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Abstract

The main objective of this thesis is an investigation toward the qualitative understanding of high
harmonic generation with electrons possessing intrinsic orbital angular momentum in strong la-
ser fields. A non-relativistic single-atom framework is chosen for this work. The emission pattern
and the spectral intensity is investigated by means of a semiclassical spectrum based on the quan-
tum mechanical expectation value of the electric dipole acceleration. A perturbative approach is
used to include the magnetic field beyond the usual dipole approximation for the laser potential.
Based on the corresponding interaction Hamiltonian, an analytical twisted wavefunction is de-
rived in the strong field approximation, i.e., with the exclusion of the atomic binding potential.
The dipole acceleration is calculated for an effective two-level system composed of one bound
Hydrogen state and the twisted electron state. The use of twisted electrons does not change
the high harmonic cutoff compared to untwisted electrons. However, the emission pattern is
that of a rotating dipole, in contrast to the linear dipole emission of traditional high harmo-
nic generation. Furthermore, the spontaneous recombination process restricts the number of
possible recombination channels due to the conservation of angular momentum. The findings
are confirmed by numerical integrations and supplemented by a full quantum simulation of the
three-dimensional atomic system. The simulation results are in qualitative agreement with the
analytical approximations. Quantum electrodynamical calculations complement the semiclassi-
cal approach and a formula for the recombination probability is derived. The final result is a
full quantum mechanical, analytical expression for the generated high harmonic spectrum in a
three-dimensional system with a twisted electron.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der qualitativen Untersuchung der Erzeugung Hoher
Harmonischer im Emissionsspektrum von Rekombinationsprozessen mit Elektronen mit intrinsi-
schem orbitalen Drehimpuls, beschleunigt in einem starken Laserfeld. Die nichtrelativistische Be-
trachtung eines einzelnen Atoms steht dabei im Fokus dieser Arbeit. Die Abstrahlcharakteristik
und die spektrale Intensität werden mit Hilfe von elektromagnetischen Feldern untersucht, welche
aus dem quantenmechanischen Erwartungswert der elektrischen Dipolbeschleunigung unter ei-
ner semiklassischen Betrachtungsweise gewonnen werden. Das magnetische Feld des Lasers wird
durch eine störungstheoretische Behandlung des Vektorpotentials einbezogen und erweitert die
übliche Dipolnäherung. Eine analytisch exakte Lösung der resultierenden Schrödingergleichung
wird, unter der Vernachlässigung des atomaren Potentials, für das sogenannte „twisted“ Elektron
hergeleitet. Weiterhin wird das Gesamtsystem durch ein effektives Zwei-Niveau-System, beste-
hend aus einem stationären gebundenen Zustand des Wasserstoffatoms und der Wellenfunktion
des „twisted“ Elektrons, approximiert. Ein analytisch hergeleiteter Ausdruck für die Dipolbe-
schleunigung ermöglicht die Untersuchung der emittierten Strahlung. Im Gegensatz zum Emis-
sionsprofil eines linearen Dipols in der traditionellen Erzeugung von Hohen Harmonischen ergab
sich hierbei eine veränderte Abstrahlcharakteristik, die eines rotierenden Dipols. Die obere Gren-
ze für das charakteristische, spektrale Plateau bleibt jedoch unverändert. Darüber hinaus wird
die mögliche Zahl der Rekombinationsmöglichkeiten durch die Drehimpulserhaltung beschränkt.
Die theoretischen Resultate werden durch numerische Integrationen bestätigt. Weiterhin erfolgt
eine dreidimensionale quantenmechanische Simulation des vollen Systems zur Untersuchung des
Einflusses des bindenden Potentials. Die Simulationsergebnisse zeigen eine qualitative Über-
einstimmung mit den analytischen Approximationen. Nachfolgende quantenelektrodynamische
Berechnungen vervollständigen die semiklassische Beschreibung und erlauben die Herleitung der
Rekombinationswahrscheinlichkeit in Abhängigkeit der Wechselwirkungszeit. Das finale Ergebnis
repräsentiert einen voll quantenmechanischen, analytischen Ausdruck für das Spektrum Hoher
Harmonischer in einem dreidimensionalen System mit „twisted“ Elektronen.
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1 Introduction
One of the most fundamental principles in physics is to probe a system’s response to an ex-
ternal stimulus and deduce the internal properties and dynamics from the accessible physical
observables. However, the observable scales depend greatly on the typical scales of the stimulus.
Hence, the greater the ability to control the external stimulus, the better will be the attainable
insight into the internal mechanisms and the capability to ultimately tailor any desired response
of the driven system. In the case of electromagnetic phenomena, these mechanisms are due to
an interplay of radiation and charged particles. The systems under study can be composed of
many such particles and may range from simple Hydrogen atoms to complex molecules, up to
solid state structures. The fundamental electronic processes in such systems are confined to very
small regions of space, i.e., down to inner atomic length scales, and happen on very short time-
scales, i.e., classical orbital periods of the inner electrons. In order to probe and to control the
processes taking place in any kind of matter it is necessary to engineer ultrashort, high-energetic
pulses of light. This is the domain of femto- (10−15) and attosecond (10−18) time scales and an
electromagnetic energy range spanning from visible light to x-ray radiation (Figure 1.1).

Figure 1.1: The relevant time and energy scales for microscopic motion of nucleons, electrons and
atoms is shown in the upper part. The lower part comprises a further distinction of
time scales for individual and collective electronic motion in ensembles of electrons
with varying density. Reprinted from [1]

The advances in laser technologies led to the generation of femtosecond (fs) pulses with 2.6 fs
pulse duration in the near infrared regime [2]. Yet, this time resolution is not sufficient to probe
inner shell electron dynamics (Figure 1.1). The discovery of high harmonic generation [3] in 1987
marked an important step toward the generation of sub-femtosecond pulses. It constitutes the
highly non-linear process of converting many low-frequency photons to a single high-energetic
photon by means of an atomic system driven by a laser. 25 years later, high harmonic genera-
tion of orders greater than 5000 became experimentally feasible and the resulting x-ray emission
could theoretically support a single-cycle pulse of 2.5 attoseconds [4]. The application of soft
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x-ray sub-femtosecond pulses from high harmonic generation has been experimentally demon-
strated for the observation of the time-resolved emission of Auger electrons [5]. Many theoretical
and experimental efforts are underway to further increase the accessible photon energy and the
conversion efficiency.

In 1992 and 2007, respectively, it was realized that photons and electrons can possess an intrinsic
orbital angular momentum in free space. Due to their vortex character they have been named
“twisted” light or “twisted” electrons. The intrinsic orbital angular momentum represents a re-
latively new theoretical and experimental concept and serves as an additional degree of freedom.
Theoretical studies for twisted electrons include non-relativistic [6] and relativistic approaches,
including electron spin effects [7]. Also the experimental generation has been demonstrated, for
example in electron microscopes, and became a common tool in the last years [8]. The possible
applications of twisted beams are manifold. For example, twisted light has been used for the
rotation of optically trapped micro-objects [9], while twisted electrons have the potential to mea-
sure magnetic properties of materials at a desired spatial resolution [10]. At a more fundamental
level, it is believed that twisted electrons might help to resolve the spin structure of the proton
in high-energy vortex-particle collisions [11].

The availability of a new degree of freedom for light and electrons offers a great opportunity to
explore new techniques for the enhancement and the control of high harmonic emission. First
steps have been undertaken to incorporated twisted light into strong field physics [12, 13, 14, 15],
including high harmonic generation. An unexplored domain is however the combination of twis-
ted electrons with high harmonic generation. The goal of this thesis is to take a first step toward
closing this gap and to combine both concepts. We aim to qualitatively understand the dyna-
mics involved and to characterize the emission spectrum. Todays laser technologies can cover
large regions in the energy-time domain and necessitate an appropriate theoretical treatment
depending on the two laser parameters, intensity and frequency. Therefore, we decide to work
in a non-relativistic setting and do not take spin into account. For the purpose of investigating
the elementary dynamics, we focus on a single Hydrogen atom.

A brief introduction of the concepts of high harmonic generation and twisted electrons is given in
Chapters 2 and 3, respectively. The model Hamiltonian and the choice of the initial conditions
are presented in Chapter 4 and the behavior of twisted electrons in a strong laser field is treated
in Chapter 5. Chapter 6 contains the analytical derivations of the high harmonic spectrum of
twisted electrons driven by a strong laser field. We confirm and extend the results from the
preceding chapter with numerical integrations and simulations in Chapter 7. The approach of
a quantum electrodynamical setting is discussed in Chapter 8. We conclude in Chapter 9 and
give an outlook of different possibilities that can be explored to improve the results obtained in
this work.



2 High Harmonic Generation
High harmonic generation (HHG) describes the characteristic light emission of a quantum mecha-
nical system, e.g., atom or molecule, driven by a strong laser field with an angular frequency ω0.
High harmonics refer to the peaks in the emission spectrum for angular frequencies which are
multiples of the base frequency, i.e., ω = nω0 (n ∈ N). The underlying quantum mechanical
process is highly non-linear and converts many low-frequency photons from the driving mode to
one high-frequency photon. The special features of this mechanism are described in this chapter
and start with a summary of the typical spectral pattern in Section 2.1. It is followed by the
derivation of a semiclassical (SC) dipole spectrum in Section 2.2. Section 2.3 gives an overview
of explanations for HHG phenomena based on the quantity introduced in the preceding section.

2.1 Spectral characteristics
A typical HHG emission spectrum begins with a strong peak at the laser frequency ω0 and a
steady decay in intensity for increasing photon energy. Contrary to intuition, the spectrum does
not decline further with increasing frequency but exhibits a plateau for higher-order harmonics
of the laser frequency ω0. The spectral intensity is approximately equal for a wide range of
frequencies and is called the plateau. Following the plateau comes a sharp cutoff at an angular
frequency ωcutoff (Figure 2.1). It became apparent that this cutoff frequency depends on the sum
of the atomic ionization potential Ip and the ponderomotive potential energy Up = q2E2

0/(4meω
2
0)

times a constant numerical prefactor η. In a typical single-atom scenario its value is close to
η ≈ 3.17,

ωcutoff = Ip + η · Up η ∈ R+ . (2.1)

The plateau itself exhibits a more fine-grained structure, namely the pronounced peaks at odd
high harmonics ω = (2n + 1)ω0 (n ∈ N). It has been shown that the emitted high-energetic
pulses have a very short pulse-length, being only a fraction of the driving cycle period, e.g.,
on the attosecond scale for an infrared driving field [16, 17]. A typical spectogram is shown in
Figure 2.1.

(a) (b)

Figure 2.1: (a) A typical HHG spectrum shows a plateau region and a high-frequency cutoff.
Reprinted from [18]. (b) A spectogram of the HHG emission displays the chirped
time-dependent emission of different high harmonics. Reprinted from [16].
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Even though HHG fundamentals can be described within a single-atom framework, a typical
experimental setting involves an ensemble of atoms (e.g., dilute gas) and macroscopic effects
have to be taken into account. Such realistic systems have a high complexity and in order to
obtain, for example, attosecond pulses or pulse trains, one has to carefully tune experimental
parameters to balance the interplay of microscopic and macroscopic responses. Such macroscopic
effects include, for example, propagation through a medium, phase-matching, the spatial profile
of the laser, the Gouy phase and plasma effects [19].

2.2 Semiclassical spectrum

In almost all studies of HHG the emission spectrum is investigated through dipole responses of
the atomic system. The radiated electric field is calculated in terms of classical electrodynamics
as the emission of a classical dipole moment ~d = q~r. The electric charge of the electron is
denoted with q = −|e|. Quantum mechanical effects are incorporated by means of the quantum
mechanical expectation value of the dipole operator for an atomic system in state |ψ(t)〉 at time t

~d(t) = 〈ψ(t)|q~̂r |ψ(t)〉 . (2.2)

The emission spectrum is defined by the total radiated energy. It can be expressed as the time-
and area-integrated energy flux of the electromagnetic radiation. The flux is known as the
Poynting vector

~S(t) ≡
~E(t)× ~B(t)

µ0
. (2.3)

The electric and the magnetic fields are denoted by ~E and ~B, respectively. µ0 is the magnetic
constant or vacuum permeability. The total radiated energy ESC,em of an emitting volume V is
given as

ESC,em =
∫ ∞
−∞

dt

∫
A(V )

d ~A ·~S(t) . (2.4)

The electric and the magnetic field of an electric dipole moment ~d in the far field (r � 1) depend
solely on its acceleration ~a(t) ≡ ~̈d(t). At a fixed observation point ~r they are described [20] by

~B(~r, t) = µ0
4πcr

(
~a

(
t− r

c

)
× ~er

)
, (2.5)

~E(~r, t) = c · ~B(~r, t)× ~er . (2.6)

The speed of light in vacuum is denoted by c. Thus the Poynting vector for the dipole emission
in the far field reads

~S(~r, t) = µ0
(4π)2cr2

(
~a

(
t− r

c

)
× ~er

)2
· ~er . (2.7)

The radiated power through a sphere at distance r from the emitting source is given by

∫
dΩ r2 ~er · ~S(~r, t) = µ0

(4π)2c

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

(
~a

(
t− r

c

)
× ~er

)2
. (2.8)
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Neglecting the constant retardation term and using the relations

(~a× ~er)2 = ~a2 − (~a · ~er)2 , (2.9)∫ 2π

0
dϕ

∫ π

0
dθ sin θ (~a · ~er)2 = 4π

3 ~a
2 , (2.10)

the total radiated energy simplifies [21] to

ESC,em = 2
3
µ0
4πc

∫ ∞
−∞

dt |~a(t)|2 . (2.11)

We assume that far in the past and far in the future the acceleration vanishes and is a sufficiently
well-behaving function in the space of square-integrable functions. The Plancherel theorem
relates this expression to the Fourier transform ~̃a(ω) of the dipole acceleration under these
conditions (see Appendix A.1)

ESC,em = 2
3
µ0
4πc

∫ ∞
−∞

dω|~̃a(ω)|2 = µ0
3πc

∫ ∞
0

dω|~̃a(ω)|2 . (2.12)

The last relation follows from ~̃a(−ω) = ~̃a ∗(ω) due to the reality of ~a. Physically speaking, the
total energy of an integrated signal in time or frequency space is the same. This defines the
central quantity of HHG, the spectral intensity

S(ω) ≡ |~̃a(ω)|2 . (2.13)

It should be mentioned that the application of the correspondence principle should be applied
to the full quantity S(ω) and not just the dipole acceleration because of

〈|~̃a(ω)|2〉 6= |〈~̃a(ω)〉|2 . (2.14)

Lappas [22] showed that the spectral contributions can be split into a coherent part |〈~a(ω)〉|2
and an incoherent part 〈|δ~̃a(ω)|2〉, such that

S(ω) = |〈~a(ω)〉|2 + 〈|δ~̃a(ω)|2〉 . (2.15)

The fluctuation is defined as the deviation from the expectation value, i.e., δ~̃a(ω) ≡ ~̃a(ω)−〈~̃a(ω)〉.
The incoherent part is neglected in this thesis and we will work with Equation (2.13).

If the initial and final dipole moment and velocity vanish, Equation (2.13) can be transformed
to an expression with the dipole moment or dipole velocity via partial integrations∣∣∣∣∫ dt eiωt ~̈d(t)

∣∣∣∣2 = ω2
∣∣∣∣∫ dt eiωt ~̇d(t)

∣∣∣∣2 = ω4
∣∣∣∣∫ dt eiωt~d(t)

∣∣∣∣2 . (2.16)

2.2.1 Dipole acceleration

The time derivative of the expectation value of an arbitary operator Ô is given by the Ehrenfest
theorem (see Appendix A.2)

d

dt
〈Ô〉 = i

~

〈[
Ĥ, Ô

]〉
+
〈
∂Ô
∂t

〉
. (2.17)
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Assuming a 1D Hamiltonian Ĥ = p̂ 2/2m+ V (x̂, t), this leads to
d

dt
〈p̂〉 = 〈−∂xV (x, t)|x=x̂〉 , (2.18)

d

dt
〈x̂〉 = 〈p̂〉

m
. (2.19)

The last line shows that with Equation (2.16) the spectrum can also be formulated in terms of
momentum operator expectation values (dipole velocity). Taking the time derivative of the last
line and inserting the first line leads to an expression in terms of the potential gradient, i.e., the
force operator

q
d2

dt2
〈x̂〉 = − q

m
〈∂xV (x, t)|x=x̂〉 . (2.20)

Although, it should be noted that several authors have advised the use of the dipole velocity
instead of the dipole acceleration to determine the spectrum of a microscopic single-atom the-
ory [23, 24].

2.3 Origin of spectral characteristics
Many attempts have been made to understand the characteristics of HHG spectra. The methods
have ranged from full quantum mechanical numerical simulations to semiclassical and classical
analytical approaches. The HHG dynamics is usually described with the Three-Step model [25],
in which a neutral atom in the ground state is considered as the initial state. The successive
steps of the process are shown in Figure 2.2 and outlined below.

1. Tunnel ionization of the atom, such that a part of the electron wavefunction effectively
leaves the core potential; some fraction of the wavefunction remains in the atomic state.

2. Free electron motion in laser field.

3. Eventually the electron returns to the nucleus and has a chance to radiatively recombine
with the nucleus.

Figure 2.2: The three sequential steps of the HHG process are displayed. The electron tunnels
out of the binding potential (a), is accelerated in the electric field (b, c) and a fraction
recombines with the parent ion under the emission of one high-energetic photon (d).
Reprinted from [26].
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All features of the HHG emission spectrum can be explained with a 1D Hamiltonian

Ĥ = p̂ 2

2me
+ V (x̂)− qx̂E(t) . (2.21)

The binding potential V is assumed to be centered around the origin x = 0. Here and subse-
quently, the term f(x̂) is to be understood as a Taylor expansion in terms of polynomials of the
operator x̂. Each of the three main characteristics is explained in the subsequent Sections 2.3.1,
2.3.2 and 2.3.3.

2.3.1 Cutoff
As stated in Section 2.1, the cutoff frequency will depend on the kinetic energy the electron can
obtain in the laser field. One quasiclassical and two semiclassical approaches for a derivation of
the cutoff will be explained below.

