs being optimized with respect to the ground
state.
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Figure 3.8 1D Hydrogen atom: (a) N = 9 atomic-centered (even-tempered), (b) N = 9
equidistantly distributed, and (c) N = 19 equidistantly distributed s-type GTOs (blue-
colored) are iteratively optimized (orange-colored) to accurately represent the ground state
wave function. These figures share similar properties as Fig. 3.2.
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Figure 3.9 1D Hydrogen atom: the center-positions xi, and the exponents αi of (a) N = 9
atomic-centered (even-tempered), (b) N = 9 equidistantly distributed, and (c) N = 19
equidistantly distributed s-type GTOs that are iteratively optimized with respect to the
ground state energy.
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Atomic-centered s-type GTOs are found to be superior for representing the Hydrogen
atom. Note from Table 3.2 and Fig. 3.7 that in contrast to the distributed GTOs, even
the initial unoptimized atomic-centered s-type GTOs lead to a rather accurate ground state
energy. As the exponents of the atomic (even-tempered) GTOs are defined by a geometric
series [86], there is less chance of getting high overlap between the GTOs, and consequently,
it is less likely to encounter linear dependency problems. Hence, the atomic-centered s-type
GTOs are optimized more simply and quickly. Moreover, as shown in Figs. 3.8 (a) and
3.9 (a), while they remain at the center even after the full optimization, N = 9 atomic
GTOs lead to the relative error of 8.67 × 10−13 for the ground state energy. Optimizing
the same number of equidistantly distributed GTOs (with the same initial exponents), as
depicted in Figs. 3.8 (b) and 3.9 (b), conceivably due to the linear dependency issues, we
did not reach a relative error better than 1.49× 10−8. It might be reasonable to expect our
optimization method to guide the initial distribution of N = 9 s-type GTOs similar to the
atomic ones and hence to fill the vertical gap between their optimum ground state energies,
the diamonds at the end of the red and the blue lines in Fig. 3.7. However, since we have
chosen the initial distribution the simplest possible, i.e., equidistantly, the s-type GTOs
become linear dependent as the GTOs with the opposite center-positions get too close to
each other. Consequently, it is impossible to have a similar final configuration compared to
the atomic ones. By choosing the initial distribution more elegantly and providing the initial
configuration to be non-symmetric, one can avoid the possible numerical issues. Then by
employing the same number of distributed s-type GTOs, one can obtain the same accuracy
as the atomic ones. Nevertheless, the optimization of atomic s-type GTOs is considerably
faster and is done in fewer iterations.To get a comparable accuracy to that of atomic GTOs,
we had to use N = 19 distributed s-type GTOs (Figs. 3.8 (c) and 3.9 (c)) in the simulation.
As it can be observed in Fig. 3.7, our optimization algorithm increases the accuracy of
distributed GTOs by ten orders of magnitude for N = 19 and nine orders of magnitude for
N = 9. In addition, one can note in Fig. 3.9 (a) - (c) that the exponents of some of the
s-type GTOs increase in the first few iterations. However, they all follow a falling trend to
the end of the optimization procedure. At the same time, the optimized s-type GTOs locate
more densely. Similar to the 1D harmonic oscillator, the final configurations of s-type GTOs
which represent the 1D Hydrogen atom ground state found to be symmetric.

3.2.4 1D Hydrogen molecular ion with a soft-core potential

As the last and more complex 1D system, we apply our optimization algorithm to accurately
compute the ground state energy (with a relative error better than 1.0 × 10−10) of the
Hydrogen molecular ion H+

2 at different internuclear distances. This system is modeled by
considering the following 1D soft-core Hamiltonian
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H = −1

2

d2

dx2
− 1√

(x− R
2
)2 + 2

− 1√
(x+ R

2
)2 + 2

+
1

R
. (3.26)

Table 3.3 1D Hydrogen molecular ion H+
2 with a soft-core potential: the

ground state is represented by equidistantly distributed s-type GTOs at five
different internuclear distances.

R (a.u.) N αini Xmax Initial RE(E0) Optimum RE(E0) no. iter

1.0 14 3.0 5.0 3.22× 10−2 9.97× 10−11 140
2.0 15 3.0 5.0 8.87× 10−4 9.91× 10−11 16
4.0 17 3.0 6.0 1.59× 10−3 9.66× 10−11 11
8.0 22 5.0 8.0 1.65× 10−1 9.15× 10−11 34

16.0 26 3.1 16.0 1.01× 100 9.98× 10−11 771
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N = 14, R = 1.0 a.u.

N = 15, R = 2.0 a.u.

N = 17, R = 4.0 a.u.

N = 22, R = 8.0 a.u.

N = 26, R = 16.0 a.u.

Figure 3.10 1D Hydrogen molecular ion H+
2 : iterative enhancement of the ground state

energy at different internuclear distances R = 1.0, 2.0, 4.0, 8.0 and 16.0 a.u.), respectively
using N = 14, N = 15, N = 17 , N = 22, and N = 26 equidistantly distributed s-type
GTOs which are optimized with respect to the ground state.

In Fig. 3.10, we have plotted of the ground state energy relative error of H+
2 at different

internuclear distances R = 1.0, 2.0, 4.0, 8.0 and 16.0 (a.u.). Technical details are reported in
Table 3.3. The reference values for the ground state energy of H+

2 at different internuclear
distances are calculated using the Numerov method [32]. As it is evident in Fig. 3.10, and
Table 3.3, starting from equidistantly distributions of s-type GTOs (with the same initial
exponents), our optimization procedure brings about substantial accuracy improvements for
different internuclear distances. Moreover, in Fig. 3.11 (a)-(e), for five different internuclear
distances: (a) R = 1.0 a.u., (b) R = 2.0 a.u., (c) R = 4.0 a.u., (d) R = 8.0 a.u., and (e)
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R = 16.0 a.u., we have plotted the initial and optimum configurations of s-type GTOs,
their corresponding probability densities, and the potential shapes. The bond between two
Hydrogen atoms becomes weaker while the internuclear distance increases. In contrast to the
lower internuclear distances in Fig. 3.11 (a)-(d), at the high internuclear distance R = 16.0

a.u. delineated in Fig. 3.11 (e) it is not necessary anymore to have s-type GTOs around the
central part as the bond between the two Hydrogen atoms is pretty weak. Interestingly, the
s-type GTOs representing the system’s ground state at the internuclear distance R = 16 a.u.
intelligently gather around the potential centers that are the most critical physical regions to
cover. Expectedly, at high internuclear distances, the ground state energy tends to the ground
state energy of the Hydrogen atom (E0 = −0.5 a.u.).

In addition, for the depicted grids of s-type GTOs, the iterative optimization procedure
for the center-positions xi and exponents αi are delineated in Fig. 3.12 (a)-(e). As we
expected, all of the optimized configurations of s-type GTOs are found to be symmetric.
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Figure 3.11 1D Hydrogen molecular ion H+
2 : initial (the blue-colored circles) equidistantly

distributed s-type GTOs are optimized (the orange-colored diamonds) to accurately represent
the ground state wave function at five different internuclear distances using a 1D soft-core
potential. (a) R = 1.0 a.u. with N = 14 GTOs, (b) R = 2.0 a.u. with N = 15 GTOs, (c)
R = 4.0 a.u. with N = 17 GTOs, (d) R = 8.0 a.u. with N = 22 GTOs, and (e) R = 16.0
a.u. with N = 26 GTOs. The properties of these figures are similar to those of Fig. 3.2.
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Figure 3.12 1D Hydrogen molecular ion H+
2 : the iterative optimization procedure of

the center-positions xi, and the exponents αi of (a) N = 14, (b) N = 15, (c) N = 17 , (d)
N = 22, and (e) N = 26 equidistantly distributed s-type GTO, receptively representing the
ground state at R = 1.0, R = 2.0, R = 4.0, R = 8.0, and R = 16.0 a.u.

3.2.5 3D Hydrogen atom

As the first 3D system that we looked into, we applied our optimization approach for precisely
representing the ground state wave function of the 3D Hydrogen atom. For this system
(please see Appendix C), one needs to calculate matrix elements of the 3D Hamiltonian,
H = −1

2
∇2 − 1

|r| , as well as those of the 3D overlap operators over 3D s-type and our
auxiliary 3D d-type GTOs (for exponent optimizations), and over 3D s-type and auxiliary 3D
p-type GTOs (for center-position optimizations). For the matrix elements of the Coulombic
potential, as explained in in Appendix C, the first five orders of the Boys function, Eq. (B.15),
should be evaluated. However, for the distributed GTOs, it was not feasible to obtain them
with a high accuracy for all the center-positions, and consequently the accuracy that we can
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get using distributed GTOs is limited .

For 3D Hydrogen atom, we will discuss the performance of our algorithm regarding
the optimization of different configurations of s-type GTOs with respect to the ground state
energy of the system: first for atomic-centered (even-tempered) GTOs, then for distributed
GTOs, and last for a combination of atomic-centered and distributed GTOs.

To initially assign different exponents to NA atomic-centered s-type GTOs positioned
on the center, we use the geometric series, αk = α0γ

k, where −NA−1
2

≤ k ≤ NA−1
2

is used
for configurations that have only atomic-centered GTOs, and k = 1, · · · , NA is considered
when we employ a combination of atomic-centered and distributed GTOs.

Table 3.4 3D Hydrogen atom: optimizing atomic-
centered (even-tempered) s-type GTOs to accurately repre-
sent the ground state wave function.

N γ Initial RE(E0) Optimum RE(E0) no. iter

3 5.0 2.00× 10−2 6.04× 10−3 45
5 5.0 4.70× 10−3 3.80× 10−4 59
7 5.0 2.84× 10−3 3.34× 10−5 72
9 5.0 2.68× 10−3 3.72× 10−6 81

11 5.0 2.66× 10−3 4.98× 10−7 90
13 4.0 6.88× 10−4 7.66× 10−8 93
15 4.0 6.87× 10−4 1.32× 10−8 92
17 3.5 2.30× 10−4 2.50× 10−9 91
19 3.0 4.24× 10−5 5.15× 10−10 100
21 3.0 4.23× 10−5 1.13× 10−10 84
23 2.8 1.57× 10−5 9.08× 10−11 35

In the first part, for the atomic-centered s-type GTOs, we used α0 = 8
9π

which is
analytically obtainable optimizing a single s-type GTO representing the system (please refer
to Sec. C.2.8 for more details).

Employing only atomic-centered GTOs, as what we have already witnessed for the 1D
case (in Table 3.2 and Fig. 3.7), expectedly we obtain highly accurate results for the ground
state energy quickly in less than 100 optimization iterations. As another proof for the fact
that atomic-centered GTOs are the best for representing the ground state of the Hydrogen
atom, all of the optimized atomic-centered GTOs remain at the center while their exponents
change.
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Figure 3.13 3D Hydrogen atom: iterative enhancement of the ground state energy using
up to N = 23 atomic-centered (even-tempered) s-type GTOs being optimized with respect
to the ground state. Circles and diamonds respectively denote the initial and the optimum
configurations.
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Figure 3.14 3D Hydrogen atom: ground state energy relative errors associated with the
initial (even-tempered: the blue-colored circles) and optimum (the red-colored diamonds)
configurations of atomic-centered s-type GTOs vs. the number of GTOs.

From Table 3.4, and Figs. 3.13 and 3.14, one can deduce that more than N = 20 atomic-
centered GTOs should be optimized to reach the desired accuracy of 1.0× 10−10, while as
reported in [87], employing the same α0 and with γ = 2.0, N = 51 unoptimized atomic-
centered GTOs are required to get a comparable accuracy. It is also comprehensible that the
initial ground state energy associated with the unoptimized configurations of atomic-centered
s-type GTOs are considerably improved after the optimization procedure.

In the next step, we have examined how our approach performs in optimizing ND

distributed s-type GTOs and their combination with NA atomic-centered s-type GTOs.
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Details are listed in Table 3.5. As can be seen in Table 3.5 and the red-colored line in Fig.
3.15, optimizing onlyND = 27 distributed GTOs, we quickly reach the accuracy 7.99×10−5

for the ground state energy of 3D Hydrogen atom, while as reported in [87], to reach a
comparable accuracy, a combination of ND = 125 distributed and NA = 30 atomic-centered
s-type GTOs is necessary.

Table 3.5 3D Hydrogen atom: optimizing a combination of NA atomic-centered (even-tempered with α0 = αini)
and ND equidistantly distributed s-type GTOs (between −Xmax and Xmax) to accurately represent the ground state
wave function.

Approach NA ND N γ αini Xmax RE(Eini
0 ) RE(Eopt

0 ) no. iter time(s)

LCDAO ∗ 30 5× 5× 5 155 2 8/9π 3.1457 9.48× 10−5 - - -
LCDAO ∗ 30 13× 13× 13 2227 2 8/9π 9.4373 2.20× 10−7 - - -

Optimized 0 3× 3× 3 27 - 0.2 3.0 1.61× 10−1 7.99× 10−5 980 10.72
Optimized 12 3× 3× 3 39 3.0 0.2 3.0 2.18× 10−4 4.99× 10−8 332 6.83

∗ LCDAO: Linear combination of distributed and atomic orbitals reported in [87].

In the same work [87], increasing the number of distributed s-type GTOs to ND = 2197,
an accuracy of 2.20× 10−7 was achieved. In contrast, we do not need to include such high
numbers of s-type GTOs into the simulation in order to get higher precisions. Adding only
NA = 12 atomic-centered s-type GTOs to our minimal distributed basis set (ND = 27), as
the blue-colored line in Figure 3.15 shows, our optimization approach leads much faster to the
accuracy of 4.99× 10−8. As we already discussed, atomic-centered GTOs are necessary for
obtaining high accuracies. It is not feasible to reach higher accuracies employing distributed
s-type GTOs in that continuous evaluation of the higher orders of Boys functions is not
accurately doable for all GTOs positions.
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Figure 3.15 3D Hydrogen atom: iterative improvement of the ground state energy em-
ploying ND = 3 × 3 × 3 distributed s-type GTOs (red-colored) and a combination of
ND = 3 × 3 × 3 distributed s-type GTOs and NA = 12 atomic-centered s-type GTOs
(blue-colored) which are optimized with respect to the ground state. Circles and diamonds,
respectively, indicate the initial and the optimum configurations.
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Figure 3.16 3D Hydrogen atom: the ground state wave function is represented by su-
perposing ND = 3 × 3 × 3 distributed GTOs. Circles show the initial configuration and
the diamonds portray the optimum configuration. The color map indicates the normalized
coefficients |Di| associated with the initial and the optimum configurations. The right hand
side figure is the enlargement of the central part.
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Figure 3.17 3D Hydrogen atom: the ground state wave function is represented by super-
posing ND = 3× 3× 3 distributed s-type GTOs and NA = 12 atomic-centered ones. This
figure shares the same properties as Fig. 3.16 .

In addition, in Figs. 3.16, and 3.17 , respectively, we have depicted the initial and
optimum configurations associated with only ND = 27 distributed s-type GTOs and their
combination with NA = 12 atomic-centered s-type GTOs. The color map indicates the
normalized coefficients |Di| which show to what extent each GTO contributes into the wave
function. It can be seen from Fig. 3.16 that the optimally distributed s-type GTOs (diamonds)
gather ultimately around the origin where they are needed most. On the contrary, as can be
seen in Fig. 3.17, having NA = 12 atomic-centered s-type GTOs, there is no more need for
distributed GTOs to gather around the center. In both Figures, it can also be verified that the
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ones located on or around the center have the highest contributions in representing the wave
function.

For the combination case, we used the correction parameters hα = hr = 0.5 .

3.2.6 3D Hydrogen molecular ion

As the last system that we discuss in this chapter, to represent the ground state wave function
of the 3D Hydrogen molecular ion H+

2 , H = −1
2
∇2− 1

|r−R1|−
1

|r−R2|+
1
R

, at the internuclear
distance R = |R2 −R1| = 2.0 a.u., we have applied our approach for optimizing a minimal
basis set of N = 3× 3× 3 = 27 distributed s-type GTOs.

Table 3.6 3D Hydrogen molecular ion at R = 2.0 a.u.: comparison of the relative error of the
ground state energy obtained in this work optimizing a total of 27 distributed s-type GTOs and
another approach which employs a high number of unoptimized s-type GTOs in combination
with a set of higher-order atomic ones.

Approach N type Atomic N type Distributed N RE(E0)∗

LCDAO∗∗ 2× (30s) 9s × 9s × 21s 1761 3.68× 10−3

LCDAO∗∗ 2× (30s + 10p) 9s × 9s × 21s 1821 2.53× 10−4

LCDAO∗∗ 2× (30s + 10p + 5d) 9s × 9s × 21s 1881 5.898× 10−6

v6z: MOLPRO∗∗∗ 6s + 5p + 4d + 3f + 2g + 1h 0 182 3.52× 10−6

Optimized 0 3s × 3s × 3s 27 3.49× 10−6

∗ Relative errors are computed using the most recent and accurate reported value [88].
∗∗ LCDAO: Linear combination of distributed and atomic orbitals reported in [87].
∗∗∗ v6z: MOLPRO: used as the reference in [87].

In Table 3.6, we have compared our results with two other approaches that use GTOs
as basis functions. Note the considerable differences in the number and types of the GTOs
used in the different approaches. Optimizing only ND = 27 distributed s-type GTOs, we
reach an accuracy better than those of the other mentioned approaches. In Fig. 3.18, we
have depicted how the relative error of the ground state energy decreases starting from
2.25 × 10−1. The best accuracy from the LCDAO approach reported in [87], is obtained
employing ND = 1701 equidistantly distributed s-type GTOs in combination with not only
s-type atomic centered GTOs, but also p-type, and d-type ones. In the same work, the used
reference value was obtained from the MOLPRO program package employing up to h-type
GTOs.
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Figure 3.18 3D Hydrogen molecular ion: iterative optimization of the ground state energy
employing ND = 3 × 3 × 3 distributed s-type GTOs being optimized with respect to
the ground state. Circles and diamonds respectively denote the initial and the optimum
configurations.
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Figure 3.19 3D Hydrogen molecular ion: ground state wave function is represented by
superposing ND = 3× 3× 3 distributed GTOs. This figure shares the same properties as
Fig. 3.16.

In Fig. 3.19, we have plotted the initial and optimum configurations of ND = 3 × 3

distributed s-type GTOs. As can be seen in the magnified figure on the right, the used s-type
GTOs end up in the most critical physical regions, i.e., around the origin and the positions of
the two nuclei. Similar to 1D case depicted in Fig. 3.11 (b), at the investigated internuclear
distance R = 2.0 a.u., the two atoms are strongly bonded. Hence, we need to have s-type
GTOs around the two nuclei and on the central part. As before, the color map denotes the
normalized coefficients |Di|, showing the contribution of each GTO in the wave function.
For this part, we set the correction parameters hα = hr = 0.1 .



4 Moving Gaussian basis sets for
time-dependent problems

In this chapter, we will use our optimization procedure for the time evolution of the wave
function employing 1D s-type GTOs. First, in Sec. 4.1, we explain in detail how the wave
function time evolution is done on the basis of 1D s-type GTOs. In addition, in Sec. 4.1.1 we
point out how the s-type GTOs are optimized at each time step. In Sec. 4.1.2, we describe
how we compute the auto-correlation function. Next, in Sec. 4.2, as an initial performance
assessment of our time-dependent optimization algorithm, we apply the time evolution
optimization process on two eigenstates (the ground state and the second excited state) of
the 1D harmonic oscillator. Moreover, shifting the initial wave functions to the left along the
x axis, we assess the optimized s-type GTOs representing two new wave functions that are
not eigenstates of the system anymore.

Ultimately, in Sec. 4.3, we implement our time-dependent optimization approach for
studying the HHG spectra in two 1D laser-induced systems: the 1D Hydrogen atom (Sec.
4.3.1), and the 1D ionized Hydrogen molecule (Sec. 4.3.2).

Here, all of the reference results are obtained using the split-step Fourier method (SSFM)
[89]. In addition, the time step dt = 0.1 (a.u.) is used everywhere for the time evolution
process unless mentioned otherwise.

4.1 Theory: time evolution of the wave-function

The initial wave function |ψ(t)⟩, which is accurately represented by an optimized grid of the
s-type GTOs, is propagated in real-time using the time-evolution operator, e−iH∆t, to get the
time evolved wave function

|ψ(t+∆t)⟩ = e−iH∆t |ψ(t)⟩ = e−iH∆t

N∑
i=1

Dst
i |Gst

i ⟩ , (4.1)

where

Dst
i =

N∑
j=1

Ωstst−1

ij Cst
j , Cst

j =
〈
Gst
j

∣∣ψ(t)〉 . (4.2)

54
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Strang splitting the time evolution operator [90]

e−iH∆t ≈ e−
1
2
iV∆te−iT∆te−

1
2
iV∆t +O

(
∆t3
)
, (4.3)

inserting the position space identity
∫∞
−∞ dx |x⟩ ⟨x| twice, and the momentum space unity∫∞

−∞ dp |p⟩ ⟨p| once, and using ⟨x|p⟩ = 1√
2π
eipx, from Eq. (4.1), it is straightforward to get

|ψ(t+∆t)⟩ ≈
N∑
i=1

Dst
i

∫ ∞

−∞
dx′′ |x′′⟩ e− iV(x′′)∆t

2
1√
2π

∫ ∞

−∞
dp′e−

ip′
2
∆t

2 eip
′x′′×

1√
2π

∫ ∞

−∞
dx′e−

iV(x′)∆t
2 e−ip′x′Gst

i (x′).

(4.4)

Taylor expanding V(x′) up to the second order around the real part of the s-type GTOs
center-positions and reordering its terms, one can verify that

e−
iV(x′)∆t

2 = e−cie−ai(x
′−bi)

2

, (4.5)

where

ai =
i∆t

4

d2V(x′)

dx′2
|x′=R(xi), (4.6a)

bi = R(xi)−
dV(x′)
dx′ |x′=R(xi)

d2V(x′)

dx′2 |x′=R(xi)

, (4.6b)

ci =
i∆t

2

V(R(xi))−

(
dV(x′)
dx′ |x′=R(xi)

)2
2d2V(x′)

dx′2 |x′=R(xi)

. (4.6c)

Substituting Gst
i (x′) = e−α

st
i (x′−x

st
i )

2

in Eq. (4.4), and utilizing the Gaussian product rule,
Eq. (3.2), and the Gaussian integral, Eq. (C.9), it is straightforward to get

|ψ(t+∆t)⟩ ≈
N∑
i=1

Dst
i

(
a′

γ

)1/2

A
∫ ∞

−∞
dx′′ |x′′⟩ e− iV(x′′)∆t

2 e−a′(x′′−b′)2 , (4.7)

where

γ = ai + αst
i , (4.8a)

β =
aiα

st
i

γ
, (4.8b)

b′ =
aibi + αst

i x
st
i

γ
, (4.8c)

a′ =
γ

1 + 2iγ∆t
, (4.8d)

A = e−cie−β(bi−xi))
2

. (4.8e)
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To simplify the mathematical identities in Eq. (4.8), and the upcoming Eqs. (4.10), and
(4.14), we have eliminated the sub-indices for the left hand side variables. The wave function
at the new time step, |ψ(t+∆t)⟩, can be represented as a superposition of the same s-type
GTOs representing the wave function at the previous time step |ψ(t)⟩. In this manner, their
contribution to the wave function, i.e. the coefficients Dst

i get updated through the time
evolution while the exponents, αst

i , and center-positions, xsti , remain unchanged. However,
we know that a low number of s-type GTOs optimized with respect to a time-independent
electronic state would not suffice to get accurate results in the time-dependent process,
especially in the presence of external potentials. Hence, in an iterative procedure, we
consecutively optimize the exponents and the center-positions of s-type GTOs at each time
step. For the sake of simplicity, we fix the number of iterations. Instead, one could keep
performing the optimization process until a certain criterion is met. One criterion can be
the convergence for the expectation value of an observable. As explained in Sec. 4.1.1, for
optimizing the center-positions and the exponents of s-type GTOs, we respectively employ
auxiliary p-type and d-type GTOs.