1. Quasiclassical (“recollision picture”): This refers to a classical description of the
electron motion after quantum mechanically tunneling out of the binding potential under
the influence of the laser field. The free electron starts its motion in the vicinity of the
core at x ≈ 0 with no velocity v ≈ 0 and after some time it can eventually recollide
with the atom if it returns to x ≈ 0. The radiated energy is then equal to Ekin + Ip.
Hence, the maximal kinetic energy the electron can acquire until recollision depends on
the time of ionization t0. Different ionization times correspond to different phases of the
electric field. However, the recombination with the parent ion is of quantum mechanical
nature. The classical equations of motion for (2.21) with V = 0 and a continuous-wave
field E(t) = E0 cos(ω0t) are

mev̇(t) = qE(t) , (2.22)

v(t) = qE0
meω0

[sin(ω0t)− sin(ω0t0)] , (2.23)

Ekin(t) = me

2 v2(t) = 2Up [sin(ω0t)− sin(ω0t0)]2 , (2.24)

x(t) = − qE0
meω2

0
[cos(ω0t)− cos(ω0t0) + sin(ω0t0)(t− t0)] . (2.25)

Solving for x(t1) = 0 (t1 > t0) leads to a transcendental equation but can be tackled
numerically. The maximal kinetic energy upon recombination in dependence of the ioni-
zation time is shown in Figure 2.3 and its maximum equals approximately 3.17 units of
the ponderomotive energy Up.

0 T0/8 T0/4
Ionization time t0

0

1

2

3

E k
in

 [U
p]

Figure 2.3: The classical kinetic energy upon return to the initial position of a charged particle
moving in an oscillatory electric field is shown in dependence on the initial phase of
the field, given in units of the laser period T0 = 2π/ω0.
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The kinetic energy has maxima for ionization times ω0t0 ≈ 17◦ + n · 180◦ ≈ π/10 + nπ
(n ∈ N) and has a maximum value [27] of

Ekin,max ≈ 3.17Up . (2.26)

2. Semiclassical: In the seminal paper by Lewenstein [18] the dipole moment was investi-
gated with the following important assumptions:
• Only a small fraction of the electronic bound states becomes ionized.
• The influence of the binding potential V on the free motion of the ionized part is
negligible.
• The ground state |0〉 is the only bound state important for HHG dynamics.

The full wavefunction, in atomic units (Appendix C.1), is written as

|ψ(t)〉 = eiIpt
(
|0〉+

∫
d3~p b(~v, t)|~v〉

)
(2.27)

with the continuum states |~v〉. The temporal evolution of the continuum coefficients b(~v, t)
is obtained from the Schrödinger equation with the Hamiltonian (2.21) in 3D. The electric
field is linearly polarized in x-direction. The final expression for the dipole moment reads

〈ψ(t)|x̂|ψ(t)〉 =

i

∫ t

0
dt′
∫
d3~p E0 cos(w0t

′) dx
(
~p− ~A(t′)

)
︸ ︷︷ ︸

tunneling

e−iS(~p,t,t′)︸ ︷︷ ︸
motion in laser

d∗x

(
~p− ~A(t)

)
︸ ︷︷ ︸
recombination

+c.c.

(2.28)

with the transition element ~d(~v) = 〈~v|~̂r |0〉 and the quasiclassical action S(~p, t, t′). The
vector potential of the laser field is denoted by ~A. The most important contributions in
the momentum integral come from the stationary points of S

~∇~pS(~p, t, t′) = ~r(t)− ~r(t′) != 0 . (2.29)

The solutions to this equation are just the contributions from electrons returning to the
vicinity of the nucleus. Without going into detail, the important “trajectories” for high
harmonic generation are those born with zero initial velocity, which was one of the as-
sumptions in the quasiclassical picture. Furthermore, they show that for Ip � Up the
saddle-point conditions lead to the dynamical equations of the quasiclassical approach,
having a solution of 3.17Up for the maximal kinetic energy. Higher energetic “trajectories”
do not contribute significantly to the integral, the reason being the cancellation of rapidly
oscillating action phases. Additionally, they were able to show that only odd harmonics
contribute due to symmetry reasons, but this is further explored in Section 2.3.2.

3. Semiclassical Two-Step model: The qualitative study of HHG with wavefunctions
becomes even simpler if the quantum mechanical tunneling process is assumed to have
already taken place. In this context the dynamics is simplified and the following model
can be seen as a proxy to investigate HHG dynamics. An electron wavepacket is deployed
at initial time t = 0 at some distance away from a bare ionic core [28]. It can be either a
fully depleted Hydrogen atom or a larger atom with full single electron ionization within
the single-active electron approximation. Contrary to the Three-Step model, the phase
of the laser field at which the free motion starts is a free parameter. Nevertheless, it can
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qualitatively describe the mechanism behind the cut-off, even though the numerical value
of the prefactor of Up will be different than 3.17. After the first encounter with the ion a
fraction of the wavefunction recombines and the bound state has a non-vanishing probabi-
lity density, which is important for the high harmonic frequencies to emerge in the dipole
spectrum, as can be seen below.

The wavefunction superposition (2.27) can be further reduced by approximation of the
continuum part by a semiclassical wavepacket with a quantum mechanical phase Φf (t),
determined by the classical action in the laser field, namely

ψ(x, t) ≈ cb(t)χb(~r )e−iΦb(t)/~ + cf (t)χf (x, t)e−iΦf (t)/~ . (2.30)

The subscripts indicate the free (f) and bound (b) part of the full wavefunction. This rather
strong assumption is justified by the observation of localized dynamics for semiclassical
trajectories [29]. It is hereinafter referred to as wavefunction splitting. The phase of the
bound state Φb(t) ≈ Ipt ≥ 0 can be approximated to depend only on the binding potential.
The phase of the free part is determined by the action of the classical trajectory of an
electron in the laser field, namely Φf (t) = −Up (t+ sin(2ω0t)/(2ω0)) ≤ 0. The initial
position of the wavepacket center is chosen to be the maximum quiver amplitude and is
subsequently driven toward the ion, i.e., x(t) = xmax cos(ω0t) and E(t) = E0 cos(ω0t). As
in the Lewenstein model, the Coulomb potential is assumed to have negligible influence
for sufficiently strong fields. The dipole spectrum (2.13) of the full wavefunction (2.30)
contains the interference term of both states

S(ω) ∝
∣∣∣∣∫ dt eiωte−i(Φb(t)−Φf (t))/~ · c∗b(t)cf (t)

∫
dx
(
· · ·
)∣∣∣∣2 . (2.31)

The factor in parenthesis includes wavepacket spreading, temporal change of the coefficients
and the movement of the wavepacket center. The last two effects happen on the timescale of
the driving period and do not contribute to the plateau frequencies. Diffusion timescales are
also negligible if the initial width is not very small, e.g., much smaller than the Bohr radius.
Only the stationary phases are important for the Fourier transform and, accordingly, the
extremal points are obtained from the phase difference

d

dt
[~ωt− (Φb(t)− Φf (t))] = 0 , (2.32)

~ω −
[
Ip + Up (cos(2ω0t) + 1)︸ ︷︷ ︸

=2 cos2(ω0t)

]
= 0 . (2.33)

Thus, the maxima are obtained for stationary points ω0tmax = nπ (n ∈ N) and lead to the
maximum frequency

~ωmax = Ip + 2Up . (2.34)

Such high-energetic photons are emitted when the free wavepacket center is in the vicinity
of the origin (x(tmax) = 0). The minimal obtainable frequency for the stationary phases
is ~ωmin = Ip and marks the lower end of the plateau region. Associated emission times
ω0tmin = (2n+ 1)π correspond to electron locations furthest away, namely x(tmin) = xmax.
Equation (2.31) reveals also the importance of both states being populated to exhibit high
harmonic generation.
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2.3.2 Odd harmonic peaks

The seperation of HHG peaks can be explained within the semiclassical 2-step picture. The
phase of the free wavepacket can be rewritten with the Jacobi-Anger expansion

eiz sin θ =
∞∑

k=−∞
Jk(z)eikθ . (2.35)

Bessel functions of the first kind are denoted by Jk(z). The interference term (2.31) reads then

S(ω) ∝

∣∣∣∣∣∣
∫
dt eiωt

∞∑
k=−∞

Jk

(
Up

2~ω0

)
e−i(Ip+Up+2k~ω0)t/~ · c∗b(t)cf (t)

∫
dx
(
· · ·
)∣∣∣∣∣∣

2

. (2.36)

It becomes apparent that a stationary phase analysis leads to a seperation of twice the laser
frequency between adjacent peaks, ∆ω = 2~ω0. The cutoff frequency is now set by the Bessel
function and can be derived from its asymptotic form [30]

Jk(x) |k|�1−−−→ (−1)k√
2π|k|

(
ex

2|k|

)|k|
. (2.37)

This function declines rapidly for |k| & x. Hence, the lower and upper boundary of the plateau
correspond to kbound = ±bUp/(2~ω0)c and lead to the same maximum frequency (2.34).

Generalized parity transformation

Even though this shows the separation of the peaks in the plateau, the semiclassical method
cannot explain the lack of even harmonics in the spectrum. An underlying symmetry of the
Hamiltonian (2.21) is responsible for odd multiples of the laser frequency [30]. The only other
assumption necessary is the even symmetry of the binding potential term under spatial parity
transformations, V (−x) = V (x). Then the Hamiltonian is not only symmetric under periodic
time translations P̂T : t → t + T (T = 2π/ω0), but also under the generalized parity transfor-
mation

P̂G : x→ −x t→ t+ T

2 . (2.38)

The Floquet theorem states that the general solution to the Schrödinger equation of harmonically
driven systems can be written as a superposition

Ψ(x, t) =
∑
n

cne
−iεnt/~ψn(x, t) (2.39)

of Floquet states ψn(x, t). These Floquet states are eigenfunctions of the Floquet operator
Ĥ ≡ Ĥ − i~∂t, i.e.,

Ĥψn(x, t) = εnψn(x, t) , (2.40)

and have time-periodicity P̂Tψn(x, t) = ψn(x, t+T ) = ψn(x, t). The energy variables εn are called
quasienergies. The commutator

[
P̂G, Ĥ

]
= 0 vanishes and a set of simultaneous eigenfunctions

exists, which is either even or odd under the generalized parity transformation

P̂Gψn(x, t) = ψn(−x, t+ T/2) = ±ψn(x, t) . (2.41)
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The eigenvalues can be derived from the relations P̂T = P̂2
G and λT = 1 for P̂Tψn = λTψn,

leading to

λT = λ2
G = 1 ⇒ λG = ±1 . (2.42)

In order to see the effect of the symmetry on the spectrum we consider the Fourier transform
of the dipole moment instead of the acceleration form (see Equation (2.16)). In general, the
integration limits are finite. However, for simplicity, they shall be minus and plus infinity in the
following. Substituting the expansion in Floquet states (ωn ≡ εn/~) gives∫

dt eiωt〈x〉 =
∑
m,n

c∗mcn

∫ ∞
−∞

dt ei(ω−ωn+ωm)t
∫ ∞
−∞

dxxψ∗m(x, t)ψn(x, t) . (2.43)

Splitting the spatial integral in half and using the symmetry under the generalized parity trans-
formation leads to∫

dt eiωt〈x〉 =
∑
m,n

c∗mcn

∫ ∞
−∞

dt ei(ω−ωn+ωm)t
[
1± e

iπ

(
ω−ωn+ωm

ω0

)] ∫ ∞
0

dxxψ∗m(x, t)ψn(x, t)

(2.44)

=
∑

m,n 6=m
c∗mcn

∫ ∞
−∞

dt ei(ω−ωn+ωm)t
[
1± e

iπ

(
ω−ωn+ωm

ω0

)] ∫ ∞
0

dxxψ∗m(x, t)ψn(x, t)

+
[
1− e

iπ

(
ω
ω0

)]
·
∫ ∞
−∞

dt eiωt
∑
n

|cn|2
∫ ∞

0
dxx |ψn(x, t)|2︸ ︷︷ ︸
≥0

. (2.45)

The minus sign corresponds to the dipole elements between Floquet states with equal generalized
parity and the plus sign to different generalized parities. The square bracket term in the last line
vanishes for even multiples of the laser frequency ω = 2kω0 and has maxima for odd multiples.
In general, the wavefunction is in a superposition of Floquet states and their contributions add
up for odd harmonic frequencies. The amplitude maxima of the first line are spread across the
spectrum. If the quasienergies are taken to be in the first Brillouin zone, −ω0/2 ≤ ωn ≤ ω0/2,
the peak frequency can be determined to be between integer multiples of ω0. The first line
maximum frequencies are

ωmax,1 = ±∆mn + ω0 ·
{

2k different generalized parity
(2k + 1) same generalized parity

, (k ∈ Z) . (2.46)

The energy difference is defined as ∆mn = ωm − ωn. However, their intensity is smaller com-
pared to odd harmonic frequencies since only single pairs of different Floquet states prompt
this emission. Hence, the peaks for odd harmonics are more pronounced than frequencies from
inference terms of different Floquet states. A more comprehensive analysis can be performed if
the Floquet states are decomposed into discrete Fourier modes [31], but this is beyond the scope
of this thesis.

2.3.3 Plateau region
The plateau structure originates from the interference term of bound and free parts of the electron
wavefunction. That the spectral intensity of different high harmonics is of the same order will be
explained with (2.36). The contributions of the Bessel functions for different k ∈

(
− Up

2~ω0
,
Up

2~ω0

)
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within the plateau region is similar in magnitude. Without mathematical proof, we refer to
Figure 2.4 and present numerical evidence for Up/(2~ω0) = 30.

30 0 30
x

0.2

0.0

0.2

J x
(3

0)

Figure 2.4: The values for different orders x of Bessel functions Jx(z) with fixed argument z
are equal in magnitude as long as x ≤ z. The exponential decay, described in
Section 2.3.2, occurs for values x > z.



3 Twisted Electrons
In this chapter we will introduce the notion of twisted wavepackets in Section 3.1 and present
some of their properties. However, only the most important features will be explained without
going too much into detail. Afterwards, we briefly mention two experimental realizations for the
generation of twisted electrons in Section 3.2, and finally, a possible construction through the
superposition of plane-waves is explained in Section 3.3. This will be an important tool for the
treatment of twisted electrons in a strong laser field.

3.1 Twisted wavepackets
In 1992 Allen et al. [32] showed that Maxwell’s equations admit a free space solution in cylindrical
coordinates (ρ, ϕ, z) in the paraxial approximation describing Laguerre-Gaussian beams with a
phase factor of the form

~E ∝ exp(ilϕ+ kz) , l ∈ Z . (3.1)

Furthermore, they demonstrate that it accounts for an intrinsic orbital angular momentum
(OAM) of l~ per photon. Due to the phase singularity at ρ = 0 it is referred to as “optical
vortices” or “twisted light”. Bliokh et al. [6] showed in 2007 that the Schrödinger equation in
free space admits a similar solution in the paraxial approximation with

ψT ∝ f(ρ, z) exp(ilϕ+ pcz/~) (3.2)

and some envelope function f . The momentum pc is assumed to be the central momentum of ψT
such that 〈~̂p 〉 = pc~ez. Such wavefunctions are called “structured matter waves”, “vortex wavepac-
kets” or “twisted wavepackets”. They will be indicated by a subscript T. Their distinguishing
properties result from the aforementioned phase factor. A vortex wavepacket is an eigenfunction
of the z-component of the orbital angular momentum operator L̂zψT = −i~∂ϕψT = l~ψT. Inte-
restingly, this orbital angular momentum does not have a classical counterpart and is an intrinsic
property of the wavefunction, independent of the chosen coordinate system [33]. In contrast to
classical orbital angular momentum, the expectation value of the orbital angular momentum
operator

〈~̂L〉 = l~
〈~̂p 〉
|〈~̂p 〉|

(3.3)

is longitudinal for a twisted wavefunction of form (3.2) with respect to its central momentum.
Additionally, it is easily shown that the expectation value of the position operator 〈~̂r 〉 still
follows a rectilinear motion along ~ez. Hence, the expectation value of the classical orbital angular
momentum vanishes, i.e.,

〈~̂r 〉 × 〈~̂p 〉 = 0 . (3.4)

Moreover, the probability current density

~j ∝ pc~ez + l~
r
~eϕ (3.5)
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shows the same characteristic behaviour as the Poynting vector in the case of vortex light beams.
A definition for this quantity will be given later in Section 5.4.3. The probability current coils
around the z-axis, as shown in Figure 3.1.

Figure 3.1: The probability current (3.5) vector field is illustrated on a cylindrical surface. Re-
printed from [11].

The phase singularity at ρ = 0 is also responsible for a vanishing wavefunction at this point in
order to ensure continuity of ∇ψT. Consequently the probability density also vanishes at the
origin of the transverse plane.

More details and properties can be found in the excellent review paper by Bliok et al. [11].

Radiation from free twisted electron

The probability current (3.5) is twisted in space and might give the impression that some acce-
leration is involved. From classical electrodynamics it is known that accelerated charges emit
radiation and one might expect these wavepackets to radiate. However, the expectation value of
the momentum operator is rectilinear and constant in time. Hence, in a semiclassical context,
the free twisted electron is not accelerated and does, therefore, not radiate. The same will be
true for a full quantum mechanical treatment.

3.2 Generation of twisted electrons in experiment

The concept of vortex electron is not only a theoretical construct but has been realized in
experiments as well. Two generation schemes, that were already suggested in the first theoretical
paper [6], are shown below and more are mentioned in [11].

3.2.1 Spiral phase plate

The following method is equivalent to the generation of twisted light beams with spiral phase
plates. The propagation of a plane-wave electron beam through a medium adds an additional
phase ∆Φ compared to the free space propagation. If the phase plate can be engineered to have
a spiral structure such that, depending on the azimuthal angle ϕ, phase delays of [0, 2πl] can be
realized, then an incident plane-wave is transformed to a vortex beam (Figure 3.2). This method
was used to experimentally verify the existence of twisted electron beams for the first time [34].
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(a)

(b)

Figure 3.2: The left plot (a) shows a depiction of the transformation of a plane-wave beam to
a vortex beam via a spiral phase plate. Reprinted from [11]. The first experimental
evidence by means of the measured phase in dependence of the azimuthal angle is
shown in the right plot (b). Reprinted from [34].

3.2.2 Diffraction grating
The second scheme is also adapted from optics where it has been employed to generate twisted
light. The idea behind the mechanism is to generate twisted beams by shining a plane-wave
electron onto a structured diffraction grating. A successful implementation has been demonstra-
ted in 2010 [35]. Such a structure is determined from the interference pattern of the incident
wavefunction and the target wavefunction. The intensity pattern of a slightly tilted plane-wave
and a vortex wavefunction has the form ∝ [1 + cos(lϕ− kxr cosϕ)] [11]. It possesses a fork-like
pattern and a binarized version can be used to manufacture a grating structure. An illustration
is presented in Figure 3.3. The corresponding experimental outcome is shown in Figure 3.4.

(a) (b)

Figure 3.3: (a) The interference pattern of a twisted beam with a tilted plane-wave beam is
shown on the left. The binarized form is used for the diffraction grating. (b) The
outcome of a plane-wave beam diffracted by this grating is a sum of twisted beams
spatially separated depending on their OAM. Reprinted from [11].
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(a) (b)

(c) (d)

Figure 3.4: The diffraction by a grating allows for a great number of possible outcome shapes.
Two viable options are presented. The upper plot corresponds to Figure 3.3 (a) and
the outcome modes l = 0,±1,±3 are shown with their intensity distribution (b). A
higher order grating shape (c) produces twisted electron beams with larger OAM
(d). The lower plots (c), (d) correspond to a production of vortex charge l = 9. The
white scalebars respresent 2µm and the yellow scalebars correspond to 10 nm (≈ 200
Bohr radii). Reprinted from [11].

3.3 Construction from plane-waves

The wavefunction (3.2) was obtained for the paraxial approximation of the free Schrödinger
equation. The question arises if such vortex wavepacket can be constructed from exact solutions,
namely the plane-wave momentum eigenfunctions ψ~p(~r ). The overlap with a twisted wavepacket

〈ψ~p|ψT〉 ∝
∫
dϕ ei~p·~r/~eilϕ ∝ eilφ (3.6)

has a similar characteristic exponential factor but in momentum space (p⊥, φ, p‖) [11]. The in-
tegral solution can be found in Appendix B.2. This form allows to construct a general twisted
wavepacket that is also a solution of the Schrödinger equation without the need for a paraxial
approximation. Additionally, the plane-wave composition makes it possible to construct a finite
wavepacket subjected to wavefunction spreading. The mathematical description is further ex-
plored here and a solution is sought that fulfills the requirement for a localized and normalizable
wavepacket and reduces to a Gaussian wavepacket for l = 0. We start by assuming a general
form for the free twisted wavepacket

ψT ∝ eilϕ · f(ρ, z) (3.7)

in cylindrical coordinates (ρ, ϕ, z) in position space. As mentioned above, the plane-wave de-
composition reveals that the weight in momentum space (p⊥, φ, p‖) has the same exponential
factor but with the azimuthal angle in momentum space. Hence, a general form for the weights
ψ̃(~p ) in momentum space is assumed, namely

ψ̃(~p ) = eilφ f(p‖) g(p⊥) . (3.8)
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The twisted wavepacket in position space is constructed by superposition of free plane-waves
ψ~p(~r ) ∝ exp

[
i(~p · ~r − ~r 2t/2)/~

]
with the weights (3.8) and reads

ψT(~r ) ∝
∫
d3~p ψ̃(~p ) · ψ~p(~r ) (3.9)

∝ eilϕ · FT
[
e
−ip2
‖t/2f(p‖)

]
(z) ·

∫ ∞
0

dp⊥ p⊥ Jl(p⊥ρ) · g(p⊥)e−ip2
⊥t/2 ≡ eilϕF (z)G(ρ) ,

(3.10)

with new functions F and G. FT denotes a Fourier transform. The last integral is a Hankel
transform of order l, namely Hl(u) ≡

∫∞
0 dt t Jl(ut) · h(t). It is known that Laguerre-Gaussians

(LG) ∝ (αr)le−α2r2/2Lls(α2r2) are form-invariant under Hankel transforms [36]

∫ ∞
0

dr r(αr)lJl(kr)Lls(α2r2)e−
α2r2

2 = (−1)sα−l−2
(
k

α

)l
Lls

(
k2

α2

)
e−

k2
2α2 (l, s ≥ 0; l, s ∈ N)

(3.11)

and, hence, allow for a good and simple analytical description of twisted wavepackets. The
generalized Laguerre polynomials are denoted by Lls(x). Without loss of generality, we choose
the lowest mode Lls=0(x) = 1 and utilize the LG function for g. Similarly, a Gaussian is chosen
for f since it is form-invariant under a Fourier transform. Both choices for f and g have
the advantage of being localized and vanishing exponentially fast, such that they are square-
integrable. The radial part G(ρ) will then reduce to a normal Gaussian for l = 0, without the
vanishing amplitude at ρ = 0. Hence, the full wavefunction will reduce to a Gaussian wavepacket
in this limit. The weight in momentum space for an arbitrary l ∈ Z reads

ψ̃T,α,β,l(~p ) ∝ eilφ exp
[
−
α2p2

‖
2

]
p
|l|
⊥ exp

[
−β

2p2
⊥

2

]
(3.12)

and leads to a twisted wavepacket of equal form. An initial momentum in z-direction can
be easily included with ψ̃(~p − p0~ez). Having such a decomposition readily available allows to
construct a twisted electron wavepacket in a strong laser field with polarization in z-direction.
This is pursued in Chapter 5.





4 Model for HHG with Twisted
Electrons

Our goal is to give a qualitative description of the high harmonic emission spectrum from atomic
systems with vortex electrons. Twisted wavepacket dynamics is inherently three-dimensional and
needs to be treated accordingly, since a one-dimensional description is not adequate anymore.
In addition, the magnetic field cannot be neglected for intense laser fields [37, 38]. Consequently,
magnetic effects will be included with a first order 1/c-expansion of the vector potential [39],
additionally to the common dipole approximation. As will be shown in Chapter 5, aforesaid
expansion recovers the magnetic field of the full free field expression in the long wavelength limit
~k · ~r � 1. The model Hamiltonian for the atomic system is introduced in Section 4.1. To cope
with the complexity of the system and its dynamics, an important approximation of the full
wavefunction is stated in Section 4.2, which lies at the heart of this work. Lastly in Section 4.3,
the appropriate form of the initial wavefunction is discussed.

4.1 Hamiltonian of atomic system
The starting point for our analysis is the Schrödinger equation

i~∂tψ(~r, t) =
[

(~̂p− q ~A(~r, t))2

2me
− q2Z̄

4πε0r

]
ψ(~r, t) (q = −|e|) (4.1)

with a Coulomb potential associated with a nucleus of charge −qZ̄ = Z̄|e|. The strong monochro-
matic laser field ~A can be described as a classical field with one mode ~A(~r, t) = ~A0(t) sin(ωt−~k·~r),
due to the insignificance of quantum effects for vastly populated photonic modes. The prefactor
~A0(t) can be a time-varying envelope function, but is taken to be constant and linearly polarized
in the z-direction. The motion of the core will be neglected by virtue of its high inertia compa-
red to the electron (me � mp). For the remainder of this thesis the atom species is set to be
Hydrogen (Z̄ = 1). The treatment of the magnetic field will be postponed to the next chapter
and only the general idea of the model Hamiltonian will be conveyed here. If the typical length
scale of the system is shorter than the wavelength of the laser field, the term ~k · ~r is small and
can be treated perturbatively. In zeroth order perturbation, called the dipole approximation
~A(~r, t) ≈ ~A(t), the Hamiltonian can be recast into its length gauge form

i~∂tψ(~r, t) =
[
~̂p 2

2m − q
~E(t) · ~r − q2

4πε0r

]
ψ(~r, t) . (4.2)

This is done via a unitary gauge transformation ψ → Ûψ with Û = exp(iq ~A(t)·~r/~). The spatial
dependency of the potential terms show that two distinct regions can be identified, equivalent
to the one-dimensional system treated in [29]. In view of this observation we put constraints on
the electronic state wavefunction and its dynamics.

4.2 Wavefunction splitting
The Coulomb potential will dominate over the laser interaction term for distances close to the
origin (r → 0). On the other hand, for sufficiently large distances, r →∞, it is the electric field
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coupling that exceeds the Coulomb potential, even though it is of long-range nature. Depending
on the strength and phase of the field a boundary, at which both potentials equal in magnitude,
can be identified. This fact is depicted in Figure 4.1 for a cross section in polarization direction.

zc 0 zc
z

0
V

Figure 4.1: For the combination (blue solid line) of Coulomb potential (dashed green line) and
laser interaction (dashed orange line) two separate domains emerge in the potential
energy landscape of (4.2). The boundary (black dotted lines) lies around the origin
and marks the transition from the Coulomb dominated (green filled area) to the laser
dominated region (orange filled area).

The classification of regions with dominant interactions suggests a perturbative treatment of
the minor potential terms. The simplest approximation is the zeroth order perturbation, in
which the smaller terms are neglected. This is of great advantage when the dynamics become
separable. Zagoya et al. [40] introduced the concept of Dominant Interaction Hamiltonians for
semiclassical trajectories and subdivided the classical phase space accordingly. They investiga-
ted HHG dynamics for (2.21) and showed that convergence of the spectrum could be achieved
with a total number of trajectories that was two magnitudes smaller than the number needed for
propagation under the full potential. Based on this method and the separable dynamics, they
were able to calculate an analytical, semiclassical expression for the coefficients of an approxi-
mate wavefunction [41], the splitted wavefunction [29] referred to in Section 2.3.1.

The above observations lay ground for the negligible influence of the laser on the quantum me-
chanical ground state and is one of the assumptions in Lewenstein’s seminal paper [18] mentioned
in Section 2.3.1. Additionally, we adopt the conjecture from [18] that only the ground state is
important for HHG. If the ionization potential is of similar magnitude than the ponderomotive
potential, then it is evident that high-energetic photons in the cutoff region can only be emitted
for an electron recombining into the ground state. However, we will estimate the HHG contri-
bution from excited bound states in Chapter 6.

We hypothesize the aforementioned results to hold for the three-dimensional system and approx-
imate the full Hilbert space to be composed of only one free and one bound state. Effectively,
this renders the full atomic system a two-level system, namely

ψ(~r, t) = cb(t)ψb(~r, t) + cT(t)ψT(~r, t) . (4.3)
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The twisted electron is then associated with this free part and denoted with a subscript T. Hence,
only two Schrödinger equations with reduced Hamiltonians have to be solved. The quantum me-
chanical solutions of (4.2) for either potential term are exact, namely the Hydrogen eigenstates
and Volkov wavefunctions (see Section 5.2).

The issues of this splitting have to be addressed. First, they do not form a complete basis of
the Hilbert space and are not even orthogonal, in general. Second, eventually the free Volkov
wavepacket will enter the domain of the Coulomb potential to recombine. The validity of using
only Volkov solutions breaks down. However, if the mean kinetic energy (∝ Up) of ψT is large
upon entering the vicinity of the origin, we expect the region of invalidity to narrow. Third,
the exclusion of excited bound states precludes other recombination channels and state transfer
from the ground state. The former will be investigated and the latter becomes negligible if the
laser frequency ω0 is far detuned from the resonance frequency (E1 − E0)/~. Fourth, as shown
in Section 2.3.2, the peaks in the HHG spectrum will not be of odd multiple order.

4.3 Initial state
The initial conditions for the model at hand still have to be determined. In this work we consider
two scenarios in which one takes, at least conceptually, the ionization process into account. This
will merely fix the initial coefficients ci(0) in (4.3), but corresponds to two distinct physical
situations.

4.3.1 Ionization process

The usual HHG scenario has an atomic system initially in the ground state and no part of the
electronic wavefunction has been ionized before any interaction with the laser field takes place.
In order to study HHG with vortex electrons it becomes apparent that the ionized wavefunction
must be transformed to a twisted state within the laser pulse length. However, to the best of our
knowledge, no such device or potential is available. This presents a serious drawback, but does
not prevent us to investigate the HHG spectrum with twisted electrons. We assume that the
ionization process and the interaction with this hypothetical potential has already happened.
Thus, the initial state is a superposition of the ground state (|cb(0)| ' 1) and a small ionized
fraction in a twisted state (|cT(0)| � 1). This will be referred to as scenario 1 . The width of
the ionized wavepacket is fixed by the laser parameter by means of the ionization rate and is not
a free parameter. However, we set it to an arbitrary constant in this work.

4.3.2 Laser-assisted scattering

Departing from the traditional approach we include a second, more realistic scenario already
mentioned in Sections 2.3.1 [29] and 4.2 [40, 41]. Laser-accelerated electrons (cT(0) = 1) scat-
tered on a positive ion (cb(0) = 0) can show high harmonic emission too. The initial electron
momentum is taken to be zero and increases later due to the subsequent acceleration in the
laser field. The inital position and the phase of the electric field are tuned to have a vanishing
net drift away from the ion, namely ~A0(t) = −A0~ez and ~r = zmax~ez. The advantage of this
scattering scenario is threefold. First, and most importantly, it does not involve the action of
a so far unknown device on the ionized wavefunction. The generation of the twisted electron
can happen far away and must not be close to the origin, as in scenario 1 . Second, the non-
recombining fraction of the electron wavefunction, drifting away from the ion, is minimized. If
the ionization process is included, then some part of the continuums wavepacket never returns to
the parent ion. This can be seen in the numerical simulations in Chapter 7. Third, the width of
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the incoming wavepacket represents another available degree of freedom and can be engineered
in an unrestricted way, in constrast to scenario 1 . This connection has not been explored so far
and we will designate this approach by scenario 2 in the following.

The missing element to calculate the dipole acceleration is the analytical description of the
twisted electron in the laser field and is derived in the following chapter.



5 Twisted Electrons in Strong Laser
Field

The general idea of this chapter is to replace the free plane-waves in Section 3.3 with plane-wave
Volkov solutions in the superposition. Such Volkov states are exact solutions of a free charged
particle moving in a strong, polarized laser field and have the free plane-waves as asymptotic
limit for a vanishing field. In general, Volkov wavefunctions are relativistic in nature, but under
certain circumstances they can be approximated with a non-relativistic form (Section 5.1). The
wavepacket form we seek should fulfill the following limits

Twisted electron in laser field −→


Gaussian Volkov wavepacket l→ 0
Free twisted wavepacket ~A→ 0
Free Gaussian wavepacket ~A→ 0, l→ 0

.

First, the appearance of the magnetic field through a Taylor expansion is treated in Section 5.1.
The non-relativistic Volkov solutions are introduced in Section 5.2. Finally, the analytical form
for the wavefunction is derived in Section 5.3 and its properties are presented in Section 5.4.

5.1 First order correction with 1/c-expansion

The full-fledged vector potential for an electromagnetic wave in vacuum contains a retardation
term ωt− ~k · ~r which is of relativistic nature. Such a term causes problems in a non-relativistic
theory [42]. Within the dipole approximation this retardation term disappears but the magnetic
field ~B = ~∇ × ~A disappears as well. Yet, for sufficiently strong laser fields this contribution
becomes important, depending on the velocity ratio v/c of the electron. The idea to include
magnetic fields into the Hamiltonian via a term that is proportional to the inverse speed of light
within the dipole approximation was put forward by Reiss in 2000 [39]. He also pointed out
the regimes of importance, namely the boundary between a relativistic and a non-relativistic
treatment and where the necessity for a magnetic field inclusion occurs (see Figure 5.1).

In 2001 Kylstra et al. [43] showed how an expansion in 1/c of the vector potential includes
magnetic field effects and a correction to the electric field within a non-relativistic framework
with long laser wavelengths compared to the atomic system size. The correction terms include
the magnetic dipole and electric quadrupole interaction [44]. This approach is chosen for this
work.
The linearly polarized laser field has the dispersion relation c|~k0| = ω0, the propagation direction
~ek and the charged particle is assumed to be a spinless electron of mass me. The Schrödinger
equation in position representation for ~A(~r, t) = ~A

(
t− 1

c (~ek · ~r)
)
and in SI units reads

i~∂tψ(~r, t) = 1
2me

[
~̂p− q ~A

(
t− 1

c
(~ek · ~r)

)]2
ψ(~r, t) . (5.1)
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Figure 5.1: The phase space of the two laser parameters, intensity and frequency, is shown in
the plot. There is a well-known boundary between relativistic and non-relativistic
approaches whenever the velocity approaches the vacuum speed of light. However, an
additional intermediate regime exists, requiring magnetic field effects to be included.
Reprinted from [39].

We expand the vector potential up to first order in 1/c, i.e.,

~A

(
t− 1

c
(~ek · ~r)

)
≈ ~A(t)− 1

c
(~ek · ~r)

d

dt
~A(t)︸ ︷︷ ︸

=− ~E(t)

= ~A(t) + 1
c

(~ek · ~r) ~E(t) .

(5.2a)

(5.2b)

The resulting electric and magnetic field can be expressed as

~E(~r, t) = −∂t ~A(~r, t) =
(

1− ~ek · ~r
c

∂t

)
~E(t) , (5.3)

~B(~r, t) = ~∇× ~A(~r, t) = ~ek × ~E(t)
c

= ~B(t) . (5.4)

We expand the square brackets in the Hamiltonian (5.1) and neglect terms proportional to
O
(
c−2). Furthermore, we employ the Coulomb gauge (~∇ · ~A = 0 ⇒ ~ek · ~A = 0). Within this

gauge the commutator[ (
~A(t) · ~̂p

)
,
(
~ek · ~̂r

) ]
= 0 (5.5)

vanishes. The approximate non-relativistic Hamiltonian in velocity gauge reads

Ĥ = 1
2me

{
~̂p 2 − 2q ~A(t) · ~̂p+ q2 ~A 2(t) + 2

c
(~ek · ~̂r)

[
q

(
d

dt
~A(t)

)
· ~̂p− q2

2
d

dt
~A 2(t)

]}
. (5.6)

In order to make the wavefunction splitting approximation the Schrödinger equation will be
transformed to the length gauge (L) with the gauge transformation

ψ(~r, t) = UL(~r)ψL(~r, t) = exp(iq ~A(t) · ~r/~)ψL(~r, t) . (5.7)
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Physically speaking we perform a transformation to a non-inertial frame with momentum q ~A(t).
The partial derivatives of the wavefunction are

i~∂tUL(~r )ψL(~r, t) = UL(~r )
(
i~∂t − q ~̇A(t) · ~r

)
ψL(~r, t) , (5.8)

~̂p UL(~r )ψL(~r, t) = UL(~r )
(
~̂p+ q ~A(t)

)
ψL(~r, t) , (5.9)

~̂p 2 UL(~r )ψL(~r, t) = UL(~r )
(
~̂p 2 + 2q ~A(t) · ~̂p+ q2 ~A 2(t)

)
ψL(~r, t) . (5.10)

The transformed Schrödinger equation in length gauge reads

i~∂tψL(~r, t) =
{
~̂p 2

2me
− q ~E(t) ·

[
~r + (~ek · ~r)

mec
~̂p

]}
ψL(~r, t) . (5.11)

To obtain the length gauge solutions the Schrödinger equation in velocity gauge (5.6) is solved
first and transformed with the inverse transformation ψL = U †Lψ afterwards. The solutions are
referred to as “non-relativistic Volkov wavefunctions” and reduce to free plane-wave functions
in the limit ~A→ 0. As Reiss criticizes in his paper [45], these solutions cannot be physical since
the long wavelength approximation is only valid in a small region of space, but plane-waves
extend infinite in space. He argues that this is only justified if a transition element with a bound
state is calculated. These states are spatially confined and, hence, the transition element probes
only the bound region. Further below finite twisted wavepackets will be constructed from these
plane-wave solution, similar to Gaussian wavepackets constructed from free plane-wave solutions.
They extend also over a finite region of space justifying the approximation.