In a general manner, multiplying Eq. (4.7) from the left to ⟨Gmt
l |, using the unnormalized

1D GTOs from Eq. (3.7), and applying the Gaussian product rule, one can obtain

C
mt+∆t

l ≈
N∑
i=1

Dst
i

(
a′

γ

)1/2

Ae−β′(xst
l

∗−b′)
2
∫ ∞

−∞
dx′′(x′′ − xstl

∗)
m
e−

iV(x′′)∆t
2 e−γ′(x′′−b′′)2 ,

(4.9)
where Cmt+∆t

l = ⟨Gmt
l |ψ(t+∆t)⟩, and

γ′ = αst
l
∗ + a′, (4.10a)

β′ =
αst
l
∗a′

γ′
, (4.10b)

b′′ =
αst
l
∗xstl

∗ + a′b′

γ′
. (4.10c)

Taylor expanding V(x′′) up to the second order around the real part of the remaining
Gaussian center in Eq. (4.9), b′′, and reordering its terms, one can show that

e−
iV(x′′)∆t

2 = e−cb′′e−ab′′ (x
′′−bb′′ )

2

, (4.11)

where

ab′′ =
i∆t

4

d2V(x′′)

dx′′2
|x′′=R(b′′), (4.12a)

bb′′ = R(b′′)−
dV(x′′)
dx′′ |x′′=R(b′′)

d2V(x′′)

dx′′2 |x′′=R(b′′)

, (4.12b)
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cb′′ =
i∆t

2

V(R(b′′))−

(
dV(x′′)
dx′′ |x′′=R(b′′)

)2
2d2V(x′′)

dx′′2 |x′′=R(b′′)

. (4.12c)

Applying the Gaussian product rule leads to

C
mt+∆t

l ≈
N∑
i=1

Dst
i

(
a′

γ

)1/2

AB
∫ ∞

−∞
dx′′(x′′ − xstl

∗)
m
e−γ′′(x′′−b′′′)2 , (4.13)

where

γ′′ = ab′′ + γ′, (4.14a)

β′′ =
ab′′γ

′

γ′′
, (4.14b)

b′′′ =
ab′′bb′′ + γ′b′′

γ′′
, (4.14c)

B = e−β′(xst
l

∗−b′)
2

e−cb′′e−β′′(bb′′−b′′))2 . (4.14d)

Ultimately, employing Eq. (C.9), it is straightforward to obtain the following analytical
expressions, respectively for s-type, p-type and d-type GTOs

C
st+∆t

l ≈
N∑
i=1

Dst
i

(
πa′

γγ′′

)1/2

AB, (4.15a)

C
pt+∆t

l ≈
N∑
i=1

Dst
i (b

′′′ − xstl
∗)

(
πa′

γγ′′

)1/2

AB, (4.15b)

C
dt+∆t

l ≈
N∑
i=1

Dst
i

(
1 + 2γ′′(b′′′ − xstl

∗)
2
)( πa′

4γγ′′3

)1/2

AB. (4.15c)

4.1.1 Time-dependent optimization of s-type GTOs

To optimize the center-positions of s-type GTOs, similar to the optimization process men-
tioned in Sec. 3.1.3, we represent the wave function at each new time step |ψ(t+∆t)⟩
employing N s-type GTOs, |Gst

k ⟩, and N auxiliary p-type GTOs, |Gpt
k ⟩

|ψ(t+∆t)⟩ =
N∑
k=1

Dstpt
k

⊤ |Gstpt
k ⟩ =

N∑
k=1

Dst
k |Gst

k ⟩+
N∑
k=1

Dpt
k |Gpt

i ⟩ , (4.16)

where |Gstpt
k ⟩ = |Gst

k ⟩ ⊕ |Gpt
k ⟩ =

(
|Gst

k ⟩
|Gpt

k ⟩

)
, and Dstpt

k = Dst
k ⊕Dpt

k =

(
Dst

k

Dpt
k

)
. Multiplying

the lth s-type and p-type GTOs as a single vector, ⟨Gstpt
l |, from the left to |ψ(t+∆t)⟩, we
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get the coefficients Cstpt
l

Cstpt
l = ⟨Gstpt

l |ψ(t+∆t)⟩ = ⟨Gst
l |ψ(t+∆t)⟩ ⊕ ⟨Gpt

l |ψ(t+∆t)⟩ = Cst
l ⊕ Cpt

l . (4.17)

The coefficients Cst
l , and Cpt

l are computable employing Eqs. (4.15a), and (4.15b), respec-
tively. In the time-independent optimization procedure, we had to solve the GEVP to obtain
the coefficients Dst

i , and Dpt
i . On the contrary, here we calculate them using Eq. (4.2)

Dstpt
k =

N∑
l=1

Ωstpt−1

kl Cstpt
l = Dst

i ⊕Dpt
i , (4.18)

where, Ωstpt−1 , the inverse of the overlap matrix over s-type, and p-type GTOs is schemat-
ically explained in Sec. 3.1.3. There is no need for evaluating the Hamiltonian matrix
elements over s-type, and p-type GTOs in the time-dependent part. One can compute the
center-positions corrections using Eq. (3.20) after obtaining the Dst

k , and Dpt
k .

Following the same approach explained for optimizing the center-positions (Eqs. 4.16,
4.17, and 4.18), and employing N auxiliary d-type GTOs

∣∣Gdt
〉

instead of N p-type GTOs
|Gpt⟩, one can optimize the exponents of s-type GTOs during the time evolution process as
well.

4.1.2 Auto-correlation function

To calculate the auto-correlation function, A(t) = ⟨ψ(t)|ψ(0)⟩, using the identity operator

of the s-type GTOs, I =
N∑

i,j=1

|Gs
i ⟩Ωss−1

ij

〈
Gs
j

∣∣, twice, one can verify that

A(t) = ⟨ψ(t)|ψ(0)⟩ =
N∑

j,k=1

Ωsts0
jk D

s∗t
j D

s0
k , (4.19)

where, with the help of Eq. (4.2), we have

D
s∗t
j =

N∑
i=1

C
s∗t
i Ωstst−1

ij , C
s∗t
i = ⟨ψ(t)|Gst

i ⟩ , (4.20a)

Ds0
k =

N∑
l=1

Cs0
l Ωs0s0−1

kl , Cs0
l = ⟨Gs0

l |ψ(t = 0)⟩ . (4.20b)

Employing Eq. (C.2), it is easy to calculate the overlap between the jth time-evolved and
the ith initial s-type GTOs

Ωsts0
jk =

〈
Gst
j

∣∣Gs0
k

〉
=

(
π

γsts0jk

)1/2

e−β
sts0
jk (xst

j
∗−x

s0
k ), (4.21a)
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γsts0jk = αst
j
∗ + αs0

k , βsts0
jk =

αst
j
∗ + αs0

k

γsts0jk

. (4.21b)

Performing no optimization during the time-dependent process, the exponents and center-
positions of the s-type GTOs are not changed. In this case, as mentioned before, just the
coefficients are updated and it simply yields Ωsts0

jk = Ωs0s0
jk .
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4.2 Time evolution of 1D harmonic oscillator

To assess the time-dependent optimization approach explained in Sec. 4.1, we evolve the
ground state and the 2nd excited state wave functions of the 1D harmonic oscillator over
a total time duration of 25 (a.u.). This time interval covers two and ten natural cycles
of the ground state and the 2nd excited state, respectively. We begin with the optimum
configurations of s-type GTOs obtained from the time-independent optimization procedure
described in Sec. 3.1. Experiencing no external potential, no matter if the initial s-type
GTOs representing these two eigenstates are optimized during the time evolution or not,
the probability density of their wave functions should remain unchanged during the time
evolution process and a good accuracy should be achieved for the auto-correlation function.
Shifting the initial wave functions along the x axis to the left by −0.5 (a.u.), we make two
new wave functions for which the initial configurations of s-type GTOs are not going to be
sufficient for getting a good accuracy for the auto-correlation function as they are no longer
eigenstates of the system. Hence, the s-type GTOs must be optimized to give the desirable
accuracy for the auto-correlation function.

Table 4.1 The ground state time evolution of
the 1D harmonic oscillator using an optimum
s-type GTO. The second column gives the rela-
tive error maximum value of |A(t)| during the
whole time evolution T = 25 (a.u.).

(a) As an eigenstate of the system

dt max RE(|A(t)|) no. iter

No Opt 0.1 9.77× 10−6 -
Full Opt 0.1 7.10× 10−13 10

(b) The position shifted wave function

dt max RE(|A(t)|) no. iter

No Opt 0.1 2.24 -
Full Opt 0.1 4.76× 10−5 10
Full Opt 0.01 4.81× 10−6 10
Full Opt 0.1 8.88× 10−13 50

We begin our assessment by representing the ground state of the system using a single
s-type GTO with the optimum parameters x = 0, and α = 0.5. As mentioned in Sec. 3.2.1,
this optimized s-type GTO suffices to get the exact ground state energy. In Table 4.1 (a), and
Fig. 4.1, we have compared the probability density of the ground state and the accuracy of
the auto-correlation function from an unoptimized s-type GTO and the one optimized in 10

iterations at each time step. Taylor expanding the potential up to the second-order, Eq. (4.5),
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is sufficient for getting the exact harmonic oscillator potential, Eq. (3.22). Consequently,
for an eigenstate of the system, one might expect to get a high accuracy for the probability
density and the auto-correlation function. However, the intrinsic error of O[∆t3] in the
Strang splitting of the time evolution operator (Eq. (4.3)) restricts the achievable accuracy.
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Figure 4.1 The ground state time evolution of the 1D harmonic oscillator using a single
s-type GTO. (a) The probability density at time t as specified on top of the figure. (b) The
relative error of the absolute value of the auto-correlation function |A(t)| during the time
evolution with the SSFM result (the blue thick line in (a)) as the benchmark. The black line
in (a) plots the potential. The orange lines correspond to the unoptimized s-type GTO. The
green lines are related to the s-type GTO optimized at each time step in 10 iterations.

As reported in Table 4.1 (a), and plotted Fig. 4.1 (b), optimizing the single s-type GTO
during the time evolution process brings about seven orders of magnitude higher accuracy
for the absolute value of the auto-correlation function, |A(t)|. Hence, we conclude that
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our optimization approach compensates for the intrinsic error of the Strang split-operator
method.
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Figure 4.2 As Fig. 4.1 but for the ground state wave function of the 1D harmonic oscillator
shifted along the x-axis by −0.5 (a.u.). The red lines correspond to the optimized s-type
GTO increasing the number of iterations to 50.

Next, to create a non-eigenstate wave function, we have shifted the initial ground state
wave function along the x axis to the left by −0.5 (a.u.). For the time evolution of this wave
function, in Table 4.1 (b), and Fig. 4.2, we compare the results of the unoptimized s-type
GTO, and two optimized ones that are calculated doing 10 and 50 iterations at each time step.
Fig. 4.2 (a) depicts the probability density of the wave function at time t = 22.2 (a.u.) at
which the maximum difference between the unoptimized and the SSFM results occurs. The
new wave function goes back and forth four times during the time evolution. As depicted
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in Fig. 4.2 (a), the probability density from the unoptimized (time-independent) s-type
GTOs is in complete disagreement with those of the optimized ones (the green line with 10
iterations and the thick red line with 50 iterations). We witness an accuracy improvement
in the auto-correlation function from the s-type GTOs optimized in 10 iterations, the green
line depicted in Fig. 4.2 (b), whenever the wave function comes back to the initial state. As
mentioned in Table 4.1 (b), decreasing the time step to dt = 0.01 did not yield a better result
than 4.81× 10−6 for the relative error maximum value of |A(t)| optimizing the single s-type
GTO. From Table 4.1 (b), and Fig. 4.2 (b), one can note the significant improvement of the
auto-correlation function accuracy (more than 13 orders of magnitude) from the unoptimized
GTO to the optimized one with 50 iterations.

Now, we explore the time evolution of the 2nd excited state represented by five s-
type GTOs. The initial configuration is obtained from the time-independent optimization
procedure explained in Sec. 3.1. Beginning with the initial configuration of Xmax = 2.0,
αini = 2.0, and the correction percentages of hx = hα = 0.9, resulted in the accuracy
of 7.45 × 10−11 for the 2nd excited state energy after the time-independent optimization
procedure.

Table 4.2 The 2nd excited state time evolution
of the 1D harmonic oscillator using five optimum
s-type GTOs. The second column provides the
relative error maximum value of |A(t)| during the
whole time evolution T = 25 (a.u.).

(a) As an eigenstate of the system

dt max RE(|A(t)|) no. iter

No Opt 0.1 1.09× 10−7 -
Full Opt 0.1 3.83× 10−9 10

(b) The position shifted wave function

dt max RE(|A(t)|) no. iter

No Opt 0.1 0.87 -
Full Opt 0.1 2.34× 10−5 4
Full Opt 0.01 3.56× 10−7 4

Position Opt 0.1 1.67× 10−7 4

As we reported in Table. 4.2 (a), and depicted in Fig. 4.3 (b), although we see a nice
agreement in the probability density in Fig. 4.3 (a), using unoptimized s-type GTOs for the
2nd excited state time evolution leads to a lower accuracy for the auto-correlation function
than what we obtain optimizing them in 10 iterations at each time step of the time-dependent
process. Similar to the ground state, we compensate the Strang splitting error in the time
evolution of an eigenstate by optimizing the s-type GTOs. Moreover, the fluctuations in the
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auto-correlation function obtained from the unoptimized GTOs, the orange line in Fig. 4.3
(b), are mainly because of the same error.
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Figure 4.3 As Fig. 4.1 but for the 2nd excited state time evolution of the 1D harmonic
oscillator using five optimum s-type GTOs.

Again, to generate a non-eigenstate, we shift the 2nd excited state wave function along the
x axis to the left by −0.5 (a.u.). In Fig. 4.4 (a), we have plotted the probability density of this
wave function at time t = 21.6 (a.u.) calculated from the (time-independent) unoptimized
s-type GTOs (the orange line), the full optimization of the s-type GTOs (the green line), and
the center-position optimized ones (the thick red line). As opposed to the optimized results,
the unoptimized one is not coherent with the exact SSFM result (the thick blue line).
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Figure 4.4 As Fig. 4.1 but for the 2nd excited state wave function of the 1D harmonic
oscillator shifted along the x-axis by −0.5 (a.u.). Here, the number of optimization iterations
is equal to 4. The red lines are obtained optimizing only the center-positions of s-type GTOs.
The purple line in (b) is calculated doing full optimization and decreasing the time step from
dt = 0.1 (a.u.) to dt = 0.01 (a.u.).

In addition, as reported in Table. 4.2 (b), and delineated in Fig. 4.4 (b), there is a huge
difference in accuracy between the unoptimized s-type GTOs and the optimized ones. In
Fig. 4.4 (b), we have shown that optimizing only the center-positions of the s-type GTOs
(the red line) brings about a more accurate result compared to the one obtained from full
optimization of both of the exponents and the center-positions (the green line). The result
from the position optimization is even better than the one from the full optimization with the
lower time step dt = 0.01 (the purple line). The four main fluctuations in the auto-correlation
functions are related to the wave function traveling four times forward and backward along
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the x-axis during the whole time evolution interval T = 25 (a.u.). In Fig. 4.5 (a) and (b), we
have plotted the time-dependent trajectory of the s-type GTOs calculated from the position
optimization (the red lines in Fig. 4.4) and from the full optimization (the green lines in
Fig. 4.4), respectively. We have denoted the initial s-type GTOs by the light circles and the
final ones by the solid diamonds. One can note in Fig. 4.5 (b) that the position optimized
s-type GTOs end up exactly on their initial positions. Comparing the results of these two
optimization approaches, because of more numerical stability, allowing just for the position
corrections leads to higher accuracy for the auto-correlation function in a simpler manner.
The instability issues of the full optimization approach could be improved in the future.
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Figure 4.5 Time dependent optimization procedure of the five s-type GTOs used for the
shifted 2nd excited state time evolution of the 1D harmonic oscillator. (a) Full optimization
(the green line in Fig. 4.4). (b) Optimizing only the center-positions (the red line in Fig. 4.4).
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4.3 High-order harmonic generation using s-type GTOs

As the last and most important part of this thesis, we examine the performance of our
developed optimization approach for HHG spectra of the 1D Hydrogen atom (Sec. 4.3.1)
and the 1D Hydrogen molecular ion at the internuclear distance R = 2.0 a.u. (Sec. 4.3.2)
experiencing a 5-cycle 800 nm intense laser field.

In this chapter, to calculate the HHG spectrum D(ω), we compute the squared magnitude
of the Fourier transforms of the electron dipole acceleration expectation value in the length
gauge. Here, to eliminate the nonphysical effects which occur in the numerical simulations
getting interference between the wave packet in the interior region and the reflections from
the grid boundaries [91], we employ a complex absorbing potential (CAP)

VCAP = −ia|x− xc|bΘ(±(x− xc)), (4.22)

where Θ is the Heaviside function. Parameters a, b, and xc denote the CAP strength, the
CAP order and the CAP position. We found this type of absorbing boundary more efficient
and easier to tune than the mask function employed in Sec. (2.42). For the HHG calculations
in this chapter, we have used the absorber parameters of a = 0.0016, b = 2, and xc equal to
2.5 × the quiver radius, which is the excursion amplitude in the oscillatory motion of the
electron, E0

ω2 , where E0 is the magnitude of the electric field and ω is the laser frequency.
These parameters serve our purpose of getting agreement with the exact results regardless of
the studied system (H atom or H+

2 ion) or the intensity and the envelope shape of the external
laser field. We just need to use a sufficient number of s-type GTOs for each scenario. Using
larger CAP positions makes no considerable difference in the spectra up to 3-5 harmonic
orders after the cut-off predicted by the Lewenstein model. It only brings about longer tails
for the HHG spectra.

In the following sections, we initiate the time evolution process from a set of equidistantly
distributed s-type GTOs that accurately represent the ground state wave function of the
system. To avoid possible numerical issues such as the linear dependency problems during
the time evolution of the studied systems in the next sections, we optimize the s-type GTOs
in a more numerically stable manner. We compute all the center-position corrections using
the procedure explained in Sec. 4.1.1. However, when we update the positions at each time
step, we compute the mean correction, averaging over all the calculated position corrections,
δ = hx

∑N
n=1 δn/N , and re-distribute the s-type GTOs in the real space equidistantly again

increasing their distance from dxold = xn+1 − xn to dxnew = dxold + 2R(δ), where dxnew
is the new distance between the real parts of the center-positions, and dxold is their last
one. Since the calculated corrections are complex, to keep the positions of the s-type GTOs
complex and not to lose the small but positive effects of the imaginary part of the mean
correction, we add I(δ) to the position of all the s-type GTO. In addition, we adjust their
widths accordingly without employing any d-type GTOs that we used so far for optimizing
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the exponents of the s-type GTOs. At each optimization iteration of the center-positions,
we update all the exponents of the s-type GTOs by dividing their last common value by
the relative distance between the real parts of the positions, αnew = αold/(dxnew/dxold).
This way, the covered physical region is widened and narrowed intelligently during the
time-dependent procedure. Whenever the s-type GTOs are distributed more widely, their
widths are also increased correspondingly. On the contrary, when the distance between the
s-type GTOs gets lower, their exponents get higher, and consequently, their widths become
narrower.

In all of the following sections, we have used the initial inter-distance of dxini = 0.4

(a.u.), the initial exponents of αini = 3.0 (a.u.). The corresponding initial configuration
result in a highly accurate ground state wave function. At each time step, the optimization
procedure is done in 4 iterations adjusting the position correction percentage of hx = 0.05

4.3.1 1D Hydrogen atom with a soft-core potential

As the first laser-induced scenario, using N = 101 equidistantly distributed s-type GTOs,
we study the HHG spectrum in the 1D Hydrogen atom with the soft-core potential employed
in Sec. 3.2.3. We use a 5-cycle 800 nm laser field with the intensity of I = 1014 W/cm2 and
a Gaussian envelope shape. This laser pulse contributes to the quiver radius of 16.45 (a.u.)
at the peak intensity. Employing Eq. (2.35), the corresponding cutoff harmonics predicted
by the 3-step and the Lewenstein models are 21 and 23, respectively. N = 101 equidistantly
distributed s-type GTOs result in the relative error of 3.98 × 10−13 for the ground state
energy.
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Figure 4.6 The HHG spectrum from the 1D Hydrogen atom induced by a Gaussian
envelope-shaped 5-cycle 800 nm laser field with the intensity of I = 1014 W/cm2 employing
101 equidistantly distributed s-type GTOs. The blue line depicts the reference result com-
puted using the SSFM method. The purple line corresponds to the unoptimized s-type GTOs.
The red line is obtained by optimizing the s-type GTOs during the time evolution process.
The red and black vertical dashed lines plot the cut-off harmonics, predicted by the 3-step
and the Lewenstein models, respectively.
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In Fig. 4.6, we have compared the HHG resulted from the unoptimized equidistantly
distributed s-type GTOs and the ones that we optimize during the time evolution process.
We have used the SSFM method as our benchmark. As it is evident in Fig. 4.6, we
obtain excellent agreement between the optimized and the SSFM results up to the last few
harmonics. In contrast, the HHG spectrum from the unoptimized GTOs does not even agree
with the SSFM one in the plateau region after the first few harmonics.
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Figure 4.7 The 1D Hydrogen atom: (a) The used Gaussian envelope-shaped 5-cycle 800
nm laser field with the intensity of I = 1014 W/cm2. The envelope function is denoted by
the green dashed line. (b) The time-dependent trajectories of the center-positions of the
optimized s-type GTOs. (c) Their adjusted exponents. The two black horizontal dashed lines
in (b) show the CAP positions, which are ± 2.5 × the quiver radius.

To understand the reason for the discrepancy of the HHG spectrum from the unoptimized
s-type GTOs and the SSFM one, we have delineated in Fig. 4.7 (a) the used laser profile,
(b) the time-dependent optimization trajectories of the center-positions of the equidistantly
distributed s-type GTOs, and (c) their adopted exponents. From Fig. 4.7 (b), we can see how
the optimized s-type GTOs cover a larger physical region when needed. Their distance is
increased up to almost four times the initial one during the time-dependent procedure. When
the laser field reaches the peak amplitude, we experience the most considerable widening of
the basis set.
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Figure 4.8 The 1D Hydrogen atom: probability density from (a) unoptimized s-type
GTOs, (b) optimized s-type GTOs, and (c) SSFM. The two light horizontal dashed lines
denote the CAP positions.
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Figure 4.9 The 1D Hydrogen atom: the relative error of the probability density from (a)
unoptimized s-type GTOs, (b) optimized s-type GTOs. The two dark horizontal dashed lines
depict the CAP positions.