5.2 Plane-wave Volkov solutions
The derivation for the solutions of the Schrödinger equation (5.11) can be found in Appendix B.1.
The plane-wave Volkov eigenfunctions with first-order correction in length gauge are given by

ψL,~p(~r, t) ∝ exp
[
i

~

(
~π(t) · ~r −

∫ t

t0
dt′

~π 2(t)
2me

)]
. (5.12)

The kinetic momentum is defined as ~π(t) = ~p− q ~A− ~ek
mec

(
q ~A(t) · ~p− q2

2
~A 2(t)

)
. They reduce to

the usual non-relativistic Volkov wavefunctions in the limit of v/c → 0 (v ≡ |~p |/me). Further-
more, for ~A(t)→ 0 the simple free plane-wavefunctions are recovered. Note also that these states
are orthogonal. We expand the exponent in order to calculate a superposition with weights ψ̃ (~p )
and neglect terms proportional to O

(
c−2). Then Equation (5.12) reads

ψL,~p(~r, t) ∝ exp
[
i

~

{
−q ~A(t) · ~r + ~p ·

(
~r − ~rω0(t)

[
1 + ~ek · ~p

mec

]
− ~ek · ~r

mec
q ~A(t)

)}]
×

exp
[
i

~

{
− ~p 2

2me
t− Sω0(t)

[
1 + ~ek · ~p

mec

]
+ ~ek · ~r

mec

q2

2
~A 2(t)

}]
. (5.13)

The new definitions

~rω0(t) ≡ − q

me

∫ t

t0
dt′ ~A(t′) , Sω0(t) ≡ q2

2me

∫ t

t0
dt′ ~A 2(t′) ≥ 0 (5.14)

were introduced with dimensions of length and action, respectively. The subscript provides the
connection to the laser frequency ω0. The variable ~rω0(t) corresponds to the classical trajectory
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of a charged point particle under the influence of the vector potential ~A(t). By inserting the
specifications from Chapter 4 the integrations can be carried out and give the expressions

~rω0(t) = − qA0
meω0︸ ︷︷ ︸
≡zmax

cos(ω0t) and Sω0(t) = Up

(
t− sin(2ω0t)

2ω0

)
. (5.15)

An initial displacement of the center of the wavepacket in z-direction was included in the defi-
nition of ~rω0(t).

5.3 Twisted wavepacket

The construction of twisted, localized wavepackets can be obtained with a superposition of
plane-waves with weights ψ̃(~p ) ∝ eilφ and was presented in Section 3.3. Two choices for this
superposition stand out in theoretical research of twisted wavepackets. The first uses a single
component of the radial momentum δ(p⊥−p⊥0) and leads to single Bessel functions for the radial
component of the wavefunction, see, for example, references [46, 47, 48]. Due to the singular
nature of the radial momentum it is impossible to normalize these wavefunctions in free space and
render them unphysical (see Figure 5.2). An additional consequence is the absence of transverse
dispersion. A more physical choice can be understood as a superposition of Bessel wavefunctions,
i.e., a distribution of radial momentum components with finite width. A natural choice are
solutions of Laguerre-Gaussian type which have been used, for example, in references [6, 49, 50,
51]. Moreover, they are subject to the usual wavefunction dispersion. Thus, the latter approach
is chosen for this work with a weight function

ψ̃T,α,β,l(~p) ∝
eilφ

2πil exp
[
−
α2p2

‖
2~2

]
pl⊥ exp

[
−β

2p2
⊥

2~2

]
(5.16)

analogous to equation (3.12).

J 1
 v

s. 
LG

Figure 5.2: The Bessel function of order one (blue) and a Laguerre-Gaussian (orange) with two
extrema are shown for arbitrary units. The Bessel function does not decay exponen-
tially like the LG mode and is not normalizable.

It is given in cylindrical coordinates in momentum space (p⊥, φ, p‖) and α, β ∈ R, l ∈ N are
free parameters. For simplicity, we set s = 0 (L|l|0 (x) = 1) in Equation (3.11) because a non-zero
value would lead to a multiple ring structure in the transverse plane. For the case at hand, an
analytical result would be possible for s 6= 0 as well. Selecting the lowest mode does not change
the physics and might be the best choice to have the largest overlap with the hydrogen ground
state wavefunction. Another assumption, but no constraint in general, is the positivity of l ≥ 0.
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The normalization is not important for now and will be done for the fully constructed twisted
wavepacket

ψT(~r, t) =
∫
d3~p ψ̃α,β,l(~p )ψL,~p(~r, t) . (5.17)

We assume the electric field polarization and the quantization axis of the orbital angular mo-
mentum to be collinear in z-direction and the laser field to propagate in y-direction, namely

~A(t) = A(t)~ez , ~rω0(t) = rω0(t)~ez , ~ek = ~ey . (5.18)

The interaction of relativistic vortex electrons with a few-cycle laser pulse in a “head-on” collision
scenario (~ez = ~ek) has been explored in [52]. Other configurations are possible but yield very
complex equations and we refrain from trying to derive any analytical results. These cases are
suitable for numerical integrations. The full integration and the approximations used, including
their limitations, can be found in Appendix B.3. The analytical form for a twisted electron
wavepacket in a strong laser field with collinear quantization axes reads

ψ
(c)
T (~r, t) =

[
1 + F (~r, t)

]
Ω(ϕ)Z(z, t)Ξ(ρ, t) =

[
1 + F (~r, t)

]
ψT(~r, t) . (5.19)

and includes the definitions

Ω(ϕ) ≡ 1√
2π
eilϕ , (5.20)

Z(z, t) ≡ 1
π1/4

√
σα(t)

exp
[
i

~

(
− qA(t)z − Sω0(t)

)]
exp

[
−(z − rω0(t))2

2σ2
α(t) · (1− iτα(t))

]
,

(5.21)

Ξ(ρ, t) ≡
√

2
l!

ρl

σl+1
β (t)

exp
[
− ρ2

2σ2
β(t)
· (1− iτβ(t))

]
, (5.22)

τj(t) ≡
~t
mej2 for j = {α, β} , (5.23)

σj(t) ≡ j ·
√

1 + τ2
j (t) for j = {α, β} . (5.24)

The superscript (c) stands for the inclusion of 1/c-corrections. The correction term F ∝ O
(
c−1)

is proportional to the inverse speed of light and its definition can be found in the Appendix B.3
as well. The τ variables represent the dimensionless time scale of diffusion and the σ’s are the
time-dependent widths of the wavepacket. The prefactors are chosen to be

∫ 2π

0
dϕ |Ω(ϕ)|2 = 1 ,

∫ ∞
−∞

dz |Z(z, t)|2 = 1 ,
∫ ∞

0
dρ ρ |Ξ(ρ, t)|2 = 1 , (5.25)

such that each main component is normalized to one. For l 6= 0 the vortex wavepacket has a
ring structure in the x-y-plane with a peak amplitude at ρring(t) =

√
l · σβ(t) (Figure 5.3).



34 5 Twisted Electrons in Strong Laser Field

x

y ring

0

| |max

Figure 5.3: The transverse cross section of the modulus of a twisted wavepacket shows a ring
structure and vanishing probability density at ρ = 0.

5.4 Properties
In order to understand the HHG dynamics it is important to study the properties of the wave-
packet (5.19) presented above.

5.4.1 Orbital Angular Momentum
In free space, twisted wavepackets are eigenfunctions of the z-component of the angular mo-
mentum operator. The influence of the electric and the magnetic field on the orbital angular
momentum will be derived below. The expectation value reads〈

L̂z
〉

=
〈
ψ

(c)
T

∣∣∣L̂z∣∣∣ψ(c)
T

〉
= 〈ψT|L̂z|ψT〉︸ ︷︷ ︸

=l~

+ 2< 〈ψT|F̂ L̂z|ψT〉︸ ︷︷ ︸
=l~

+O
(
c−2

)
(5.26)

= l~ + l~ · 2< 〈ψT|F̂ |ψT〉︸ ︷︷ ︸
=0

(5.27)

= l~ . (5.28)

As expected, due to the collinearity of the quantization and polarization axis of the electric
field, the wavepacket is an eigenfunction in the dipole approximation. Surprisingly, the OAM
is unchanged under the pertubative influence of the magnetic field. This is ensured by the
orthogonality of the correction part F̂ |ψT〉 and |ψT〉 (see Appendix B.3). The wavepacket is
merely shifted in the direction of the laser propagation, see Section 5.4.2. The physical reason
is the orthogonality of the magnetic field polarization and the quantization axis of the electron
OAM. If the magnetic field has a nonzero collinear component in z-direction, then a change in
the orbital angular momentum would occur as a result of the Lorentz force. It can be understood
as an effect similar to Landau eigenstates, which have a similar structure to free space vortex
wavepacket, primarily the factor eimLandauϕ. A pictorial representation is shown in Figure 5.4
and an extensive study of the dynamics of twisted electrons in magnetic fields can be found
in reference [53]. Additionally, the dipole approximation form |ψT〉 is orthogonal to any other
OAM eigenstate with a different orbital angular momentum. For example, every twisted state
with l 6= 0 is orthogonal to the Hydrogen ground state.
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(a) (b)

Figure 5.4: The induced changes on plane-wavefunctions depending on the propagation direction
relative to the magnetic field direction are shown for an isolated magnetic flux line.
The left side (a) shows a propagation orthogonal to the magnetic field and the wave-
packet experiences a wavefront dislocation in the direction orthogonal to the magnetic
field and the propagation direction. (b) On the contrary, a propagation along the
flux line induces a screw dislocation of the wavefront, leading to vortex character.
Reprinted from [53].

5.4.2 Classical correspondence
The classical dynamics within the 1/c-perturbation shall be explored here and will be compared
to the motion of the wavepacket center. We shall, again, make use of the correspondence
principle between quantum mechanics and classical mechanics, e.g., ~̂r → ~r and ~̂p → ~p. The
classical Hamiltonian is

Hcl = ~p 2

2m + q ~̇A(t) ·
[
~r + 1

mec
(~ek · ~r) ~p

]
= H0 + VL . (5.29)

The charged particle moves under the force field

−∇VL = −q ~̇A(t)− q

mec

(
~̇A(t) · ~p

)
~ek (5.30)

and Hamilton’s equation of motions [54] determine the dynamics. The coordinate system is fixed
corresponding to equation (5.18) and we assume A(t0) = 0. The solution for the momentum
vector is

~̇p = −∂Hcl
∂~r

= −qȦ(t)~ez −
q

mec
Ȧ(t)pz~ey , (5.31)

⇒ pz(t) = pz(t0)− qA(t) , (5.32)

ṗy(t) = q2

2mec

d

dt
A2(t) ⇒ py(t) = py(t0) + q2

2mec
A2(t) , (5.33)

and we assume that there is no motion in the x-direction, i.e., px(t) = 0, x(t) = const. For the
position of the classical particle follows

~̇rcl = ∂Hcl
∂~p

= 1
me

~p+ qycl(t)
mec

Ȧ(t)~ez , (5.34)

⇒ ycl(t) = ycl(t0) + py(t0)
me

(t− t0) + q2

2m2
ec

∫ t

t0
dt′A2(t′) = Sω0(t)

mec
+ py(t0)

me
(t− t0) ,

(5.35)

⇒ zcl(t) = zcl(t0) + pz(t0)
me

(t− t0)− q

me

∫ t

t0
dt′A(t′) +O(c−2) . (5.36)
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The non-uniform dynamics occurs only in the y-z-plane. To compare the dynamics with the
quantum wavepacket we assume the same initial parameters, namely t0 = 0, ycl(0) = 0, pz(0) = 0,
zcl(0) = zmax and the vector potential A(t) = −A0 sin(ω0t), leading to

⇒ zcl(t) = rω0(t) , ycl(t) = Sω0(t)
mec

. (5.37)

This shows that there is a linear motion in y-direction away from the origin superimposed by a
sinusoidal motion with twice the laser frequency, see Equation (5.15). If we were to assume a
counter-acting initial momentum py(0) = −Up/c in y-direction to cancel the linear motion, the
prominent “Figure-8” motion would emerge [55]. The dynamics for both cases is depicted in
Figure 5.5.

zmax 0 zmax
z
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m
ax
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Figure 5.5: The classical motion (5.37) is shown as the orange line in units of the quiver amplitude
zmax. The blue lines corresponds to a finite initial momentum in y-direction to cancel
the linear motion in transverse direction.

The comparison with the expectation value of the position operator 〈~r 〉 =
∫
dV ~r |ψ|2 shows that

the bulk motion of the wavepacket equals the classical trajectory

〈x〉 = 0 , 〈y〉 = Sω0(t)
mec

, 〈z〉 = rω0(t) , (5.38)

as expected from the Ehrenfest theorem for potentials with linear or quadratic dependence.

5.4.3 Probability current
The probability current of a wavefunction is defined [56] as

~j(~r, t) ≡ 1
2me

[
ψ∗(~r, t)~̂p ψ(~r, t)− ψ(~r, t)~̂p ψ∗(~r, t) .

]
(5.39)

Due to the results of Sections 5.4.1 and 5.4.2, respectively, only the dipole approximation form
ψT(~r, t) is used to calculate the current. The two terms are given by

ψ∗T~̂p ψT = |ψT|2
[
~ez

(
−qA+ i~

z − rω0

σα
(1− iτα)

)
+ ~eϕ

~l
ρ

+ ~eρ

(
−i~l

ρ
+ i~

ρ

σβ
(1− iτβ)

)]
,

(5.40)

ψT~̂p ψ
∗
T = |ψT|2

[
~ez

(
qA+ i~

z − rω0

σα
(1 + iτα)

)
− ~eϕ ·

~l
ρ

+ ~eρ

(
−i~l

ρ
+ i~

ρ

σβ
(1 + iτβ)

)]
(5.41)
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and yield the final expression

~jT ≡
|ψT|2

me

[
−qA · ~ez︸ ︷︷ ︸

laser

+ ~l
ρ
· ~eϕ︸ ︷︷ ︸

twist

+ (z − rω0) · ~τα
σα

· ~ez + ρ · ~τβ
σβ

· ~eρ︸ ︷︷ ︸
diffusion

]
, (5.42)

revealing the different current sources. Additionally, the expectation value of the momentum
operator

〈ψT(t)|~̂p |ψT(t)〉 = −qA(t)~ez (5.43)

follows easily from equation (5.40) and shows only a motion in the polarization direction of the
electric field.

5.5 Laser and model parameters

Unless stated otherwise, we will use two parameter settings in this thesis. The first one has a
quiver amplitude zmax larger than the twisted wavepacket extension σα(t). Hence, the bound and
free part are always well separated for rω0(t) = zmax. In Chapter 7 we investigate the dynamics
with a full three-dimensional quantum simulation with a split-operator method. In order to
keep the computational effort at an acceptable level the necessary number of discrete grid points
should be minimized. Therefore, a second setting is chosen with a smaller extension and a
slightly shorter time scale. However, the separation between both parts of the wavefunction is
less than for the first parameter set. A comparitive depiction is shown in Figure 5.6 and the
numerical parameter values are presented in Table 5.1.
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Figure 5.6: The wavepacket extension σα(t) over a pulse length of three laser periods T0 is shown
for the two parameter settings in Table 5.1. Setting 1 is shown in orange and setting 2
in blue. The dashed lines indicate the maximal quiver amplitude due to the electric
field. While the width is always smaller than the quiver amplitude in setting 1, there
is a crossing for setting 2.
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Setting E0 [a.u] ω0 [a.u] α [a.u] Ip [a.u.] Up [a.u] (Ip + 2Up)/(~ω0)

1 0.05835 0.0236 30.0 0.5 1.528 150.7
2 0.1 2π/100 ≈ 0.0628 8.627 0.47 0.634 27.7

Table 5.1: Two parameter settings, given in atomic units (Appendix C.1), are used to analyze
the HHG spectrum. Setting 2 has a slightly lower ionization potential Ip due to a
smoothed Coulomb potential in the quantum simulation (see Section 7.2.1).



6 Analytical Results
The dipole acceleration for the effective two-level system can be analytically derived. The free
part of the wavefunction is approximated with the twisted wavepacket constructed in Chapter 5
and the analytical form for the bound states of Hydrogen are briefly introduced in Section 6.1.
The actual calculation can be found in Section 6.2 and, finally, we will give an analytic approx-
imation for the associated spectrum of the dipole acceleration in Section 6.3.

6.1 Hydrogen atom
The bound states are taken to be eigenstates of Hydrogen (Z̄ = 1), neglecting the influence
of the laser field which is expected to be weak around the origin. The eigenstates in spherical
coordinates are [56]

ψnlm(~r, t) = Rnl(r)Y m
l (θ, ϕ) = Cnlme

imϕPml (cos θ)
( 2r
na0

)l
e−r/na0L2l+1

n−l−1

( 2r
na0

)
e−iEnt/~ (6.1)

with eigenenergies

En = − ~2

2mea2
0n

2 ≡ −
Ip
n2 ≡ −Ip,n . (6.2)

The normalization constant is given by

Cnlm =
√

(2l + 1)
πn4a3

0

(n− l − 1)!
(n+ l)!

(l −m)!
(l +m)! (6.3)

with ground state ionization energy Ip > 0 and the Bohr radius a0 = 4πε0~2

mee2 . Furthermore,
Pml (x) denotes the associated Legendre polynomials and Lml (x) denotes the associated Laguerre
polynomials

Pml (µ) = (−1)m (1− µ2)m/2

2ll!
dl+m

dµl+m
(µ2 − 1)l = (−1)m+l (1− µ2)m/2

2ll!
dl+m

dµl+m
(1− µ2)l ,

(6.4)

P−ml (µ) = (−1)m (l −m)!
(l +m)!P

m
l (µ) , (6.5)

Lml (µ) = eµµ−m

l!
dl

dµl
(µm+le−µ) . (6.6)

To distinguish the vortex charge and the quantum number l, the latter will be primed from
now on, i.e., l′. The validity of neglecting the laser interaction becomes less justified for higher
excited states with higher quantum number n, since the extension of the state increases with n.
Hence, the influence of the laser will be stronger in the outer regions for these states.