Afterwards, the distance between the s-type GTOs does not change significantly. As can be
seen in Fig. 4.7 (c), the exponents are adjusted accordingly. The larger the distance between
the s-type GTOs, the smaller their exponents (the larger the widths). One can also note in
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Fig. 4.7 (b) that the CAP absorbers at ± 2.5 × the quiver radius do not abruptly absorb the
wave function, and there are still some parts of the wave function on the wings (as will be
shown in Fig. 4.8) that should be appropriately represented. For this reason, we see the
s-type GTOs are distributed more widely (up to about ± 4.5 × the quiver radius) to cover
the areas beyond the CAP positions.

In Fig. 4.8, we have compared the probability densities resulting from (a) the unoptimized
s-type GTOs, (b) the optimized ones, and (c) the SSFM. We have suppressed the high
probability densities to make the ionization fraction and the subtle differences visible.
Moreover, in Fig. 4.9, we have plotted the corresponding relative errors. As it is apparent in
Fig. 4.8 (a), the space covered by the unoptimized s-type GTOs is too small, and they are
unable to capture the wave function. In contrast, the optimized ones spread time-dependently
in space adjusted to the dynamics. The resulting wave function compares favorably to the
SSFM one, as plotted in Fig. 4.8 (b). From Fig. 4.9, it can also be conceived that optimized
s-type GTOs (b) lead to much more accurate results than the unoptimized ones (a), especially
when the wave function has spread. Furthermore, as can be seen in Figs. 4.8, and 4.9, s-type
GTOs are required on both sides, and after the initial fluctuations synchronous with the laser
pulse amplitude, the wave function becomes symmetric. This shows that the symmetric
collective optimization scheme of our approach is valid.

4.3.2 1D ionized Hydrogen molecule with a soft-core potential

Ultimately, as motivated in the introduction part of Chap. 3, to address the issues that we
experienced in the 3D H+

2 after the cutoff using a high number of static coherent states in Sec.
2.3.1, we have applied our time-dependent optimization approach for investigating HHG
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Figure 4.10 The HHG spectra from the 1D Hydrogen molecular ion H+
2 at the internuclear

distance R = 2.0 (a.u.) introduced to a sin2 envelope-shaped 5-cycle 800 nm laser field with
the intensity of I = 3× 1014 W/cm2 using N = 181 equidistantly distributed s-type GTOs.
This figure shares the general properties of Fig. 4.6.
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in the 1D ionized Hydrogen molecular ion H+
2 at the inter-nuclear distance R = 2.0 (a.u.)

exposed to a sin2 envelope-shaped 5-cycle 800 nm laser pulse with the intensity of I = 3×
1014 W/cm2. For this intensity, we have usedN = 181 equidistantly distributed s-type GTOs,
which bring about the relative error of 10−12 for the ground state energy. The mentioned
laser field corresponds to the quiver radius of 28.50 (a.u.), and the cutoff harmonics of about
54, and 59 predicted by the 3-step and the Lewenstein models, respectively.

In Fig. 4.10 we have depicted the HHG spectrum calculated from the optimized equidis-
tantly distributed s-type GTOs and the unoptimized ones in comparison with the SSFM
result. As one can see from Fig. 4.10, our optimization approach achieves a nice agreement
with the SSFM results up to 5-7 harmonic orders after the cutoff predicted by the Lewenstein
model. Using only N = 181 s-type GTOs, we obtained good agreement over 3-4 orders of
magnitude in the cutoff drop. In contrast, the unoptimized HHG spectra are inadequate for
covering the time-dependent physical region and obtaining an agreement with the SSFM
results even for the plateau harmonics before the cutoff.
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Figure 4.11 The 1D Hydrogen molecular ion H+
2 at the internuclear distance R = 2.0

(a.u.): (a) The employed sin2 envelope-shaped 5-cycle 800 nm laser field with the intensity
of I = 3× 1014 W/cm2. (b) The time-dependent trajectories of the center-positions of the
optimized s-type GTOs. (c) Their adjusted exponents. This figure has the same properties as
Fig. 4.7.
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Figure 4.12 The 1D Hydrogen molecular ion H+
2 at the internuclear distance R = 2.0

(a.u.): probability density from (a) unoptimized s-type GTOs, (b) optimized s-type GTOs,
and (c) SSFM. The two light horizontal dashed lines delineate the CAP positions.
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Figure 4.13 The 1D Hydrogen molecular ion H+
2 at the internuclear distance R = 2.0

(a.u.): the relative error of the probability density from (a) unoptimized s-type GTOs, (b)
optimized s-type GTOs. The two dark horizontal dashed lines show the CAP positions.

In Fig. 4.11, we have delineated the employed laser profile (a), the time-dependent
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optimization procedure of the s-type GTOs for (b) the center-positions of N = 181 s-type
GTOs, and (c) their corresponding exponents. As it is notable from Fig. 4.11 (b), expansion
and contraction of the s-type GTOs happen multiple times during the time evolution process.
Similar to what was mentioned for the 1D Hydrogen atom (Fig. 4.7), the largest spreading
of the s-type GTOs occurs close to the peak amplitude of the laser pulse, after which the
s-type GTOs do not undergo significant changes as the basis set is already wide enough to
cover the physical region. We also note that as the wave function has non-zero values on the
wings beyond the absorber positions, the s-type GTOs are automatically spread (up to about
± 2.7× the quiver radius) so that they represent the wave function best.

We have plotted in Figs. 4.12, and 4.13, the probability densities of the 1D H+
2 and their

corresponding relative errors with respect to the SSFM from (a) the unoptimized s-type
GTOs, and (b) the optimized ones. What we discussed in the last paragraph of the previous
section for the probability densities of the Hydrogen atom essentially carries over for the 1D
H+

2 . A subtle feature that makes the H+
2 problem more intricate is the possible interference

due to the two ions. Here, one sees slight differences between the optimized s-type GTOs
(stronger interference pattern) and the SSFM wave function, which are absent in the atomic
case.





5 Conclusions and Outlooks

Seeking a proper and efficient way of using Gaussian wave packets for directly solving
the time-dependent Schrödinger equation (TDSE), we first employed static coherent states
(SCS) for representing the electronic wave function of single-electron atomic and molecular
systems subjected to intense laser fields in a different range of frequencies. Doing so, we
studied the molecular dissociation and the charge migration in the 3D Hydrogen molecular
ion H+

2 exposed to a high-frequency laser pulse treating the nuclei classically. We calculated
the related potential energy curves of H+

2 in the absence and presence of the external laser
field and found substantial charge localization as the molecular bond distance was increased.
This charge localization was reflected in the exponential increase in the expected charge
migration period as a function of the bond length.

Next, we employed a high number of SCS for full-dimensional quantum simulation of
high-order harmonic generation (HHG) process in H+

2 at two different internuclear distances
introduced to linearly polarized low-frequency intense laser pulses both in the length and
velocity gauges. In addition, we studied the single attosecond pulse (SAP) generation in H+

2

using the polarization gating technique, which combines two delayed counter-rotating circu-
lar laser pulses and opens up a gate at the central portion of the superposed pulse. Although
the SCS method can be potentially suggested for full-dimensional quantum simulation of
higher dimensional systems such as the Hydrogen molecule exposed to an external intense
laser field, it fell short to reach a good agreement for the HHG spectra of H+

2 with those of a
3D unitary split-operator (USO) solver keeping the number of employed SCS small enough
to make it computationally feasible for systems with higher degrees of freedom (DOF). To
construct a more suitable basis, we developed an approach to guide a set of Gaussian wave
packets in such a way that the number of used basis functions is kept as low as possible
while maintaining high accuracy.

We introduced a computationally robust and efficient procedure for optimizing both of
the exponents αi and the center-positions ri of the simplest Gaussian basis functions, the s-
type Gaussian-type orbitals (GTOs), by employing two auxiliary higher-type GTOs resulted
from the first-order Taylor expansion. We applied our developed optimization approach
for accurately representing a desired electronic state wave function of different quantum
systems: the 1D harmonic oscillator, the 1D Morse oscillator, the 1D Hydrogen atom, the 1D

76
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Hydrogen molecular ion, the 3D Hydrogen atom, and the 3D H+
2 . We compared our results

of optimizing a low number of s-type GTOs to other approaches which use a high number of
different types of non-optimized GTOs. We showed that one needs a considerably lower
number of the optimized s-type GTOs to obtain highly accurate electronic state energies.
Our approach optimizes not only the distributed s-type GTOs but also the atomic-centered
(even-tempered) s-type GTOs and their combinations.

Integrating our optimization approach into the time evolution process of the wave
function, we firstly assessed its performance for computing the time-evolved ground and
second excited states wave functions of the harmonic oscillator. For these two eigenstates of
the studied system, we showed that our optimization approach compensates for the intrinsic
error of the Strang splitting of the time evolution operator resulting in more accurate results
for the auto-correlation function than the non-optimized case. Moreover, for non-eigenstate
initial wave functions, we demonstrated how our optimization approach guides the used
s-type GTOs at each time step bringing about a significant agreement with the exact result
where the non-optimized s-type GTOs fail to represent the time-dependent wave function
properly.

Finally, coming back to HHG studies in atomic and molecular systems exposed to intense
laser fields, we applied a numerically more stable version of our optimization technique to
investigate HHG in the 1D Hydrogen atom and the 1D H+

2 . We introduced an expansion and
contraction optimization scheme in which, at each time step of the time evolution process,
the s-type GTOs are re-distributed equidistantly. We used a relatively small number of
equidistantly distributed s-type GTOs constructed in a small spatial region. Initially, they
result in a highly accurate ground state energy for the studied system. We showed how the
optimized s-type GTOs are naturally guided in a wider physical region when needed. We
also illustrated that the most considerable widening of the basis set occurs as the laser field
reaches the peak amplitude, after which their distribution is not significantly expanded until
the end of the time-dependent process. The HHG spectra obtained from the time-dependent
optimized s-type GTOs exhibit an excellent agreement with the exact results while the
unoptimized ones were unable to achieve such agreement even in the plateau region of the
spectrum after the first few harmonic orders.

The obvious next step would be to extend the introduced time-dependent optimization
approach to 3D problems. Moreover, since this approach can handle ionized propagating
wave packets, it can also be implemented for studying above-threshold ionization. In addition,
due to the small numbers of the optimized basis functions, it should be possible to tackle
more complicated systems such as the Hydrogen molecule considering both electrons active.
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A Atomic units

The appearance of expressions in atomic physic is greatly simplified using the so-called
Hartree atomic units (a.u.) which are known as the units in the electron’s world. The
prerequisite for specifying atomic units is considering the elementary charge e, the electron
mass m, the reduced Planck’s constant ℏ (angular momentum), and the Coulomb constant
1

4πϵ0
as unity: e ≡ m ≡ ℏ ≡ 4πϵ0 ≡ 1. Applying these units in terms of the properties of the

simple hydrogen atom, the following important physical quantities can be easily obtained in
atomic units:

• Unit of length: Bohr radius
a0 =

ℏ2
me2

≡ 1 a.u. = 5.291772108× 10−11 m

• Unit of velocity: Velocity if an electron in the first Bohr orbit
v0 =

e2

ℏ ≡ 1 a.u. = 2.1876912633× 106 m/s

• Unit of time: Time for an electron to travel a distance of a0 with a velocity of v0
τ0 =

a0
v0

= ℏ3
me4

≡ 1 a.u. = 2.418884326505× 10−17 s

• Unit of frequency: Inverse of the unit of time
ν0 =

1
τ0

= me4

ℏ3 ≡ 1 a.u. = 4.413413733365× 1016 Hz

• Unit of energy: Hartree energy or twice the binding energy of the hydrogen atom
Eh = me4

ℏ2 ≡ 1 a.u. = 4.35974417× 10−18 J = 27.2113962 eV

• Unit of electric field strength:
E0 =

Eh

ea0
= m2e5

ℏ4 ≡ 1 a.u. = 5.14220642× 1011 V/m

• Unit of energy flux (intensity):
I0 =

cE2
0

8π
≡ 1 a.u. = 3.50944758× 1016 W/cm2

• Period of a laser cycle: In terms of the wavelength of the laser pulse λ (nm)
t1c(a.u.) = λ(nm)× 0.1378999
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B SCS method: expectation value of the
electron-nucleus attractive forces

The expectation value of the electron-nucleus attractive forces in the basis of static coherent
states can be computed by employing Eq. (2.22):

⟨Fij⟩ =
∑
kl

FijklD
∗
kDl (B.1)

where

Fijkl =

〈
Zk

∣∣∣∣∣ ri −Rj

|ri −Rj|3

∣∣∣∣∣Zl

〉
(B.2)

are the matrix elements of the attractive Coulombic force on the basis of a static grid of
coherent states. To compute Fijkl , implementing the identity operator of coordinate states of
electrons leads to

Fijkl =

∫ ∫
⟨Zk|ri⟩

〈
ri

∣∣∣∣∣ ri −Rj

|ri −Rj|3

∣∣∣∣∣r′i
〉
⟨r′i|Zl⟩ dri dr′i . (B.3)

Employing the orthogonality in the coordinate representation, ⟨ri|r′i⟩ = δ(ri − r′i), one gets

Fijkl =

∫
⟨Zk|ri⟩ ⟨ri|Zl⟩

ri −Rj

|ri −Rj|3
dri . (B.4)

Using the fact that coherent states are Gaussian wave packets in the coordinate representation
[58, 62]

⟨Zk|ri⟩ = (
γ

π
)3/4 exp

(
−γ
2

(ri −
√
2Z∗

k

γ
1
2

)2 + (
Z∗

k − Zk

2
)Z∗

k

)
(B.5)

and by applying the Gaussian product rule, Eq. (3.2), it can be verified that

⟨Zk|ri⟩ ⟨ri|Zl⟩ = ( γ
π
)3/2 exp

(
(Z∗

k−Zk)Z
∗
k

2
+

(Zl−Z∗
l )Zl

2
− (Zl−Z∗

k)
2

2

)
exp
(
−γ|rA|2

)
(B.6)

where
rA = ri −A , A =

Z∗
k + Zl√
2γ

. (B.7)
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Taking into account the over-completeness property of coherent states (Eq. (2.6)) and then
substituting Eq. (B.6) into Eq. (B.4) we get

Fijkl = ⟨Zk|Zl⟩ (
γ

π
)3/2

∫
ri −Rj

|ri −Rj|3
exp
(
−γ|rA|2

)
dri. (B.8)

Now by substituting the following Laplace transform

1

|ri −Rj|3
=

4

3
√
π

∫ ∞

0

exp
(
t−2/3|ri −Rj|2

)
dt (B.9)

into Eq. (B.8) and implementing again the Gaussian product rule, we get

Fijkl = ⟨Zk|Zl⟩ 4γ3/2

3π2

∫∞
0

exp
(
− γt2/3

γ+t2/3
|ρij|2

) ∫
(ri −Rj) exp

(
−
(
γ + t2/3

)
|rB|2

)
dri dt

(B.10)
where

ρij = A−Rj , rB = ri −B , B =
γ

γ + t2/3
A+

t2/3

γ + t2/3
Rj. (B.11)

One can also show that
ri −Rj = rB +

γ

γ + t2/3
ρij. (B.12)

Substituting Eq. (B.12) in Eq. (B.10) and applying the well-known 3D Gaussian integral∫
exp
(
−αr2

)
dr =

(π
α

)3/2
(B.13)

and considering t2/3

γ+t2/3
= u2, it is straightforward to verify that

Fijkl =

(
4γ3

π

)1/2

ρijF1

(
γ|ρij|2

)
⟨Zk|Zl⟩ (B.14)

where F1 is the first order Boys function [92]

Fn(x) =

∫ 1

0

t2n exp
(
−xt2

)
dt. (B.15)



CMatrix elements on the basis of GTOs

C.1 1D systems

The following parameters are used in all 1D equations:

γij = α∗
i + αj

αij = α∗
iαj

βij =
αij

γij

bij =
α∗
ix

∗
i + αjxj
γij

Kij = e−βij(x∗
i−xj)

2

,

(C.1)

where αi(j) is the exponent and xi(j) is the center-position of the ith (jth) GTO. In the time-
independent scenarios, these parameters remain real, while in the time-dependent procedures,
they become complex.

To evaluate the overlap between the ith a-type GTO, Ga
i (x, xi, αi) = N a

i (x− xi)
mae−αi(x−xi)

2

,
and the jth b-type GTO, Gb

j (x, xj, αj) = N b
j (x− xj)

mbe−αj(x−xj)
2

, with the help of the
Gaussian product rule from Eq. (3.2), we get

Ωab
ij = N a

i N b
jKij

∫ ∞

−∞
(x− x∗i )

ma(x− xj)
mbe−γij(x−bij)

2

dx. (C.2)

N a
i and N b

j , respectively are the normalization factors associated with the a-, and b-type
GTOs mentioned in Eq. (3.8). These normalization factors can be used in the time-
independent scenarios where GTOs have real parameters. For the time-dependent cases, as
GTOs receive complex parameters and lose their complex differentiability, we are obliged to
use unnormalized GTOs, N a

i = N b
j = 1. For s-type GTOs: ma = mb = 0, for p-type GTOs:

ma = mb = 1, and for d-type GTOs: ma = mb = 2.

82
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In addition, to evaluate the Hamiltonian matrix elements, one must compute

Hab
ij =

∫ ∞

−∞
Ga∗

i (x, xi, αi)(T + V(x))Gb
j (x, xj, αj)dx. (C.3)

where T = −1
2

d2

dx2 is the kinetic energy, and V(x) is the potential.

For computing the kinetic energy matrix element over the ith a-type and the jth b-type
GTOs, with the help of the Gaussian product rule from Eq. (3.2), we use

Tab
ij =

−1

2
N a

i N b
jKij

∫ ∞

−∞
(x− x∗i )

ma
(
mb(mb − 1)(x− xj)

mb−2 − 2αj(2mb + 1)(x− xj)
mb

+ 4α2
j (x− xj)

mb+2)e−γij(x−bij)
2

dx. (C.4)

Moreover, to calculate the potential matrix element over the ith a-type GTO, Ga
i (x, xi, αi),

and the jth b-type GTO, Gb
j (x, xj, αj), employing the Gaussian product rule from Eq. (3.2),

one needs to evaluate

Vab
ij = N a

i N b
j

∫ ∞

−∞
(x− x∗i )

mae−α∗
i (x−x∗

i )
2

V(x)(x− xj)
mbe−αj(x−xj)

2

dx. (C.5)

This integral is analytically solvable just for simple potentials like the 1D Harmonic oscillator,
V(x) = ω2x2

2
. For complicated potentials it can be numerically approximated employing the

well-known Gauss-Hermite quadrature:

∫ ∞

−∞
f(x)e−x2

dx ≈
NGH∑
k=1

Ωkf(ζk), (C.6)

where Ωk are the weights, and NGH is the number of the abscissae (nodes) , ζk , of the
Gauss-Hermite quadrature. With the following change of variable

γij(x− bij)
2 = x′

2 ⇒ x′ = ±γ1/2ij (x− bij) ⇒ x± =
x′

±γ1/2ij

+ bij ⇒ dx± =
dx′

±γ1/2ij

,

we can exploit the general Gauss-Hermite quadrature weights and abscissae to approximate
our integral. Consequently, from Eq. (C.5), we would obtain this general equation

Vab
ij =

N a
i N b

j

±γ1/2ij

Kij

∫ ∞

−∞
f
(
x′,ma,mb

)
e−x′2

dx′, (C.7)

where

f
(
x′,ma,mb

)
=

(
x′

±γ1/2ij

+ bij − x∗i

)ma
(

x′

±γ1/2ij

+ bij − xj

)mb

V(
x′

±γ1/2ij

+ bij). (C.8)

For solving the Gaussian integrals in Eqs. (C.2), and (C.4) and for the matrix elements
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of the 1D Harmonic oscillator potential in Eq. (C.5), one can utilize the following general
form of 1D Gaussian integrals∫ ∞

−∞
xn exp

(
−ax2

)
dx =

(n− 1)!!π1/2

2n/2a(n+1)/2
, n = 0, 2, 4, 6, · · · . (C.9)

The mentioned Gaussian integrals can also be analytically solved using computer software
like Mathematica.
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C.2 3D systems

The following parameters are used in the 3D equations:

γij = α∗
i + αj

αij = α∗
iαj

βij =
αij

γij

bij =
α∗
i r

∗
i + αjrj
γij

Kij = e−βij(r∗i−rj)
2

,

(C.10)

where αi(j) is the exponent and ri(j) is the center-position of the ith (jth) 3D GTO. In addition,
in the upcoming equations, N a

i and N b
j , respectively are the normalization factors associated

with the a-, and b-type 3D GTOs mentioned in Eq. (3.4). For the 3D unnormalized GTOs,
we can simply consider N a

i = N b
j = 1.

To calculate the overlap between the ith a-type and the jth b-type 3D GTOs (Eq. (3.3)),
we need to calculate

Ωab
ij =

∫
Ga∗

i (r, ri, αi)Gb
j (r, rj, αj)dr. (C.11)

In addition, to evaluate the Hamiltonian matrix elements, one should compute

Hab
ij =

∫
Ga∗

i (r, ri, αi)(T + V(r))Gb
j (r, rj, αj)dr. (C.12)

where T = −1
2
∇2 is the kinetic energy, and V(r) is the potential.

In the following sections, we explain in detail how to evaluate the matrix elements of the
Overlap, the kinetic energy, and the potential over the 3D GTOs.

C.2.1 The overlap matrix elements over 3D s-type GTOs

To compute the overlap between the ith and the jth s-type GTOs, we can write

Ωss
ij =

〈
Gs
i

∣∣Gs
j

〉
=

∫
Gs∗

i (r, ri, αi)Gs
j (r, rj, αj)dr

= N s
i N s

j

∫
e−α∗

i (r−r∗i )
2

e−αj(r−rj)
2

dr.

Employing the Gaussian product rule from Eq. (3.2), one obtains

Ωss
ij = N s

i N s
j Kij

∫
e−γij(r−bij)

2

dr.

It is easy to verify that
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Ωss
ij = Ωss

ij x
Ωss

ij y
Ωss

i,jz
= N s

i N s
j Kij

π3/2

γ
3/2
ij

. (C.13)

C.2.2 Three-center overlap integrals

Differentiating the unnormalized 3D Cartesian Gaussian functions in Eq. (3.3) with respect
to xi:

∂Gmi
i (r, ri, αi)

∂xi
= −mix(x− xi)

mix−1(y − yi)
miy(z − zi)

mize−αi(r−ri)
2

+ 2αi(x− xi)
mix+1(y − yi)

miy(z − zi)
mize−αi(r−ri)

2

, (C.14)

the following differential relation between different type of GTOs can be verified in different
directions, o = x, y, z ,

∂Gmi
i (r, ri, αi)

∂oi
= 2αiGmi+1o

i (r, ri, αi)−mioGmi−1o
i (r, ri, αi). (C.15)

Our desired matrix elements have generally the same form as the following three-center
overlap over three different Gaussians

〈
Gmi
i

∣∣Gmk
k

∣∣Gmj

j

〉
=

∫
Gmi
i

∗(r, ri, αi)Gmk
k (r, rk, αk)Gmj

j (r, rj, αj)dr. (C.16)

Employing the Gaussian product rule from Eq. (3.2), the product of the three Gaussian
becomes ultimately a single Gaussian with the following parameters [82]

γijk = γij + αk = α∗
i + αj + αk

αijk = αijαk

βijk =
γijαk

γijk

bijk =
γijbij + αkrk

γijk
=
α∗
i r

∗
i + αjrj + αkrk

γijk

cijk =
α∗
i r

∗
i
2 + αjr

2
j + αkr

2
k

γijk

Kijk = Kije
−βijk(bij−rk)

2

= eγijk(b
2
ijk−cijk),

(C.17)

where αij , βij , and Kij have already been defined in Eq. (C.10).