6.2 Dipole acceleration
In Section 2.2 we motivated the use of the expectation value of the dipole acceleration to study
the emission spectrum. In the following the dipole acceleration form (2.20) is used in combination
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with the wavefunction splitting (4.3). Even though the full wavefunction ψ(c)
T is readily available

we focus only on the dipole approximation ψT in this section and investigate the effects of the
correction term numerically in Section 7. The derivation of the first order perturbation terms is
lengthy and tedious, but can be calculated without additional assumptions or approximations.
A further important point to make is that we restrict ourselves to central collisions for the
analytical derivation. However, we will address off-axis scattering numerically in Chapter 7.
The potential in length gauge is

V̂ = −q ~E · ~̂r − q2

4πε0r̂
. (6.7)

In the fixed coordinate system (5.18) the dipole acceleration reads

~a(t) = ~̈d(t) = − q

me

[
− qE(t)~ez + q2

4πε0
· 〈ψ(t)| ~̂r

r̂3 |ψ(t)〉
]
. (6.8)

Henceforth we will neglect the first term since it gives only one dominant peak at the laser
frequency ω0 in the emission spectrum. In order to be able to derive analytical results the initial
widths of the twisted wavepacket in (5.19)

β = α ⇒ τα = τβ ≡ τ σα = σβ ≡ σ (6.9)

are set to be equal. Due to the spherical symmetry of the Coulomb eigenfunctions it is useful
to work in spherical coordinates. For completeness, we give the twisted wavepacket in the
coordinates (r, ϕ, u = cos θ). It is

ψT(~r, t) = NT(t)
(
r
√

1− u2
)l
eilϕe−

i
~Sω0 (t)e−

i
~ qA(t)rue

− 1−iτ(t)
2σ2(t)

·(r2+r2
ω0 (t)−2rurω0 (t))

. (6.10)

The normalization constant is given by NT(t) =
(
π1/4√l!πσ(t)σl+1(t)

)−1
.

6.2.1 Coulomb force term

In order to analyze different emission contributions the wavefunction (4.3) is plugged into the
dipole acceleration equation (6.8) and gives

〈ψ| ~̂r
r̂3 |ψ〉 = |cb|2 〈ψb|

~̂r

r̂3 |ψb〉︸ ︷︷ ︸
≡(BB)

+ |cT|2 〈ψT|
~̂r

r̂3 |ψT〉︸ ︷︷ ︸
≡(CC)

+ 2< c∗bcT 〈ψb|
~̂r

r̂3 |ψT〉︸ ︷︷ ︸
≡(BC)

. (6.11)

The three resulting terms will be called bound-bound transitions (BB), continuum-continuum
transitions (CC) and bound-continuum transitions (BC).

Bound-bound transitions

With the usual coordinate transformation u = cos θ, the expectation value of the dipole accele-
ration for the bound state reads

(BB) ∝
∫ ∞

0
dr r2l′e−2r/na0

∫ 2π

0
dϕ

∫ 1

−1
du

~r

r

[
Pml′ (u)L2l′+1

n−l′−1

( 2r
na0

)]2
. (6.12)
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The unit vector is ~r/r = {
√

1− u2 cosϕ,
√

1− u2 sinϕ, u}. The x- and y-component of (BB)
vanish due to the integration over the azimuthal angle ϕ. Likewise, the z-component vanishes∫ 1

−1
duu [Pml′ (u)]2︸ ︷︷ ︸

=[Pm
l′ (−u)]2

= 0 (6.13)

as a result of the antisymmetry of the integrand under u→ −u and hence, it follows

(BB) = 0 . (6.14)

In general, this follows from the fact that the Hydrogen eigenfunctions have definite parity
P̂~r|ψb〉 = ±|ψb〉 under transformations P̂~r : ~r → −~r. Hence, the expectation value of an
operator with odd parity, P̂~r ÔP̂†~r = −Ô, for example Ô = ~̂r/r̂3, is

〈ψb|P̂†~r P̂~r︸ ︷︷ ︸
=1

Ô P̂†~r P̂~r︸ ︷︷ ︸
=1

|ψb〉 = −〈ψb|Ô|ψb〉 ⇒ 〈ψb|Ô|ψb〉 = 0 . (6.15)

Continuum-continuum transitions

Inserting Equation (6.10) in the second term of (6.11) leads to

(CC) = N 2
Te
−
r2
ω0
σ2

∫ ∞
0

dr

∫ 2π

0
dϕ

∫ 1

−1
du


√

1− u2 cosϕ√
1− u2 sinϕ

u

 (1− u2)lr2le−
r2−2rurω0

σ2 . (6.16)

The integrals in x- and y-direction vanish for the ϕ-integration and a factor of 2π is obtained for
the z-direction. The u- and r-integrations are performed with the help of the computer algebra
system Wolfram Mathematica [57] and evaluate to∫ 1

−1
duu(1− u2)le

2rurω0
σ2(t) =

√
πl!

Γ(l + 5/2) ·
rω0r

σ2 · 0F1

(
l + 5

2;
r2
ω0r

2

σ4

)
. (6.17)

Generalized hypergeometric functions are denoted by pFq and Γ(z) signifies the Gamma function.
The remaining integral solution is∫ ∞

0
dr r2le−

r2
σ2 · rω0r

σ2 · 0F1

(
l + 5

2;
r2
ω0r

2

σ4

)
= σ2lrω0

l!
2 · 1F1

(
l + 1, l + 5

2;
r2
ω0

σ2

)
. (6.18)

Finally, the full expression reads

(CC) = l!rω0(t)
Γ(l + 5/2)σ3(t)e

−
r2
ω0 (t)

σ2(t) · 1F1

(
l + 1, l + 5

2;
r2
ω0(t)
σ2(t)

)
~ez . (6.19)

The fastest time dependence stems from the quiver motion rω0(t). It depends on the laser
frequency and, therefore, the spectrum of this term will have a large peak at ω0.

Bound-continuum transitions

For the combined prefactors from both wavefuntions, ψb and ψT, we introduce a new variable

NbT(t) ≡ Cnl′mNT(t) exp
[
− i
~

(Sω0(t) + Ip,nt)
]( 2

na0

)l′
exp

[
−
r2
ω0(t) · (1− iτ(t))

2σ2(t)

]
, (6.20)
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containing the phase corresponding to the binding energy and the kinetic energy of the electron
moving in the laser field. Interference terms between both states are frequently occuring in this
work and the evaluation of the integrations over r and u is rather tedious. Hence, it will be
denoted with I(mr,mu, nu, t) and its analytical solution is derived in Appendix B.4. All interfe-
rence terms of the form 〈ψb|rmrumu

√
1− u2 nu |ψT〉 can be formally solved. The approximation

involved will be tested numerically in Chapter 7. The contribution to the dipole acceleration
reads

(BC) = NbT(t)

I(0, 0, 1, t) 0 0
0 I(0, 0, 1, t) 0
0 0 I(0, 1, 0, t)

∫ 2π

0
dϕ

cosϕ
sinϕ

1

 ei(l−m)ϕ (6.21)

= πNbT(t) ·

 (δm,l+1 + δm,l−1) · I(0, 0, 1, t)
−i(δm,l+1 − δm,l−1) · I(0, 0, 1, t)

2δm,l · I(0, 1, 0, t)

 (6.22)

and is either of longitudinal or transverse nature, depending on the vortex charge l and the
magnetic quantum number m. The δ-functions express the conservation rules for angular mo-
mentum, i.e.,

m = l, l ± 1 . (6.23)

In order to get HHG with the ground state (m = 0) the incoming wavepacket must be either of
Gaussian shape (l = 0) or a vortex wavepacket with vortex charge one (l = 1). The latter case
will be treated for the remainder of this chapter.

6.2.2 Dipole dynamics

To study the derived expression for the dipole acceleration it is useful to note that the x- and
y- component of (6.22) differ only by a phase shift of ±i = e±iπ/2. The integral solution I has
no fast oscillation. By taking the real part of (BC) two fast oscillating terms

< (BC)x ∝ cos
(
Sω0(t) + Ip,n(t)

~

)
< (BC)y ∝ sin

(
Sω0(t) + Ip,n(t)

~

)
(6.24)

emerge from NbT (t). A circular motion of the dipole acceleration in the transverse plane results
from the fixed phase differences of π/2. This is in contrast to the traditional HHG process
(l = 0), in which the fast dipole acceleration points only in z-direction, as can be seen from
Equation (6.22). In classical view, the HHG emission pattern will be that of a rotating electric
dipole instead of a linear oscillating dipole. As suggested by (6.24), an alternative interpretation
is the oscillation of two linear dipoles in phase lying perpendicular to the electric field axis.
Moreover, the radiated electric field has a circular polarization along the z-axis, in contrast to
the linear polarization of a linear emitting dipole. The nonzero z-component of (CC) is due to
the acceleration and deceleration of the electron under the Coulomb force and is not related to
the recombination process or HHG emission. The characteristic radiation patterns have distinct
directions of maximum emission, shown in Figure 6.1. The emission pattern of a linear dipole
in z-direction scales with sin2 θ [20] and leads to a doughnut-shaped form. The highest intensity
radiates perpendicular to the dipole axis. For a dipole rotating in the x-y-plane, the Poynting
vector has its largest contribution forward and backward in z-direction. Its analytical form is
proportional to 1 + cos2 θ [20].
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(a) Imax

0

(b) Imax

Imax/2

Figure 6.1: The intensity patterns of the emission from a linear dipole in z-direction (a) and
a dipole rotating in the transverse plane (b) are shown. The emission strength is
represented by the distance to the origin and is also color-coded.

So far no analytical expression for the coefficients in (4.3) is available. We do not expect them
to change rapidly in time and, hence, approximate them in the following to be constant and real
with the numerical values cb =

√
0.95 and cT =

√
0.05. The temporal evolution of (6.11) is shown

in Figure 6.2 for both laser parameter settings and half a laser cycle. This corresponds to a single
collision with the ion. The x- and y-component exhibit fast oscillations. On the contrary, only
slow temporal changes occur for the z-direction. Both plots show that the maximal amplitude
is reached for rω0(t) ≈ 0.
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Figure 6.2: The dipole acceleration for a half laser cycle is shown for setting 1 (a) and 2 (b).
The x-, y- and z-component are depicted in blue, orange and green, respectively.
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6.3 Spectrum of interference term
The spectrum of the dipole acceleration can be extracted via Fourier transformation ã(ω) =∫
dt′ eiωta(t). Here it will depend on a finite length Fourier transformation, ã(ω, Tmax) ≡∫ Tmax

0 dt′ eiωta(t), and the corresponding spectrum will be denoted by S(ω, Tmax). The main
interest lies in the interference term, such that the analysis of the spectrum giving only peaks
for the laser frequency are omitted here.

By looking at formula (6.22) for the interference term it becomes clear that only the exponential
prefactors, involving the energy of the bound and free part, and the Fourier factor eiωt are fast
oscillating. In such a case the Fourier transform can be approximated with the stationary phase
approximation (SPA) [30]

1√
2π

∫ x2

x1
dx eif(x)/~g(x) ≈

∑
{x0}

√
~i

f ′′(x0)e
if(x0)/~g(x0) f ′(x0) = 0; x1 < x0 < x2 . (6.25)

There are other exponential factors with complex arguments, but they all involve the timescale
for wavepacket diffusion τ . If the initial width is not chosen to be very small, they can be safely
neglected. Depending on the vector component of the dipole acceleration it will give different
amplitudes, but the procedure is the same for each. The SPA analysis will be given for the
x-component of the spectrum. However, the analysis would yield the exact same result for the
y-direction. We omit constant prefactors for now and express the dipole acceleration as

ax(t) ∝ 2< 〈ψb(t)|
~̂r

r̂3 |ψT(t)〉 ∝ 2<
[
NbT(t) · I(0, 0, 1, t)

]
(6.26)

∝ NT(t)e−
r2
ω0 (t)

2σ2(t)

·



I(0, 0, 1, t)︸ ︷︷ ︸
∈R

· 2<

e− i
~(Sω0 (t)+Ip,nt)ei

r2
ω0 (t)τ(t)

2σ2(t)

 for l′ + |m| even

I(0, 0, 1, t)e−iπ/2︸ ︷︷ ︸
∈R

· 2<

e− i
~(Sω0 (t)+Ip,nt)ei

r2
ω0 (t)τ(t)

2σ2(t) eiπ/2

 for l′ + |m| odd .

(6.27)

It was assumed that m = l− 1, cb, cf ∈ R and that I is either real or purely imaginary (see end
of Appendix B.4). In the SPA only the term with the negative exponent is important and it is
not necessary to take the real part, because

∫
dt eiwt

(
e−iω̄t + eiω̄t

)
≈
∫
dt eiwte−iω̄t (with positive

ω, ω̄). For the sake of clarity we assume l′ + |m| to be even. In that case the functions in (6.25)
are

g(t) = NT(t)e−
r2
ω0 (t)

2σ2(t) · I(0, 0, 1, t) , (6.28)

f(ω, t) = ~ωt−
(
Ip,nt+ Sω0(t)

)
+
r2
ω0(t)τ(t)~

2σ2(t)︸ ︷︷ ︸
≈0

, (6.29)

ḟ(ω, t) = ~ω −
(
Ip,n + 2Up sin2(ω0t)

)
− ∂t

r2
ω0(t)τ(t)~

2σ2(t)︸ ︷︷ ︸
≈0

, (6.30)

f̈(ω, t) ≈ −2Upω0 sin(2ω0t) . (6.31)
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The stationary points for fixed frequency ω have to be determined from ḟ
!= 0 and give

ω0tj,±(ω) = ± arcsin
(√

~ω − Ip,n
2Up

)
+ jπ ω ∈ [Ip,n, Ip,n + 2Up] , j ∈ Z ,

(6.32)

⇒ cos (ω0tj,±) = (−1)j
√

2Up + Ip,n − ~ω
2Up

, (6.33)

⇒ sin (ω0tj,±) = ±(−1)j
√

~ω − Ip,n
2Up

. (6.34)

For the last line the relation cos(arcsin(x)) =
√

1− x2 was used. The number of stationary
points is constraint by the length of the laser pulse. Additionally, stationary points exist only
for ω ∈ [Ip,n, Ip,n + 2Up], the plateau region. Let Tmax denote the pulse/integration length and
start at t0 = 0. Then, only those points contribute that are within this time period, i.e.,

0 < tj,± < Tmax. (6.35)

We note also that r2
ω0 (tj,±) = 2(2Up+Ip,n−~ω)/(meω

2
0) has the same value for every stationary

point. Furthermore it holds that A2(tj,±) = 2me(~ω − Ip,n)/q2 and, hence, I(0, 0, 1, tj,±) =
I(0, 0, 1, t0,+). For the stationary points the functions in the SPA evaluate to

g(tj,±(ω)) = NT(tj,±) · I(0, 0, 1, tj,±) exp
[
−(2Up + Ip,n − ω)
meω2

0 · σ2(tj,±)

]
, (6.36)

f(tj,±(ω)) = (~ω − Ip,n − Up) tj,± ±
1

2ω0

√
(~ω − Ip,n)(2Up + Ip,n − ~ω) (6.37)

f̈(tj,±(ω)) = f̈(t0,±(ω)) = ∓2ω0
√

(~ω − Ip,n)(2Up + Ip,n − ~ω) . (6.38)

Putting everything together gives

ãx(ω, Tmax) ≈ cbcTπCnl′m

( 2
na0

)l′ √
~i · I(0, 0, 1, t0,+)

√
2ω0 ((~ω − Ip,n)(2Up + Ip,n − ~ω))1/4

×
∑

{0<tj,±<Tmax}

√
∓1 · NT (tj,±) · exp

[
−(2Up + Ip,n − ~ω)

meω2
0 · σ2(tj,±)

]

× exp
[
i

{
(~ω − Ip,n − Up) tj,± ±

1
2ω0

√
(~ω − Ip,n)(2Up + Ip,n − ~ω)

}
/~
]
.

(6.39)

If the diffusion time τ is negligible, the result can be further simplified to

ãx(ω, Tmax) ≈ cbcTπCnl′m

( 2
na0

)l′ √
~i · I(0, 0, 1, t0,+)

√
2ω0 ((~ω − Ip,n)(2Up + Ip,n − ~ω))1/4

×NT (0) exp
[
−(2Up + Ip,n − ~ω)

meω2
0 · α2

]
×
∑

{0<tj,±<Tmax}

√
∓1 exp

[
i

~

{
(~ω − Ip,n − Up) tj,± ±

1
2ω0

√
(~ω − Ip,n)(2Up + Ip,n − ~ω)

}]
.

(6.40)
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In order to determine the spectrum, the absolute square value of the last line has to be taken.
If Tmax is not too small, common factors can be extracted and combined to

|ãx(ω, Tmax)|2 ∝
∑
j,j′

exp
[
i
~ω − Ip,n − Up

~ω0
· π(j − j′)

]
(6.41)

∝
jmax∑
∆j=0

cos
(~ω − Ip,n − Up

~ω0
· π∆j

)
. (6.42)

This expression gives peaks at

~ωpeak,k = (Ip,n + Up) + 2~ω0 · k , (6.43)

equal to the one-dimensional case (see Section 2.3.2). Hence, the cutoff location in frequency
space is not changed with twisted electrons, but instead the characteristic emission directions
change. The HHG emission is mainly directed along the z-axis, perpendicular to the laser pro-
pagation. This is one of the main results of this thesis.

Equation (6.39) can be tested against a numerically obtained spectrum. The particular case of
a twisted wavepacket (l = 1) and the ground state (m = 0) is treated. We use a Fast Fourier
Transform (FFT) [30] to obtain the frequency content of (6.11). The wavefunction coefficients
were kept constant (cb =

√
0.95, cT =

√
0.05) and the pulse length was three cycle periods. The

results for both laser parameter settings are shown in Figure 6.3.
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Figure 6.3: The SPA approximation (6.39) (orange) of the plateau region is compared to the
numerical spectrum (blue) of the interference term (6.11) in x-direction. The upper
plot shows the results for parameter setting 1 (a) and the lower plot for setting 2 (b).
The spacing of 2ω0 between adjacent peaks is indicated by the vertical black bar.
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Both curves are in good agreement around the peak structures and demonstrate a good ap-
proximation by the SPA. An additional observation is the intensity difference between both
parameter settings. They differ by approximately two orders of magnitude and represent the
general trade-off between a high intensity and a high cutoff frequency. Wavepackets with a
higher mean kinetic energy will have a shorter interaction time with the binding potential and
this results in a smaller recombination probability. Equation (6.40) is an important formula to
investigate the influence of the wavepacket width on the spectral intensity. This expression is of
a general class describing the HHG spectrum for finite wavepackets. A similar expression would
be derived for l = 0 and even in the case of a 1D system with a Gaussian wavepacket. Hence,
the findings below will apply to those systems as well.

6.3.1 Width dependence
The logarithmic scaling of the spectrum (6.40)

log |ãx(ω)|2 ∝ 1
meω2

0α
2

(
~ω − (2Up + Ip,n)

)
(6.44)

shows qualitatively the slope of the plateau in frequency space for negligible wavepacket diffusion.
This suggests that for smaller α the lower end of the plateau is suppressed while the frequencies
around the cutoff are enhanced. There is a very intuitive explanation for this relationship. The
extremal points of the exponent in the SPA (6.25) identify the emission times (6.32) for a specific
frequency ω. Frequencies around the cutoff are emitted if the free part is very close to the core.
On the other hand, lower frequencies in the plateau are emitted if the wavepacket is further
away. The smaller the extension of the wavepacket, the higher the overlap for the former and
the lower for the latter case. This behaviour is sketched for the ground state in Figure 6.4.
For rω0(t) ≈ 0 the maxima of the free electron wavepacket will overlap with the maxima of the
ground state wavefunction. The overlap is large and we expect the transition probability for
recombination to be maximal as well. On the other hand, for rω0(t) ≈ zmax, the wavepacket
center is far outside the bound region and the overlap is minimized. If the extension of the free
states is smaller than the excursion amplitude of the center, then the transition element will be
negligibly small.

0
z

|
|

(a)

0 zmax
z

|
|

(b)

Figure 6.4: The overlap between the bound ground state (blue) and the free electron part
(orange) depends on the phase of the laser field. This behavior is shown for rω0(t) ≈ 0
in the left plot (a) and for rω0(t) ≈ zmax in the right plot (b).

The relation (6.44) is only true for small τ , when wavepacket diffusion can be neglected. If the
initial width is small, then the fast expansion of the wavefunction counteracts and will diminish
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the spectral intensity. Since the stationary phase approximation performs reasonably well, the
dependence of the spectral intensity on the initial width α is investigated by means of (6.39).
The variation of the plateau region is presented in Figure 6.5. The wavefunction coefficients
are identical to the ones above (cb =

√
0.95, cT =

√
0.05), although the time integration is

performed over three cycle periods, i.e., Tmax = 3T0, in order to see effects of wavefunction
diffusion. For setting 1 we find a minima for the lower frequency end which is abscent for setting
2. We suspect it to result from the clear separation of bound and free electron wavefunction
at times rω0(t) ≈ zmax for the former, see Section 5.5. Both spectra exhibit a maxima in the
highest frequency component marking optimal points for the initial width. At these points the
two competing factors, namely wavefunction spreading and recombination probability by means
of the wavefunction overlap, are balanced. This is the second important result of this work.
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Figure 6.5: The spectra of the SPA (6.39), color-coded as an optical guidance, are shown for a
range of initial widths α. Only the high harmonic peaks are shown for setting 1 (a)
and setting 2 (b).

HHG yield

Another metric to investigate the dependency of the total high harmonic frequency content on
the wavepacket width is the HHG yield

Y ≡
∫ (Ip+2Up)/~

Ip/~
dω S(ω) , (6.45)

which is defined as the spectral integration over the plateau area [Ip, Ip + 2Up]. Other yield
definitions have been used as well to study scaling properties for HHG [58]. The dependence
is shown in Figure 6.6, including the spectral intensity of the highest harmonic for comparison.
The pulse length and coefficients for ground state and free twisted wavepacket are the same as
above used in Figure 6.5. Both quantities share a similar relationship to α. The yield has a
maximum point which lies close to the intensity maxima for the highest harmonic, indicating an
optimal initial width not only for one frequency but the whole plateau region.
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Figure 6.6: The yield Y (blue) and the intensity of highest harmonic frequency (orange) are
compared in dependence of the initial width α for both laser settings. The left plot
corresponds to setting 1 (a) and the right to setting 2 (b).





7 Numerical Results
The need for numerical calculations first becomes apparent if one were to try to derive analytical
formulas for off-axis scattering scenarios. The calculations become very complex and might not
have a satisfactory solution. Even for the central collisions an approximation had to be made
(Appendix B.4). Aforesaid approximation of the interference term has to be compared to exact
results from numerical integrations, which is done in Section 7.1. Two other issues must be
addressed. First, the time evolution of the wavefunction coefficients in (4.3) is unknown and
were therefore set to constant values. Second, as explained in Section 4.2, the free part of the
electron wavepacket eventually passes through the vicinity of the origin. The approximation that
lead to the analytical form of the twisted wavepacket breaks down in aforementioned region and
the effect of the Coulomb potential cannot be neglected anymore. For these two reasons, we apply
a full three-dimensional quantum simulation to the system and propagate initial wavefunctions
under the full Hamiltonian. The simulation method and details are introduced in Section 7.2
and the numerical results are presented in Section 7.3. Throughout this chapter atomic units
are employed (Appendix C.1).

7.1 Dipole acceleration
We wish to compare the analytical formulas of Section 6.2 to exact numerical results. This
can only be done for a specific set of parameters, but allows to obtain results which are hard
to solve analytically, for example β 6= α and off-axis scattering with an impact parameter b
(Section 7.1.2). The numerical integration of Equation (6.11) was performed in cylindrical coor-
dinates over a finite, but sufficiently large volume and a Gauss-Legendre quadrature scheme [59]
was employed with modified C code from Holoborodko [60]. The number of sampling points is
256 for the ρ-integration and 22 for the ϕ-integration. The z-integration was performed with
a varying number of sampling points depending on the strength A0 of the vector potential and
the phase of the laser field. However, the maximum number of nodes is approximately 1000. In
general, it could be possible to initially prepare the atom in an excited state, since the mean
lifetime in Hydrogen before spontaneous decay happens (τ(2p → 1s) ∝ 10−9 s) is much longer
than the timescale of the laser interaction (T0 ∝ 10−15 s). Hence, we perform the procedure
for different bound states and different vortex charges. It will give an estimate of the HHG
strength for recombinations to other states. The combinations used in the following are given
in Table 7.1.

Hydrogen Vortex
n l′ m l

1 0 0 0
1 0 0 1
2 0 0 1
2 1 1 1
2 1 1 2

Table 7.1: Five different combinations of quantum numbers for the Hydrogen ground state and
the twisted wavepacket were used for an evaluation of the analytically obtained result.
The first row corresponds to traditional HHG and is included for comparison.
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We start with the comparison of the analytical and numerical results within the dipole approx-
imation in Section 7.1.1 before we proceed to off-axis scattering and magnetic corrections in
Sections 7.1.2 and 7.1.3, respectively. Analogously to Chapter 6, we use the constant values
cb(t) =

√
0.95 and cT(t) =

√
0.05 for the wavefunction coefficients throughout this section, due

to the lack of an analytical formula for their exact expressions.

7.1.1 Dipole approximation

The interference term (6.22) shows that HHG dynamics appears either in longitudinal or trans-
verse direction. Hence, for each combination in Table 7.1 and for both parameter settings in
Table 5.1 only one component is shown for comparison, i.e., either ax or az. The numerical
outcomes for both settings are presented in Figures 7.1 and 7.2.
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Figure 7.1: The numerically obtained dipole acceleration (orange solid line) is compared to the
analytical results (6.11) for ~a(t) (blue dashed line) in parameter setting 1. The diffe-
rent plots correspond to the different quantum number combinations from Table 7.1
and are shown in each plot. Only one component with the relevant HHG dynamics
is shown for each case for half a cycle period. The order of magnitude is given above
each subplot.
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Figure 7.2: The numerically obtained dipole acceleration (orange solid line) is compared to the
analytical results (6.11) for ~a(t) (blue dashed line) in parameter setting 2. The diffe-
rent plots correspond to the different quantum number combinations from Table 7.1
and are shown in each plot. Only one component with the relevant HHG dynamics
is shown for each case for half a cycle period. The order of magnitude is given above
each subplot.

In conclusion, the analytically derived solutions from Chapter 6 match the numerically calcula-
ted dipole accelerations very well. Apparent deviations can be identified only for setting 2 for
times rω0(t) ≈ zmax. It implies that the approximation in Appendix B.4 is less reliable when the
free wavepacket is furthest away from the binding potential. The approximate solutions seem to
overestimate the amplitude in these regions.

Furthermore, the comparison of different recombination possibilities for a twisted wavepacket
with l = 1 into either the ground state or two excited states with m = 0, 1 shows that the ground
state contribution is always the largest. Their dipole acceleration amplitudes differ by at least
a factor of three or four, which in turn leads to a difference of one order of magnitude in the
spectrum. Hence, we argue that the approximation of taking only the ground state into account
holds for twisted electrons, as long as the main interest lies only on the process with the highest
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recombination probability. Due to the small probability density of a twisted wavepacket at ρ = 0
the intensity of HHG emission is smaller than for a Gaussian Volkov wavepacket (l = 0).

7.1.2 Impact parameter

It is very unlikely to produce a central collision of a twisted wavepacket with an ion in a real
experiment. In general, the transverse centers will be displaced by an impact parameter b. As
there is no simple analytical expression available, we limit our study to numerical results. The
HHG dynamics depends on the geometry of the system (Figure 7.3) and will change with varying
b. The rotational symmetry of the system is broken for this off-axis scattering. Hence, we expect
the two transverse components of the dipole acceleration to experience changes depending on the
direction relative to the offset. In the following the impact parameter is incorporated through a
shift in x-direction by b (not shown in Figure 7.3).

y A

B

x

A

B

0

2

Figure 7.3: A schematic representation of the overlap between Hydrogen ground state (white)
and twisted electron wavepacket (colored) with l = 1 in the transverse plan is shown
for rω0(t) = 0. The wavefunction moduli |ψi| are represented with the transparency.
The phase information is color-coded and the transverse modulus distributions are
shown in the left plot. The central collision scenario (b = 0) is indicated by A and
the off-axis scattering (b 6= 0) by B.

Since the number of possible quantum number combinations and b values is large, we will focus
only on the recombination of a vortex wavepacket with l = 1 into the ground state. The changes
due to the transverse shift are demonstrated by one exemplary set of parameters (b = 7, setting
2) in Figure 7.4. It is representative for all other cases. Furthermore, we show the dipole
acceleration only up to half a laser cycle to keep the effect of wavefunction spreading at a
minimum. However, the spectrum is obtained for two cycle periods. Each dipole acceleration
component is changed due to a nonzero impact parameter and several essential differences occur.
ax and ay experience a different reduction in amplitude. There is also a clear phase-shift for the
x-component, while the y-component experiences only a very small phase-shift. However, their
peak frequencies are unchanged, in contrast to the spectral intensity of az. Due to the symmetry
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breaking, the HHG contribution in z-direction does not vanish anymore and shows the typical
fast oscillations on top of the slowly varying curve from the (CC) term in (6.11). In addition,
the harmonic peak emission frequencies differ by exactly one laser frequency ω0 compared to the
transverse components. The intensity around the cutoff is also two orders of magnitude larger
than for the transverse dipole acceleration. The behavior of az can be explained by an exceeding
contribution from a small range of phases. The overlap of both wavefunctions is higher for this
range than for all other phase contributions. Therefore, they do not cancel out anymore, see
Figure 7.3. However, we were not able to identify the cause of the differing transverse amplitude
reductions and of the occurrence of ‘even’ harmonics for Sz. It should be further investigated.
Every component has HHG oscillations and the direction of strongest emission will depend on
the relative phase and the amplitude of each component.
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Figure 7.4: The dipole acceleration components (a), (b), (c) and its spectrum (d) are shown
for parameter setting 2 with an impact parameter of b = 7. The blue lines in the
dipole acceleration plots correspond to the off-axis scattering and the oranges lines
to the associated central collision scenario b = 0. The spectral components Sx, Sy
and Sz are represented by blue, orange and green lines, respectively. The dashed line
indicates the theoretical cutoff frequency.

Motivated by these striking observations, it is imperative to investigate the change of these
deviations with varying impact parameter. We estimate the phase-shift of the dipole acceleration
in x- and y-component by means of a lagged Pearson correlation analysis. Therein we shift the
analytical solutions by a phase eiϕ0 before taking the real part and calculate the correlation
coefficient with the numerical dipole acceleration. The lagged correlation will be maximal for
the phase-shift realized by the impact parameter. The integration time was chosen to be one cycle
period and the results are presented in Figure 7.5. It becomes apparent that both transverse
components experience a phase shift. The phase-shift on ax equals exactly π/2 for b = α if
the position shift of the wavefunction maxima, due to diffusion, can be neglected. The slight
deviation for setting 2 results from wavefunction spreading. The rate of change for the phase-
shift ∂∆ϕ/∂b is also largest around this value. For b > α both changes in the phase-shift happen
with approximately the same rate, i.e., ∂∆ϕx/∂b ≈ ∂∆ϕy/∂b.
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Figure 7.5: The phase-shifts on the transverse dipole acceleration components for b 6= 0 compared
to the b = 0 result are shown for setting 1 (a) and setting 2 (b). The blue curve
represents the phase-shift for ax and the orange curve for ay. For both settings the
initial width α is indicated by the black dashed line.

The second important quantity to examine further is the dependence of the spectral intensity
of the highest harmonics. Again, the integration time was chosen to be one cycle period. The
spectral intensities are presented in Figure 7.6 and show pronounced features for b = α as well.
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Figure 7.6: The first row of plots (a), (b) and (c) represents the spectral intensity compo-
nents (2.13) of setting 1 for changing impact parameter. The second row of plots
(d), (e) and (f) corresponds to the same observables in setting 2. The left, middle
and right columns of plots show the spectra for the x-, y- and z-components of the
dipole acceleration in successive order. The black dashed lines indicate the initial
width of the twisted wavepacket.
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The y-components show monotonically decreasing curves without additional structure. However,
the x- and z-components exhibit local extrema at b = α, namely a minimum for ax and a
maximum for az. In addition, the local minima are followed by a local maxima for b > α
while the other two components display only steady decline at these points. For setting 2 the
maximum in the Sz-curve is slightly shifted to the right due to wavefunction diffusion. The
maxima for Sz can be argued to stem from the maximal overlap between both wavefunctions
for a small region of ϕ-values. In addition, the intensity of this component can reach values up
to two or three orders of magnitude larger than the transverse components. Unfortunately, the
origin of the occuring local extrema in Sx is still unkown to us. The yield analysis (see definition
in Section 6.3.1) gives similar results and is therefore not shown.

7.1.3 Magnetic field contributions

In Chapter 5 we examined the influence of the magnetic field from the laser on the twisted
wavepacket and derived an analytical expression for the wavefunction. However, we did not
calculate the dipole acceleration with the correction F from Equation (5.19). Hence, ~a(t) is
obtained numerically in this section and its dynamics can be understood in the light of the
classical correspondence described in Section 5.4.2. As in Section 7.1.2, we investigate only
recombination of a l = 1 vortex state into the ground state and show the dipole acceleration for
one half cycle but integrate over two laser periods for the spectrum. The effects of the magnetic
field on the dipole acceleration with setting 2 and zero impact parameter are shown in Figure 7.7
for one particular set of parameters.
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Figure 7.7: The numerically acquired dipole acceleration ~a(t) and its spectrum for a nonzero
magnetic field from the laser are presented. For (a), (b) and (c) the blue lines
indicate the calculated dipole acceleration and the orange line represents the cor-
responding computation without the correction term. The associated spectrum for
each component is shown in the lower right plot (d). Sx, Sy and Sz are represented by
blue, orange and green lines, respectively. The dashed line indicates the theoretical
cutoff frequency Ip + 2Up.
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We recognize the outcome to be equal to a nonzero impact parameter and attribute this beha-
vior to the continuous shift of the wavepacket center in the direction of the laser propagation,
as calculated in Section 5.4.2. Since the magnetic field does not change the orbital angular
momentum of the twisted wavepacket in first order perturbation, no other effects are expected
by us.

7.2 Full quantum simulation
In order to perform a full quantum simulation we introduce the technical details of the imple-
mentation in this section. We use a split-operator method for the three-dimensional quantum
simulations with a symmetric second order approximation for the time evolution operator [61].
This approximation leads for time-independent Hamiltonians to a cubic scaling for the error, i.e.,
∝ O(∆t3) [62, 30]. The propagation with a time-dependent Hamiltonian does not pose a pro-
blem as long as the change of the potential per time step ∆t is small, i.e., dVdt ∆t� V . However,
the error scaling becomes quadratic in ∆t in this case [63]. The numerical solver was built with
self-written C code and an implementation of FFTW [64]. The two major computation steps are
the Fourier transform and matrix multiplication. Both tasks are suited for parallelization and
yield a major speed up. Imaginary quadratic potentials were employed as absorbing boundaries
to avoid reflections [65]. More sophisticated methods are available but for our purposes it works
sufficiently well. For numerical stability we ensure that the time increment is below a certain
value

∆t < ~π
3Vmax

, (7.1)

depending on the maximal potential energy [62]. We work with a Hamiltonian in length gauge
without the 1/c-corrections, but a possible implementation of magnetic fields for the split-
operator method is given in [66] and in Appendix B.1. The physical parameters are chosen
according to setting 2 in Table 5.1. The wavefunction propagation will advance with ∆t = 0.1 a.u.
and the grid parameters are summarized in Table 7.2. For all results a simulated time of three
laser periods was used.

Direction Grid points Min [a.u.] Max [a.u.] Stepsize ∆ [a.u.]

x 384 -40 40−∆x 0.208
y 384 -40 40−∆y 0.208
z 1152 -100 100−∆z 0.174

Table 7.2: The cartesian grid parameters are given for each direction. The resulting resolutions
are approximately equal to the soft-core length scale r0 from Section 7.2.1. The total
number of grid points is approximately 1.7× 108 ≈ 1.3× 227.

7.2.1 Coulomb potential
The Coulomb potential has a singularity at r = 0 and poses a problem in numerical applications
due to this divergence. Therefore, smoothed potentials (or “soft-core” potentials) are used that
converge to a finite value for r → 0. The potential form used for this work reads

Vc(r) = − 1(
r4 + r4

0
)1/4 (7.2)

and has a finite value at r = 0, namely Vc(0) = −1/r0.
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Figure 7.8: A smoothed potential (orange) is compared to the real Coulomb potential (blue) for
length parameter r0 = 0.2 a.u., indicated by the vertical dashed lines. They are in
good agreement for distances r ≥ r0.

The grid resolutions sets an upper bound for the length scale r0 under the condition of having
only a minimal number of grid points with a potential significantly deviating from the real Cou-
lomb potential. For r0 ≈ ∆xi and a grid involving the origin (x = 0, y = 0, z = 0) this number
is exactly one. A value of r0 = 0.2 is used for all simulations and is of the order of the spatial
step size in each direction.

The ground state wavefunction and energy is estimated with the variational principle [67] under
the use of the Hydrogen ground state wavefunction ψg = exp(iIp,eff t) exp(−r/aeff)/(πa3

eff)1/2

with tunable width aeff
r0→0−−−→ a0 = 1a.u. as an ansatz wavefunction. The estimated upper bound

for the ground state energy is Ip,eff ≈ −0.47 a.u. and has an associated width of aeff ≈ 1.086 a.u.
for the trial wavefunction. For the purpose of confirming our analytical results it is sufficiently
close to the real Coulomb potential.