The three-center overlap integral, Eq. (C.16), can be factorized as in [82]

〈
Gmi
i

∣∣Gmk
k

∣∣Gmj

j

〉
= KijkIx(mix ,mjx ,mkx)Iy

(
miy ,mjy ,mky

)
Iz(miz ,mjz ,mkz), (C.18)
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Io(mio ,mjo ,mko) =
π1/2

γ
1/2
ijk

mio∑
lio=0

mjo∑
ljo=0

mko∑
lko=0

lo=even

(
mio

lio

)(
mjo

ljo

)(
mko

lko

)
×

(bijko − oi)
mio−lio (bijko − oj)

mjo−ljo (bijko − ok)
mko−lko

(lo − 1)!!

(2γijk)
lo
,

where o = x, y, z denotes the Cartesian directions, and lo = lio + ljo + lko .

For s-type GTOs, the three-center overlap integral reads

〈
Gs
i

∣∣Gs
k

∣∣Gs
j

〉
= Kijk

π3/2

γ
3/2
ijk

=
γ
3/2
ij

γ
3/2
ijk

〈
Gs
i

∣∣Gs
j

〉
e−βijk(bij−rk)

2

. (C.19)

The two-center overlap integral
〈
Gs
i

∣∣Gs
j

〉
= Ωss

ij which has already been obtained in Eq.
(C.13), can be also calculated by putting Gmk

k = 1 (αk = 0) in the three-center overlap
integral, Eq. (C.18).

To compute
〈
Gmi+1o
i

∣∣Gmk
k

∣∣Gmj

j

〉
, with the help Eq. (C.14), it is straightforward to obtain

the Obara-Saika recurrence relation [82]

〈
Gmi+1o
i

∣∣Gmk
k

∣∣Gmj

j

〉
=
(
bijko − o∗i

) 〈
Gmi
i

∣∣Gmk
k

∣∣Gmj

j

〉
+

1

2γijk

(
mio

〈
Gmi−1o
i

∣∣Gmk
k

∣∣Gmj

j

〉
+mko

〈
Gmi
i

∣∣Gmk−1o
k

∣∣Gmj

j

〉
+mjo

〈
Gmi
i

∣∣∣Gmk
k

∣∣∣Gmj−1o
j

〉)
.

(C.20)

Similarly, the recurrence formula for
〈
Gmi
i

∣∣∣Gmk
k

∣∣∣Gmj+1o
j

〉
is

〈
Gmi
i

∣∣∣Gmk
k

∣∣∣Gmj+1o
j

〉
=
(
bijko − oj

) 〈
Gmi
i

∣∣Gmk
k

∣∣Gmj

j

〉
+

1

2γijk

(
mio

〈
Gmi−1o
i

∣∣Gmk
k

∣∣Gmj

j

〉
+mko

〈
Gmi
i

∣∣Gmk−1o
k

∣∣Gmj

j

〉
+mjo

〈
Gmi
i

∣∣∣Gmk
k

∣∣∣Gmj−1o
j

〉)
.

(C.21)

C.2.3 The Obara-Saika recurrence formula for two-center overlap integrals

By considering Gmk
k = 1 (αk = 0) in the recurrence formula for three-center overlap

integrals, Eq. (C.20), we get the following recurrence relations for two-center overlap
integrals

Ω
mi+1omj

ij =
(
bijo − o∗i

)
Ω

mimj

ij +
1

2γij

(
mioΩ

mi−1omj

ij +mjoΩ
mimj−1o
ij

)
, (C.22a)

Ω
mimj+1o
ij =

(
bijo − oj

)
Ω

mimj

ij +
1

2γij

(
mioΩ

mi−1omj

ij +mjoΩ
mimj−1o
ij

)
, (C.22b)

Ω
mimj+1o
ij = Ω

mi+1omj

ij + (o∗i − oj)Ω
mimj

ij . (C.22c)
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Over s-type and p-type GTOs: initiating the recursive procedure from Eq. (C.13), and
utilizing Eq. (C.22b), it is easy to obtain the overlap between the ith s-type and the jth p-type
3D GTOs in different directions, Ωspo

ij ,

Ωspo
ij =

(
bijo − oj

)
Ωss

ij , (C.23)

or inversely, employing Eq. (C.22a), to get the overlap between the ith p-type and the jth

s-type 3D GTOs in different directions, Ωpos
ij ,

Ωpos
ij =

(
bijo − o∗i

)
Ωss

ij . (C.24)

Over s-type and d-type GTOs: using Eq. (C.23) and employing Eq. (C.22b), the overlap
between the ith s-type and jth d-type 3D GTOs (Eq. (3.6)) is obtained as Ωsd

ij =
∑

o=x,y,z

Ωsdo
ij ,

where
Ωsdo

ij =
(
bijo − oj

)
Ωspo

ij +
Ωss

ij

2γij
. (C.25)

Inversely, from Eqs. (C.24), and (C.22a), the overlap between the ith d-type and the jth

s-type 3D GTOs, Ωds
ij , is achieved as Ωds

ij =
∑

o=x,y,z

Ωdos
ij , where

Ωds
ij =

(
bijo − o∗i

)
Ωpos

ij +
Ωss

ij

2γij
. (C.26)

Over p-type GTOs: to get the overlap between the ith p-type and the jth p-type 3D GTOs
in different directions, using Eqs. (C.23), and (C.22a), we get

Ω
popo′
ij =


(
bijo − o∗i

)
Ω

spo′
ij +

Ωss
ij

2γij
o = o′ ∈ {x, y, z}

(
bijo − o∗i

)
Ω

spo′
ij o ̸= o′ ∈ {x, y, z}

. (C.27)

Over p-type and d-type GTOs: to evaluate the overlap between the ith p-type and the
jth d-type 3D GTOs in different directions, employing Eqs. (C.27) , and (C.22b), we get
Ωpod

ij =
∑

o′=x,y,z

Ω
podo′
ij , where

Ω
podo′
ij =


(
bijo′ − o′j

)
Ω

popo′
ij + 1

2γij

(
Ω

spo′
ij + Ωpos

ij

)
o = o′ ∈ {x, y, z}

(
bijo′ − o′j

)
Ω

popo′
ij + 1

2γij
Ωpos

ij o ̸= o′ ∈ {x, y, z}
. (C.28)
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Over d-type GTOs: in order to compute the overlap between the ith d-type and the jth

d-type 3D GTOs, from Eqs. (C.28), and (C.22a) we obtain Ωdd
ij =

∑
o,o′=x,y,z

Ω
dodo′
ij , where

Ω
dodo′
ij =


(
bijo − o∗i

)
Ω

podo′
ij + 1

2γij

(
Ω

sdo′
ij + 2Ω

popo′
ij

)
o = o′ ∈ {x, y, z}

(
bijo − o∗i

)
Ω

podo′
ij + 1

2γij
Ω

sdo′
ij o ̸= o′ ∈ {x, y, z}

. (C.29)

C.2.4 The kinetic energy matrix elements over 3D s-type GTOs

To compute the kinetic energy matrix element over the ith and the jth s-type GTOs, with the
help of the Gaussian product rule from Eq. (3.2), one gets

Tss
ij = N s

i N s
j

∫
e−α∗

i (r−r∗i )
2−1

2
∇2e−αj(r−rj)

2

dr,

⇒ Tss
ij =

−1

2
N s

i N s
j Kij×[∫ ∞

−∞

(
−2αj + 4α2

j (x− xj)
2)e−γij(x−bijx)

2

dx

∫ ∞

−∞
e−γij(y−bijy)

2

dy

∫ ∞

−∞
e−γij(z−bijz)

2

dz

+

∫ ∞

−∞
e−γij(x−bijx)

2

dx

∫ ∞

−∞

(
−2αj + 4α2

j (y − yj)
2)e−γij(y−bijy)

2

dy

∫ ∞

−∞
e−γij(z−bijz)

2

dz

+

∫ ∞

−∞
e−γij(x−bijx)

2

dx

∫ ∞

−∞
e−γij(y−bijy)

2

dy

∫ ∞

−∞

(
−2αj + 4α2

j (z − zj)
2)e−γij(z−bijz)

2

dz

]
,

which is nothing but

Tss
ij = Tss

ij x
Ωss

ij y
Ωss

i,jz
+ Ωss

ij x
Tss

ij y
Ωss

i,jz
+ Ωss

ij x
Ωss

ij y
Tss

ij z
. (C.30)

Using Eq. (C.9), it is straightforward to finally obtain

Tss
ij =

(
3βij − 2α2

j (bij − rj)
2)Ωss

ij = βij
(
3− 2βij(r

∗
i − rj)

2)Ωss
ij . (C.31)

C.2.5 The Obara-Saika recurrence formula for the kinetic energy

Employing Eq. (C.14), and the identity of
∫
dr Gmi

i ∇2Gmj

j = −
∫
dr(∇Gmi

i ) ·
(
∇Gmj

j

)
,

the kinetic energy integral in Eq. (C.12) reduces to a linear combination of the two-center
integrals. Then, we obtain the following recurrence relations for kinetic energy integrals

T
mi+1omj

ij =
(
bijo − o∗i

)
T

mimj

ij +
1

2γij

(
mioT

mi−1omj

ij +mjoT
mimj−1o
ij

)
(C.32a)

+ 2βij

(
Ω

mi+1omj

ij − mio

2α∗
i

Ω
mi−1omj

ij

)
,



90 C.2. 3D systems

T
mimj+1o
ij =

(
bijo − oj

)
T

mimj

ij +
1

2γij

(
mioT

mi−1omj

ij +mjoT
mimj−1o
ij

)
(C.32b)

+ 2βij

(
Ω

mimj+1o
ij − mjo

2αj

Ω
mimj−1o
ij

)
.