7.3 Results of simulation
The first half of this section examines the dynamics for initial wavepackets without orbital
angular momentum (l = 0) in the traditional approach and scenario 2 . Subsequently, the second
half explores the dynamics for scenario 1 and scenario 2 with twisted Volkov wavepackets
(l = 1). For all cases in the following we consider only the ground state ψg as the bound state
in the wavefunction (4.3), i.e.,

ψb −→ ψg . (7.3)

It is estimated with the trial wavefunction from Section 7.2.1.

7.3.1 Traditional HHG with initially populated ground state

In order to verify the accuracy of the quantum solver the traditional HHG approach with a neu-
tral Hydrogen atom in its ground state (cg(0) = 1) was chosen as the first simulation. Figure 7.9
shows a cross section of the wavepacket in time and the dipole acceleration with its associated
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spectrum. The wavefunction modulus |ψ| shows returning, as well as fully ionized parts of the
free part of the electron. The dipole acceleration and the spectrum show only dynamics in the
z-component and the transverse components are zero for all times. A clear HHG signal can be
identified with a typical cutoff around Ip+3.17Up and, therefore, the operability of the quantum
solver is confirmed.
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Figure 7.9: The simulation results for the traditional HHG approach are shown in this figure.
The wavefunction modulus |ψ(0, 0, z, t)| is presented in the upper left plot (a). The
color-scale is clipped at a fraction (0.05) of the maximum value of the modulus for
a better visual contrast. For the spectrum (b) and the dipole acceleration (c) the
colors were chosen such that x-, y- and z-components correspond to blue, orange and
green, respectively. However, the transverse components are zero and not visible in
a semilogarithmic plot (b). The blue line is covered by the orange line in the lower
plot (c). The theoretical cutoff Ip + 3.17Up is indicated by a black dashed line.

7.3.2 HHG with fully ionized atom and Gaussian wavepacket

A free Gaussian Volkov wavepacket and a fully ionized core cg(0) = 0 correspond to the system
investigated in one dimension in reference [29] and is referred to by us as scenario 2 . Their
findings can be qualitatively confirmed for the three-dimensional system and the dipole accele-
ration and the corresponding spectrum have the same profile (see Figure 7.11). There is only
a contribution in the z-component of the dipole acceleration, similar to the simulation above.
The spectrum shows all typical characteristics of a HHG spectrum and has a cutoff at approxi-
mately IP + 2Up. Furthermore, the effect of Coulomb focusing on the wavefunction can be seen
in Figure 7.10.
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Figure 7.10: The wavefunction evolution in time is shown for |ψ(0, 0, z, t)| on the left (a) and for
|ψ(0, y, 0, t)| on the right (b). The red lines correspond to the analytical form of the
Gaussian Volkov wavefunction. The dotted line marks the center and the dashed
lines show the wavepacket extension. The white dashed line indicates z = 0 and
serves as a guide for the eye.
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Figure 7.11: The dipole acceleration for the laser-assisted scattering scenario is shown in the
upper plot (a) and the lower plot shows the spectrum (b). The theoretical cutoff
at Ip + 2Up is indicated by the black dashed line. The colors are chosen to be the
same as in Figure 7.9. The blue line is covered by the orange line in the upper plot
(a). The transverse components are zero and not visible in the semilogarithmic plot
of the spectrum (b).
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7.3.3 Twisted wavepackets
In the following we study the numerical results for twisted wavepackets, depicted in Figure 7.12,
for scenario 1 and scenario 2 . For the use of twisted wavepackets we have to ensure that the
structure is reasonably well resolved by the grid resolution. This corresponds to the factor eiA(t)z

and implies an upper bound for the spacing ∆z < π
A0

between two grid points in z-direction.

|ψ|max

0
Figure 7.12: The wavefront of a twisted wavepacket extracted from the quantum simulation for

A(t) = max shows the vortex character. Its transparency scales with the amplitude
and is color-coded as well. The green cuboid represents 10 × 10 × 10 unit cells on
the grid and is shown for comparison.

Scenario 1

The first simulation with a twisted electron is done for scenario 1 . The initial coefficients are
chosen as cg(0) =

√
0.1 and cT(0) =

√
0.9. The cross sections through the wavefunction moving

in time is presented in Figure 7.13 and shows the ring like structure in the transverse plane.
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Figure 7.13: The wavefunction evolution in time is shown for |ψ(0, ρring(0), z, t)| on the left (a)
and for |ψ(0, y, 0, t)| on the right (b). In the right plot (b) the color-scale is clipped
at a fraction (0.2) of the maximum value of the modulus for a better visual contrast
and, hence, shows the vanishing probability density at ρ = 0. Even though less
visible, the left plot (a) exhibits the same shapes as in Figure 7.9. The red lines
correspond to the analytical form of the twisted wavepacket. The dotted line marks
the center and the dashed lines show the extension. The white dashed line indicates
z = 0 and serves as a guide for the eye.
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The resulting dipole acceleration and its spectrum is depicted in Figure 7.14. For this case
all components of ~a(t) are nonzero and the transverse acceleration curves can be recognized
to be similar in shape to the ones obtained in Section 7.1. The longitudinal component curve
is almost identical to the one in Figure 7.9. As the spectral intensity plot confirms, a mixing
of HHG dynamics happens due to the nonzero initial ground state occupation probability. The
traditional HHG occurs as well and, hence, a cutoff at Ip + 3.17Up is observed. More importantly,
we see the predicted peaks in the emission spectrum for the transverse components of the dipole
acceleration and the expected cutoff at Ip + 2Up.
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Figure 7.14: The dipole acceleration is shown in the upper plot (a) and the lower plot shows the
spectrum (b). The transverse components are blue and orange for the x- and y-
direction, respectively, while the longitudinal component is green. Furthermore, two
dashed black lines in the spectrum indicate the two theoretical cutoff frequencies
Ip + 2Up and Ip + 3.17Up.

Scenario 1 with impact parameter b

Next, the effect of a nonzero impact parameter is simulated. We chose the transverse shift to
be b = 5 in y-direction. The initial coefficients are the same as above, namely cg(0) =

√
0.1 and

cT(0) =
√

0.9. The evolution of the wavepacket in time is shown in Figure 7.15. The motion in
z-direction is similar to its counterpart in Figure 7.13, but the vortex center moves in y-direction
due to the focusing effect of the Coulomb potential. We further support this finding with the
expectation value of the position operator 〈~̂r 〉(t) in Figure 7.16. The y-component shows the
initial offset by an impact parameter b = 5. Subsequently, the wavepacket experiences the
Coulomb force and is drawn toward the center in the transverse plane and eventually the center
position has even negative values for 〈ŷ〉. Additionally, the x-component shows a displacement
from the center as well. This behavior is absent for the equivalent situation with a Gaussian
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wavepacket (l = 0, b = 5), also shown in Figure 7.16. We argue that the transverse shift due to
the magnetic field of the laser mode is smaller than this effect and would not have a significant
influence on the dynamics if it were included in the simulation.
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Figure 7.15: The wavefunction evolution in time is shown for |ψ(0, ρring(0) + b, z, t)| on the left
(a) and for |ψ(0, y, 0, t)| on the right (b). In the right plot (b) the color-scale is
clipped at a fraction (0.2) of the maximum value of the modulus for a better visual
contrast. The impact parameter b = 5 can be identified for t = 0 (b). The red
lines correspond to the analytical form of the twisted wavepacket. The dotted line
marks the center and the dashed lines show the extension. The white dashed line
indicates z = 0 and serves as a guide for the eye.
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Figure 7.16: The expectation value of the position operator in an off-axis scattering scenario is
shown for a twisted wavepacket (l = 1) on the left (a) and for a Gaussian wavepacket
(l = 0) on the right (b). The quiver motion due to the electric field is imprinted
in the z-component (green line) of the expectation value of the position operator.
The dynamics in the transverse directions is indicated by the blue and green line
for 〈x̂〉 and 〈ŷ〉, respectively.

Figure 7.17 displays the resulting dipole acceleration and its spectrum. A resemblance to the
results in Figure 7.4 can be seen. The z-component exhibits large oscillations at the same time as
the transverse components. Moreover, for t < T0/2, the amplitudes of the transverse oscillations
are slightly different. Again, mixing of different HHG dynamics occurs in the spectrum and Sz
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displays two cutoffs at Ip + 2Up and Ip + 3.17Up. The latter cutoff is due to the initial finite
ground state population probability. The plateau region associated with the smaller cutoff is due
to the broken symmetry of the system. The occurrence of ω0-shifted peak frequencies around
the smaller cutoff, presented in Section 7.1, is reproduced as well. However, due to the mixing of
HHG spectra from the traditional approach and the laser-assisted scattering scenario, the peak
structure in the lower frequency part of the plateau is less pronounced.
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Figure 7.17: The dipole acceleration is shown in the upper plot (a) and the lower plot shows the
spectrum for the simulated off-axis scattering of a twisted electron (b). The trans-
verse components are blue and orange for the x- and y-direction, respectively, while
the longitudinal component is green. Furthermore, two dashed black lines in the
spectrum indicate the two theoretical cutoff frequencies Ip + 2Up and Ip + 3.17Up.
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Scenario 2

The next simulation for the twisted electron is the equivalent of the HHG with a fully ionized
ion in Section 7.3.2 with cT(0) = 1. The results are shown in Figures 7.18 and 7.19.
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Figure 7.18: The wavefunction evolution in time is shown for |ψ(0, ρring(0), z, t)| on the left and
for |ψ(0, y, 0, t)| on the right. The red lines correspond to the analytical form of the
twisted wavepacket. The dotted line marks the center and the dashed lines show
the extension. The white dashed line indicates z = 0 and serves as a guide for the
eye.
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Figure 7.19: The dipole acceleration is shown in the upper plot (a) and the lower plot shows
the spectrum (b). The transverse components are blue and orange for the x- and
y-direction, respectively, while the longitudinal component is green. The blue line
is covered by the orange line in the upper plot (a). The transverse components are
zero and not visible in a semilogarithmic plot (b). The dashed black line in the
spectrum indicates the theoretical cutoff frequency Ip + 2Up.
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Surprisingly and in contrast to scenario 1 , high harmonic generation does not appear in the
spectrum for the transverse components. Also the z-component of the dipole acceleration does
not exhibit the oscillations expected from Figure 7.19. Additionally, the cross section of the full
wavefunction in Figure 7.18 shows that the wavefunction modulus at r = 0 is always zero, in
other words, there is no ground state population at all. Both observations reveal deficiencies of
the dipole acceleration formalism and the usage of a Hamiltonian without the coupling to the
quantized radiation field.

7.3.4 Discussion

The dipole acceleration with wavefunction splitting (6.11) shows that there can only be high
harmonics as long as both states are populated. Regardless of the degree of atomic ionization,
the HHG recombination process is a spontaneous emission of one high-energetic photon upon
first recollision. Higher-order processes have a lower probability to occur. Spontaneous emission
is a purely quantum mechanical process [68] and has no classical analogue. The semiclassical
approach (2.2) is not adequate in the limit of vanishing occupation of one state. Not only the
limiting behavior is incorrect, but also the magnitude of the emission is only correctly given
if the population of the state, in which is recombined to, is close to unity [69]. According to
reference [69] the ratio of the semiclassical (SC) and quantum electrodynamical (QED) emission
intensity

ISC
IQED

= |c2
b |

|cb|2→0−−−−−→ 0 (7.4)

is linearly related to the occupation probability. In the work of Bogatskaya et al. it is further-
more stressed that continuum-continuum transitions in the semiclassical dipole formalism do not
represent the physical reality of Bremsstrahlung, at least when no laser field is present. How-
ever, we shall only be concerned with bound-continuum transitions in this work. The qualitative
structure in the emission spectrum is still conserved as long as bound and continuum states are
populated. Yet, quantitative results should be taken with a grain of salt.

The detuning of the laser field from the high harmonic transitions is very large and, effectively,
its interaction does not induce any transfer to bound states. Hence, the only physical mechanism
to change the state population is via spontaneous recombination. Yet, some of the full quantum
simulations seem to emulate this behavior even though no couplings to quantized electromagnetic
field modes are present in the Hamiltonian of Equation (4.2). The subtle reason is the choice of
the initial state. The smoothed Coulomb potential is of long-range nature and, thus, without the
knowledge of the exact eigenstates, an arbitrary initial state will most likely contain components
of bound states in its superposition. The situation becomes more complex with a time-dependent
driving potential, but we argue hand-wavingly that the capture of the wavefunction at the
binding potential is due to the same reason. The total wavefunction will not be orthogonal to
the ground state in that case

〈ψg(t)|ψ(t)〉 6= 0 , (7.5)

for example for a Gaussian wavepacket at t = 0. The situation is different if the initial state is
twisted with a quantization axis pointing directly toward the center of the cylindrical symmetric
binding potential. Here, the laser field formally breaks the spherical symmetry of the Coulomb
potential. In such a case both, the Hamiltonian and the full wavefunction, are cylindrical sym-
metric, in the sense that they are invariant under a rotation around the quantization axis of the
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vortex [49]. A global phase transformation does not change the physical state of the system.
Hence, the propagated wavefunction ψ(~r, t) will always have vortex character. Mathematically,
the Hamiltonian and the angular momentum operator in z-direction commute,

[
Ĥ, L̂z

]
= 0.

This commutation relation ensures that the wavepacket will always be an eigenstate of L̂z with
the same quantum number l for all times if the state was initially in an eigenstate with the same
orbital angular momentum. The Hamiltonian is block diagonal in the basis of L̂z-eigenstates
and therefore does not couple subspaces of different orbital quantum number. We will quickly
proof that the ground state of the binding potential must be a state with zero orbital angular
momentum along the symmetry axis.

For the following we assume that the potential has at least one (quasi-)bound eigenstate. This
will be approximately true if the ionization time in the electric field is very long or the numerical
grid does not extend to regions where the combined potential energy is lower than the binding
energy. It can be shown that the ground state must be real (up to some global phase) and positive
everywhere [70]. This also renders the ground state non-degenerate. Due to the symmetry of
the Hamiltonian it must be a simultaneous eigenstate of the rotation operator under which the
the system is invariant and must have a factor eimϕ. The ground state can only be real for
m = 0. Physically speaking, angular momentum gives an additional contribution to the kinetic
energy and is unfavorable for a minimal energy state. It follows that the ground state and the
propagated twisted wavefunction must be orthogonal for all times, i.e.,

〈ψg(t)|ψT(t)〉 = 0. (7.6)

The vortex wavepacket is not only orthogonal to the ground state, but to every state with any
other orbital quantum number than l. Though, it is exactly these states with m = l ± 1 that
give the interesting dynamics for the x and y component of the dipole acceleration. Due to non-
population of such states the dipole acceleration will always be zero in the transverse direction.
Only for excited bound states ψb ∝ eimϕ with azimuthal quantum number m = l an overlap can
happen. All m 6= 0 states have a vanishing probability at r = 0, as it is the case in the simulation
(Figure 7.18). Another implication is that the ground state can only be populated if the initial
wavepacket has components with zero orbital angular momentum l = 0 in its superposition,
for example the Gaussian wavepacket (Figure 7.10). The situation is different, of course, for
non-central collisions, since the rotational symmetry of the system around the z-axis is broken.
This is the third major result of this work.

The full quantum simulation can accurately reflect tunneling, but is unreliable when spontane-
ous emission processes are important for the dynamics. Furthermore, the angular momentum
transfer of one quantum ~ to the emitted photon cannot be emulated. Bogatskaya et al. per-
formed numerical simulations with a discrete set of quantized field modes coupled to the atomic
system in order to investigate several strong-field scenarios and compared them to the dipole
formalism [71, 72, 73]. Qualitative differences and limitations of the semiclassical approach were
pointed out.
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The arguments at the end of the preceding chapter suggest that a better treatment of the process
must involve the theory of quantum electrodynamics (QED). The coupling of the atomic sys-
tem to the electromagnetic vacuum will be treated in first-order perturbation theory. It is this
interaction that gives rise to couplings between subspaces of different orbital quantum number.
The necessary foundations to describe spontaneous recombination are the field quantization and
the resulting coupling term in the Hamiltonian for the electron. They will be introduced in
Section 8.1. The dynamics of spontaneous emission processes is treated in first-order perturba-
tion theory in Section 8.2. These concepts are then applied to derive an analytical approximation
for the recombination probability for twisted electrons in Section 8.3. This quantity allows to
obtain the associated emission spectrum, which we compare to the semiclassical formalism. The
comparison is presented in Section 8.4 and the numerical results for the quantum electrodyna-
mical spectrum are given in Section 8.5. We conclude this chapter with a possible application
of this concept to the numerical quantum simulation in Section 8.6.

8.1 Theoretical groundwork
In this section we introduce the theoretical basis for a treatment of quantum electrodynamical
processes with non-relativistic charged particles. The quantization of the electromagnetic field
is briefly introduced in Section 8.1.1 and the interaction term for the coupling to the quantized
radiation field is presented in Section 8.1.2. We will follow the canonical quantization procedure
in Loudon’s book [74].