Over s-type and p-type GTOs: initiating the recursive procedure from Eq. (C.31), and
utilizing Eq. (C.32b), it is easy to obtain the matrix element of the kinetic energy over the
ith s-type and the jth p-type 3D GTOs in different directions, Tspo

ij ,

Tspo
ij =

(
bijo − oj

)
Tss

ij + 2βijΩ
spo
ij , (C.33)

or inversely, employing Eq. (C.32a), to get the matrix element of the kinetic energy over the
ith p-type and the jth s-type 3D GTOs in different directions, Tpos

ij ,

Tpos
ij =

(
bijo − o∗i

)
Tss

ij + 2βijΩ
pos
ij . (C.34)

Over s-type and d-type GTOs: using Eqs. (C.33), and (C.32b), the matrix element of
the kinetic energy over the ith s-type and jth d-type 3D GTOs (Eq. (3.6)) is obtained as
Tsd

ij =
∑

o=x,y,z

Tsdo
ij , where

Tsdo
ij =

(
bijo − oj

)
Tspo

ij +
Tss

ij

2γij
+ 2βij

(
Ωsdo

ij − Ωss
ij

2αj

)
. (C.35)

Inversely, from Eqs. (C.34), and (C.32a), the matrix element of the kinetic energy over the
ith d-type and the jth s-type 3D GTOs, is achieved as Tds

ij =
∑

o=x,y,z

Tdos
ij , where

Tdos
ij =

(
bijo − o∗i

)
Tpos

ij +
Tss

ij

2γij
+ 2βij

(
Ωdos

ij − Ωss
ij

2α∗
i

)
. (C.36)

Over p-type GTOs: to calculate the matrix element of the kinetic energy over the ith p-type
and the jth p-type 3D GTOs in different directions, employing Eqs. (C.33), and (C.32a), we
get

T
popo′
ij =


(
bijo − o∗i

)
T

spo′
ij +

Tss
ij

2γij
+ 2βijΩ

popo′
ij o = o′ ∈ {x, y, z}

(
bijo − o∗i

)
T

spo′
ij + 2βijΩ

popo′
ij o ̸= o′ ∈ {x, y, z}

. (C.37)

Over p-type and d-type GTOs: to get the matrix element of the kinetic energy over the ith

p-type and the jth d-type 3D GTOs in different directions, from Eqs. (C.35), and (C.32a),
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we arrive at Tpod
ij =

∑
o′=x,y,z

T
podo′
ij , where

T
podo′
ij =


(
bijo − o∗i

)
Tsdo′

ij +
T

spo′
ij

γij
+ 2βijΩ

podo′
ij o = o′ ∈ {x, y, z}

(
bijo − o∗i

)
Tsdo′

ij + 2βijΩ
podo′
ij o ̸= o′ ∈ {x, y, z}

. (C.38)

Over d-type GTOs: in order to compute the matrix element of the kinetic energy over
the ith d-type and the jth d-type 3D GTOs, using Eqs. (C.38), and (C.32a), we obtain
Tdd

ij =
∑

o,o′=x,y,z

T
dodo′
ij , where

T
dodo′
ij =



(
bijo − o∗i

)
T

podo′
ij +

T
sdo′
ij +2T

popo′
ij

2γij
+ 2βij

(
Ω

dodo′
ij − Ω

sdo′
ij

2α∗
i

)
o = o′ ∈ {x, y, z}

(
bijo − o∗i

)
T

podo′
ij +

T
sdo′
ij

2γij
+ 2βij

(
Ω

dodo′
ij − Ω

sdo′
ij

2α∗
i

)
o ̸= o′ ∈ {x, y, z}

.

(C.39)

C.2.6 The Coulombic potential matrix elements over 3D s-type GTOs

For the matrix element of a single-center nuclear attraction potential of the form −1
|r−R| , over

the ith and the jth s-type GTOs, one can write

Vss
ij = N s

i N s
j

∫
e−α∗

i (r−r∗i )
2 −1

|r−R|e
−αj(r−rj)

2

dr. (C.40)

Since, the central term 1
|r−R| can be written as an integral of a s-type GTO

1

|r−R| =
2√
π

∫ ∞

0

e−t2(r−R)2dt, (C.41)

Eq. (C.40), can be considered as an integral of a three-center overlap integral, Eq. (C.19),
with αk = t2 and rk = R. Then, we directly get

⇒ Vss
ij =

−2√
π
γ
3/2
ij Ωss

ij

∫ ∞

0

e
−

γijt
2

γij+t2
ρ2

(γij + t2)3/2
dt,

where ρ = bij −R. This integral can be easily solved changing the variable

t2

γij + t2
= u2 ⇒ 1 + γijt

−2 = u−2 ⇒ γijt
−3dt = u−3du⇒ dt =

1

γij

(
t

u

)3

du. (C.42)
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Hence, we ultimately obtain

Vss
ij = −2

√
γij
π
Ωss

ijF0

(
γijρ

2
)
, (C.43)

where

F0

(
γijρ

2
)
=

∫ 1

0

e−γijρ
2u2

du =

√
π

4γijρ2
erf(
√
γijρ2), (C.44)

is the zeroth order Boys function, Eq. (B.15). Substituting Eq. (C.13) in Eq. (C.43), we
reach

Vss
ij =

−2π

γij
N s

i N s
j KijF0

(
γijρ

2
)
. (C.45)

C.2.7 The Obara-Saika recurrence formula for Coulombic potentials

As we already saw in Eq. (C.40), the matrix elements of single-center Coulombic potentials
can be written as an integral of three-center overlap integrals

V
mimj

ij =
2√
π

∫ ∞

0

Vmimj

ij (t)dt, (C.46)

where
Vmimj

ij (t) =

∫
Gm∗

i
i (r, ri, αi)Gs

k(r,R, t
2)Gmj

j (r, rj, αj)dr. (C.47)

From the three-center overlap recurrence formula, Eq. (C.20), considering αk = t2 and
rk = R, and ρ = bij −R, it is straightforward to obtain the following recurrence formula
for Vmi+1omj

ij (t)

Vmi+1omj

ij (t) =
(
bijo − o∗i

)
Vmimj

ij (t)− ρo

(
t2

γij + t2

)
Vmimj

ij (t)

+
1

2γij

(
1− t2

γij + t2

)(
mioV

mi−1omj

ij (t) +mjoV
mimj−1o
ij (t)

), (C.48)

and inversely for Vmimj+1o
ij (t)

Vmimj+1o
ij (t) =

(
bijo − oj

)
Vmimj

ij (t)− ρo

(
t2

γij + t2

)
Vmimj

ij (t)

+
1

2γij

(
1− t2

γij + t2

)(
mioV

mi−1omj

ij (t) +mjoV
mimj−1o
ij (t)

). (C.49)

Introducing the following auxiliary integral

Vmimj

ij,n =
2√
π

∫ ∞

0

(
t2

γij + t2

)n

Vmimj

ij (t)dt, (C.50)



Appendix C. Matrix elements on the basis of GTOs 93

with non-negative integer n, it satisfies the following recurrence formula

Vmi+1omj

ij,n =
(
bijo − o∗i

)
Vmimj

ij,n +
1

2γij

(
mioV

mi−1omj

ij,n +mjoV
mimj−1o
ij,n

)
−ρoVmimj

ij,n+1 − 1

2γij

(
mioV

mi−1omj

ij,n+1 +mjoV
mimj−1o
ij,n+1

), (C.51)

and inversely

Vmimj+1o
ij,n =

(
bijo − oj

)
Vmimj

ij,n +
1

2γij

(
mioV

mi−1omj

ij,n +mjoV
mimj−1o
ij,n

)
−ρoVmimj

ij,n+1 − 1

2γij

(
mioV

mi−1omj

ij,n+1 +mjoV
mimj−1o
ij,n+1

). (C.52)

So we can conclude

Vmi+1omj

ij,n = Vmimj+1o
ij,n − (o∗i − oj)Vmimj

ij,n . (C.53)

The matrix elements of the Coulombic potential over GTOs, Vmimj

ij is equal to the zeroth
order of the auxiliary integrals, Eq. (C.50)

V
mimj

ij = Vmimj

ij,n=0 . (C.54)

The auxiliary integral introduced in Eq. (C.50), over s-type GTOs gives

Vss
ij,n = 2

√
γij
π
Ωss

ij

∫ 1

0

u2ne−γijρ
2u2

du = 2

√
γij
π
Ωss

ijFn(γijρ
2), (C.55)

where from Eq. (C.42), u2 = t2

γij+t2
, and Fn is the nth order Boys function.

Over s-type and p-type GTOs: initiating the recursive procedure from Vss
ij , and utilizing

Eq. (C.52), it is easy to obtain the matrix element of the Coulombic potential over the ith

s-type and the jth p-type 3D GTOs in different directions, Vspo
ij = Vspo

ij,0 , where

Vspo
ij,n =

(
bijo − oj

)
Vss
ij,n − ρoVss

ij,n+1. (C.56)

Inversely, employing Eq. (C.51), one can easily get the matrix element of the Coulombic
potential over the ith p-type and the jth s-type 3D GTOs in different directions, Vpos

ij = Vpos
ij,0 ,

where
Vpos
ij,n =

(
bijo − o∗i

)
Vss
ij,n − ρoVss

ij,n+1. (C.57)

Over s-type and d-type GTOs: using Eqs. (C.56), and (C.52), the matrix element of the
Coulombic potential over the ith s-type and jth d-type 3D GTOs (Eq. (3.6)) is obtained as
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Vsd
ij =

∑
o=x,y,z

Vsd0
ij,0 , where

Vsd0
ij,n =

(
bijo − oj

)
Vspo
ij,n − ρoVspo

ij,n+1 +
1

2γij

(
Vss
ij,n − Vss

ij,n+1

)
. (C.58)

Inversely, from Eqs. (C.57), and (C.51), the matrix element of the Coulombic potential over
the ith d-type and the jth s-type 3D GTOs, reads Vds

ij =
∑

o=x,y,z

Vd0s
ij,0 , where

Vd0s
ij,n =

(
bijo − o∗i

)
Vpos
ij,n − ρoVpos

ij,n+1 +
1

2γij

(
Vss
ij,n − Vss

ij,n+1

)
. (C.59)

Over p-type GTOs: to calculate the matrix element of the Coulombic potential over the
ith p-type and the jth p-type 3D GTOs in different directions, employing Eqs. (C.56), and
(C.51), we get Vpopo′

ij = Vpopo′
ij,0 , where

Vpopo′
ij,n =


(
bijo − o∗i

)
Vspo′
ij,n − ρoVspo′

ij,n+1 +
1

2γij

(
Vss
ij,n − Vss

ij,n+1

)
o = o′ ∈ {x, y, z}

(
bijo − o∗i

)
V

spo′
ij,n − ρoVspo′

ij,n+1 o ̸= o′ ∈ {x, y, z}
.

(C.60)
Over p-type and d-type GTOs: to get the matrix element of the Coulombic potential over
the ith p-type and the jth d-type 3D GTOs in different directions, using Eqs. (C.58), and
(C.51), we obtain Vpod

ij =
∑

o′=x,y,z

Vpodo′
ij,0 , where

Vpodo′
ij,n =


(
bijo − o∗i

)
Vsdo′
ij,n − ρoVsdo′

ij,n+1 +
1
γij

(
Vspo′
ij,n − Vspo′

ij,n+1

)
o = o′ ∈ {x, y, z}

(
bijo − o∗i

)
V

sdo′
ij,n − ρoVsdo′

ij,n+1 o ̸= o′ ∈ {x, y, z}
.

(C.61)
Over d-type GTOs: for the matrix element of the Coulombic potential over the ith d-type and
the jth d-type 3D GTOs, from Eqs. (C.61), and (C.51), we arrive at Vdd

ij =
∑

o,o′=x,y,z

Vdodo′
ij,0 ,

where

Vdodo′
ij,n =



(
bijo − o∗i

)
Vpodo′
ij,n − ρoVpodo′

ij,n+1 +
1

2γij

(
Vsdo′
ij,n − Vsdo′

ij,n+1

)
+

1

γij

(
Vpopo′
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) o = o′ ∈ {x, y, z}

(
bijo − o∗i

)
V

podo′
ij,n − ρoVpodo′

ij,n+1 +
1

2γij

(
Vsdo′
ij,n − Vsdo′

ij,n+1

)
o ̸= o′ ∈ {x, y, z}

.

(C.62)
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C.2.8 3D Hydrogen atom represented by a single atomic-centered GTO

We are going to get the optimized exponent of a single atomic-centered s-type GTOs
representing the ground state wave function of the 3D Hydrogen atom. Using Eqs. (C.31),
and (C.43), and knowing the fact that F0(ρ = 0) = 1, for a normalized s-type GTO located
on the center, αi = αj = α, and ri = rj = 0, one can easily obtain

Hss
11 = Tss

11 +Vss
11 =

3α

2
− 2

(
2α

π

)1/2

. (C.63)

Employing the variational method, the optimized value for α can be found as

dHss
11

dα
=

3

2
− 2

π

(
2α

π

)−1/2

= 0 ⇒ α =
8

9π
. (C.64)
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