8.1.1 Quantized electromagnetic field
To quantize the electromagnetic field known from classical electrodynamics it will be brought
to a form that is already familiar from quantum mechanics, namely harmonic oscillators. This
connection forms the basis for a recipe to promote the classical vector potential to an operator
in terms of creation and annihilation operators. The procedure starts with the free Maxwell
equations without any source terms

~∇× ~E = −∂t ~B , (8.1)
ε0~∇ · ~E = 0 , (8.2)
~∇ · ~B = 0 , (8.3)

~∇× ~B = ∂t ~E

c2 . (8.4)

These equations can be reformulated with a scalar and a vector potential, namely Φ and ~A [75].
The electric and the magnetic field

~E = −~∇Φ− ∂t ~A , (8.5)
~B = ~∇× ~A (8.6)

are derivatives of these potentials. However, we chose the Coulomb gauge ~∇· ~A = 0 and see that
the scalar potential can be set to zero (Φ = 0). From Equation (8.4) follows the wave equation
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for the vector potential in free space

~∇ 2 ~A− 1
c2∂

2
t
~A = 0 . (8.7)

A very large cubic volume with periodic boundary conditions and with length L is assumed.
The vector potential is now expanded in possible Fourier modes

~A(~r, t) =
∑
~k

∑
λ=1,2

~ε~k,λA~k,λ(~r, t) , (8.8)

where each component reads

A~k,λ(~r, t) = A~k,λ(t)ei~k·~r +A∗~k,λ(t)e−i~k·~r . (8.9)

The wavevectors ~k are determined by the length of each side of the volume and their components
are

ki = 2πni
L

for i ∈ {x, y, z} and ni ∈ Z . (8.10)

The polarization vectors ~ε~k,λ are orthogonal for fixed ~k and have unit length. The Coulomb
gauge leads to the orthogonality to the wavevector

~k · ~ε~k,λ = 0 . (8.11)

The governing equation for the time-dependent factors A~k,λ(t) follows from the insertion of (8.8)
into (8.7), yielding

c2|~k|2A~k,λ(t) + ∂2
tA~k,λ(t) = 0 . (8.12)

It has the simple solution

A~k,λ(t) = A~k,λe
iωt (8.13)

with the dispersion relation ω ≡ c|~k|. In order to make the connection to harmonic oscillators
the total energy of the electric and the magnetic field

E = 1
2

∫
V=L3

dV

[
ε0 ~E

2 + 1
µ0

~B 2
]

(8.14)

is considered. These fields can be expressed in terms of the vector potential (8.8). We refer to
reference [74] for the detailed calculation and just give the energy

E =
∑
~k,λ

ε0V ω
2
(
A~k,λA

∗
~k,λ

+A∗~k,λA~k,λ

)
(8.15)

in terms of A~k,λ. Thus, the individual modes of the field are decoupled and each individual
contribution is summed up to give the total energy. We compare Equation (8.15) with the
Hamiltonian of a single harmonic oscillator

Ĥosc = 1
2~ω

(
ââ† + â†â

)
. (8.16)
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The resemblance between (8.15) and (8.16) suggests that we can associate the complex coeffi-
cients A~k,λ and their complex conjugates with annihilation and creation operators, respectively,
and express the total electromagnetic energy

Ĥem = 1
2
∑
~k,λ

~ω
(
â~k,λâ

†
~k,λ

+ â†~k,λ
â~k,λ

)
(8.17)

as the sum of uncoupled quantum harmonical oscillators. By comparison we can derive the
appropriate scaling for the promotion to quantum mechanical operators, giving

A~k,λ −→
√

~
2ε0V ω

â~k,λ . (8.18)

The associated eigenstates will be denoted by |n~k,λ〉 (n ∈ N) equivalent to the eigenstates of the
harmonic oscillator. The lowest state is |0~k,λ〉 and corresponds to zero photons in this particular
mode. Finally, the quantized electromagnetic vector potential operator reads

~̂A(~r, t) =
∑
~k,λ

√
~

2ε0V ω

[
â~k,λe

i(~k·~r−ωt) + â†~k,λ
e−i(

~k·~r−ωt)
]
· ~ε~k,λ︸ ︷︷ ︸

≡ ~̂A~k,λ

. (8.19)

8.1.2 Interaction with charged particle
The coupling of a non-relativistic free (spinless) charged particle to the quantized radiation field
is done via minimal coupling [74, 76]

Ĥ = 1
2me

(
~̂p− q ~̂A

)2
. (8.20)

Expanding the brackets and choosing the Coulomb gauge leads to two terms in the interaction
Hamiltonian

Ĥint = − q

me

~̂A · ~̂p+ q2

2me

~̂A 2 . (8.21)

8.2 Spontaneous emission process
We follow reference [68] for the treatment of the spontaneous emission process. Consider a
composite system of an atom and one radiation field mode with frequency ω and polarization ~ε,
which is initially in the vacuum state |0〉, i.e., no photons are present. A very fundamental
process is the transition of excited atomic state |B〉 to state |A〉 under the emission of one
photon

|B〉 ⊗ |0〉 −→ |A〉 ⊗ |1〉 . (8.22)

The combined state is written as the direct product and is an element of the composite Hilbert
space Hatom⊗Hem. It is of perturbative nature, because the coupling is relatively weak, and thus
we will neglect the quadratic term in Ĥint and consider only one-photon processes in the follo-
wing. This is equivalent to a first-order perturbation approach. In fact, neglecting the quadratic
term is not an approximation for a one-photon transition, as it involves only products of crea-
tion and annihilation operators and can only induce changes in the photon number of zero or ±2.
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In the context of atomic spectra the “dipole approximation” is referred to the expansion of the
exponential factor ei~k·~r in the interaction Hamiltonian with the quantized electromagnetic field.
For wavelengths larger than the Bohr radius a0 (c/ω � a0) it can be safely approximated to be
one, i.e., ei~k·~r ≈ 1. The critical frequency at which the approximation breaks down is

~ωcrit = ~c
a0

= mec
2

137.0 = 511 keV
137 ≈ 3.7 keV = 137.0 a.u. . (8.23)

In this work all relevant frequencies are far away from this limit. Hence, the dipole approximation
is employed here and the interaction Hamiltonian is

Ĥint(t) = − q

me

√
~

2ε0ωV

[
âe−iωt + â†eiωt

]
· (~̂p · ~ε) . (8.24)

The transition element for the emission of one photon with energy ~ω and polarization α for the
transition from state |B〉 to state |A〉 can be written as

(
〈A| ⊗ 〈1|

)
Ĥint

(
|B〉 ⊗ |0〉

)
= − q

me

√
~

2ε0ωV
· 〈1|â†|0〉︸ ︷︷ ︸

=1

·〈A|eiωt(~ε · ~̂p)|B〉 (8.25)

= − q

me

√
~

2ε0ωV
eiωt~ε · 〈A|~̂p |B〉 . (8.26)

8.2.1 Time-dependent perturbation theory - Time evolution of coefficients
In order to describe the dynamics of radiative recombination through spontaneous emission
a treatment of the Schrödinger equation with the time-dependent coupling to the quantized
radiation field is needed. Therefere we will introduce the first-order time-dependent perturbation
theory [56]. We assume a full Hamiltonian given by

Ĥ = Ĥ0 + Ĥint . (8.27)

The unperturbed eigenstates |ψn(t)〉 of Ĥ0 form a basis in Hilbert space and the general wave-
function can be written as a superposition of these eigenstates

|Ψ(t)〉 =
∑
n

cn(t) |ψn(t)〉 (8.28)

with time-dependent coefficients cn(t). The Schrödinger equation leads to a system of coupled
differential equations for the coefficients(

Ĥ0 + Ĥint
)
|Ψ(t)〉 = i~∂t |Ψ(t)〉 =

∑
n

(
i~ċn(t) |ψn(t)〉+ cn(t) · i~∂t |ψn(t)〉

)
(8.29)

=
∑
n

(
i~ċn(t) |ψn(t)〉+ cn(t) · Ĥ0 |ψn(t)〉︸ ︷︷ ︸

=Ĥ0|Ψ(t)〉

)
, (8.30)

⇒
∑
n

cn(t) Ĥint |ψn(t)〉 = i~
∑
n

ċn(t) |ψn(t)〉 . (8.31)

Assuming non-degeneracy, the differential equation for one particular coefficient can be obtained
with a projection onto an eigenstate |ψm(t)〉, leading to

ċm(t) = 1
i~
∑
n

cn(t)〈ψm(t)|Ĥint|ψn(t)〉 . (8.32)
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For a given set of initial conditions, the full dynamics can be derived from the solution to
these coupled equations. The situation at the beginning of this section can now be described
analytically. In the following we assume that the atomic system has only two states and that
there can only be one quantum of light at most. The coupled equations read

ċA,1(t) = 1
i~
cB,0(t) ·

(
− q

me

)√ ~
2ε0ωV

eiωt~ε · 〈A|~̂p |B〉 , (8.33)

ċB,0(t) = 1
i~
cA,1(t) ·

(
− q

me

)√ ~
2ε0ωV

e−iωt~ε · 〈B|~̂p |A〉 , (8.34)

and describe the absorption and emission process. Note that the interaction Hamiltonian for the
absorption is the complex conjugate of (8.26). If the system is initially in the combined state of
B and the electromagnetic vacuum, namely cB,0(0) = 1 and cA,1(0) = 0, then for short times an
approximation of cB,0 ' 1 to be constant will be valid. The equations decouple in this case and
the probability to find the system in state A with one photon present is given by

|cA,1(t)|2 ≈ q2

2~m2
eε0ωV

∣∣∣∣~ε · ∫ t

0
dt′ eiωt

′〈A|~̂p |B〉
∣∣∣∣2 . (8.35)

8.3 Radiative recombination
In general, the electromagnetic environment has not only one, but an infinite number of modes
and all possible transitions have to be taken into account. In the case of the strongly driven
twisted electron one mode is already populated with an exceedingly large number of photons,
namely the laser mode. The creation of a photon in a field mode that is not in the vacuum
state is called stimulated emission. However, we will neglect it in the following for three reasons.
First, the laser frequency is far away from the HHG plateau and emission in this mode is not
of interest. Second, the laser frequency is far detuned (ω0 � Ip) and does not give a significant
contribution. Last, the transition element vanishes for central collisions of twisted electrons with
the ground state ψg

~ez · 〈ψg|~̂p |ψT〉 ∝
∫
dϕ eilϕ = 0 , for l 6= 0 . (8.36)

In the following this particular mode will be excluded from summations or integrations over all
field modes. For the sake of convenience the combined index k ≡ {~k, λ} is introduced.

The wavefunction splitting approach in this thesis makes the atomic system effectively a two-level
system. The drawbacks of this approach, the possible non-orthogonality and non-completeness
already mentioned in Section 4.2, might seem unfavorable in the light of the derivation of the pre-
ceding section. Nonetheless, with a leap of faith we assume the formalism to hold approximately
and to yield better results than the semiclassical dipole formalism. Now the full wavefunction
reads

|ψ〉 = cT,0
(
|ψT〉 ⊗ |0〉

)
+
∑

k
cb,k
(
|ψb〉 ⊗ |1k〉

)
. (8.37)

The result of Equation (5.40) can be used to express the transition element as

〈ψb|~̂p |ψT〉 =
∫
dV ψ∗bψT

[
~ez

(
−qA+ i~

z − rω0

σα
· (1− iτα)

)

+ ~eϕ ·
~l
ρ

+ ~eρ

(
−i~l

ρ
+ i~

ρ

σβ
· (1− iτβ)

)]
. (8.38)
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Its evaluation can be readily performed with the integral formula I (Appendix B.4). The cal-
culation becomes even easier if both wavefunctions are known in momentum space. In order to
obtain the spectral intensity for one particular frequency the individual transition probabilities
have to be summed over all emission directions ~ek and polarizations ~ε~k,λ (λ = 1, 2). This leads
to the probability

Pb,ω(t) ≡
∫
dΩk

∑
λ

|cb,k(t)|2 = q2

2~m2
eε0ωV

∫
dΩk

∑
λ

∣∣∣∣~ε~k,λ · ∫ t

0
dt′ eiωt

′
cT,0〈ψb|~̂p |ψT〉

∣∣∣∣2
(8.39)

= 4πq2

3~m2
eε0ωV

∣∣∣∣∫ t

0
dt′ eiωt

′
cT,0〈ψb|~̂p |ψT〉

∣∣∣∣2 (8.40)

of having a photon with frequency ω. We formally kept the coefficient cT,0(t) and assumed
cb,k(0) = 0. The integration and summation give a geometrical factor of 8π/3, which is calculated
in Appendix B.5.

8.4 Connection to dipole acceleration formalism
The total radiated energy (2.12) in dipole velocity form and with ε0µ0c

2 = 1 reads

ESC,em = q2

3πε0c3m2
e

∫ ∞
0

dω ω2
∣∣∣~̃p (ω)

∣∣∣2
SPA≈ q2

3πε0c3m2
e

∫ ∞
0

dω ω2
∣∣∣∣ 1√

2π

∫ ∞
−∞

dt eiωt c∗b(t)cT(t) 〈ψb(t)|~̂p |ψT(t)〉
∣∣∣∣2 . (8.41)

The dipole velocity was expressed with the momentum operator q
me
〈~̂p〉 = d

dt〈q~̂r〉. We neglect the
contribution from 〈ψT|~̂p |ψT〉 because it does not correspond to the recombination process but to
continuum-continuum transitions and will not have any significance for the HHG plateau. The
bound state contribution 〈ψb|~̂p |ψb〉 = 0 is zero (Appendix C.2). We will compare this expression
to the total energy amount in the radiation field

EQED,em ≡
∑

k
~ω 〈n̂k〉 (8.42)

without the laser field. Furthermore, we set the origin of the energy scale to the electromagnetic
vacuum energy term

∑
k ~ω/2. The sum in (8.42) can be converted to an integral [74]

∑
k

−→ V

(2π)3

∫ ∞
0

dω
ω2

c3

∫
Ωk
dΩk

∑
λ

. (8.43)

The expectation value of the photon number operator n̂k corresponds simply to |cb,k|2. Hence,
we can express the total energy as

EQED,em = V

(2π)3

∫ ∞
0

dω
ω2

c3 · ~ω · Pb,ω (8.44)

= q2

3ε0πc3m2
e

∫ ∞
0

dω ω2
∣∣∣∣ 1√

2π

∫ ∞
−∞

dt eiωtcT,0(t) 〈ψb(t)|~̂p |ψT(t)〉
∣∣∣∣2 (8.45)

and set the time integration limits in (8.40) to plus and minus infinity. By comparing the last
line with Equation (8.41) the linear dependence of the semiclassical intensity on the bound state
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population becomes clear. If the coefficients ci are approximated to be constant, then the result

ESC,em
EQED,em

= |cb|2 (8.46)

from reference [69] follows. This shows also that full ionization leads to a higher HHG intensity
in a single-atom framework. Additionally, the dipole formalism works well for traditional HHG
in which the degree of ionization is negligible and cb(t) ≈ 1. We define the QED spectrum,
similar to the semiclassical one, as

SQED(ω) ≡ q2 · ω2

m2
e

∣∣∣∣ 1√
2π

∫ t

0
dt′ eiωt

′
cT,0 〈ψb|~̂p |ψT〉

∣∣∣∣2 . (8.47)

QED dipole acceleration

We wish to come back to the expectation value of the dipole acceleration once more. Since the
full wavefunction (8.37) is an element of a larger Hilbert space, the dipole acceleration

~a(t) = − q

me
· tratom

(
ρ̂atom(t) ~̂r

r̂3

)
(8.48)

has to be determined from a reduced atomic density operator ρ̂atom(t) [77]. It is obtained by
taking the partial trace of the full density operator ρ̂ = |Ψ〉〈Ψ| over all photonic states. However,

ρ̂atom(t) = trem ρ̂(t) =
(∑

k|cb,k(t)|2 0
0 |cT,0|2

)
(8.49)

for state (8.37) shows a mixed state in its matrix representation, as expected from a partial trace
over an, in general, entangled state. Interestingly, in this case the dipole acceleration

~a(t) = − q

me

[∑
k
|cb,k(t)|2 · 〈ψb|

~̂r

r̂3 |ψb〉+ |cT,0|2 · 〈ψT|
~̂r

r̂3 |ψT〉
]

(8.50)

does not have an interference term and does not indicate high harmonic emission.

8.5 Results
We want to derive the emission spectrum (8.47) and the recombination probability with the
QED approach for the recombination of a twisted electron (l = 1) with the ground state ψg.
Furthermore, it is assumed that the interaction time is short enough to approximate the coeffi-
cient cT,0 ' 1 to be one, similar to the procedure in Section 8.2.1. In general the form (8.38) can
be used for the transition element to a bound states. However, for the case at hand it is easier
to perform the spatial derivative of the momentum operator on the ground state wavefunction
ψg, i.e.,

~̂p ψg = i~
a0

~r

r
ψg ⇒ 〈ψg|~̂p |ψT〉 = − i~

a0
〈ψg|

~̂r

r̂
|ψT〉 . (8.51)

The z-component vanishes due to the ϕ-integration. The transverse components give∫
dϕ eiϕ

(
cosϕ
sinϕ

)
= π

(
1
i

)
. (8.52)
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Therefore, the transition element in cartesian coordinates is given by

〈ψg|~̂p |ψT〉 = − i~π
a0

1
i
0

 · NgT(t) · I(2, 0, 1, t) . (8.53)

This shows again the equivalence for both transverse directions and it follows that∣∣∣∣∫ t

0
dt′ eiωt

′〈ψg|p̂x|ψT〉
∣∣∣∣2 = π2

a2
0

∣∣∣∣∫ t

0
dt′ eiωt

′NgT(t) · I(2, 0, 1, t)
∣∣∣∣2 (8.54)

8.5.1 Spectrum
Inserting Equation (8.53) the resulting spectrum for the x-direction of the transition element
reads

SQED,x(ω) = q2π

2a2
0m

2
e

· ω2 ·
∣∣∣∣∫ t

0
dt′ eiωt

′NgT(t) · I(2, 0, 1, t)
∣∣∣∣2 . (8.55)

It is worth mentioning that this equation presents a full quantum mechanical, analytical ap-
proximation for the HHG spectrum of an effective two-level system in three dimensions without
the deficiencies of the semiclassical formalism. Even though, we will not present it, the QED
formalism does not restrict to the recombination into one state. It allows to easily include more
bound states and to obtain a better estimation of the full HHG spectrum.

In principle, expression (8.55) could be further examined with a stationary phase approximation,
similar to Section 6.3, but we will just give the numerical evaluation for both laser parameter
settings in Figure 8.1. The integration time was chosen to be three driving periods.
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Figure 8.1: The upper plot (a) shows the numerically obtained QED emission spectrum for
scenario 2 in x-direction with laser parameter setting 1. The result for setting 2 is
presented in the lower plot (b). The dashed lines indicate the lower and upper end
of the plateau region at Ip and Ip + 2Up, respectively.
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In the light of Equation (8.46) we can compare the magnitude of the QED spectra with the
semiclassical spectra in Figure 6.3. The difference is due to the chosen prefactors (cb =

√
0.95

and cT =
√

0.05) and is approximately two orders of magnitude (c2
bc

2
T = 4.75× 10−2).

8.5.2 Recombination probability
The probability of recombination into the ground state reads

∑
k
|cg,k(t)|2 = V

(2π)3

∫
dω

ω2

c3 · Pg,ω(t) (8.56)

= q2

3c3~m2
ea

2
0ε0

∫
dω ω

∣∣∣∣∫ t

0
dt′ eiωt

′NgT(t) · I(2, 0, 1, t)
∣∣∣∣2 . (8.57)

The prefactor can be expressed in terms of the fine-structure constant ᾱ ≡ q2

4πε0~c ≈ 1/137, which
has a bar to distinguish it from the initial width of the twisted wavepacket. This leads to

∑
k
|cg,k(t)|2 = 4π

3~2 ᾱ
3
∫
dω ω

∣∣∣∣∫ t

0
dt′ eiωt

′NgT(t) · I(2, 0, 1, t)
∣∣∣∣2 . (8.58)

The scaling is due to a0 ∝ 1/ᾱ and the fact that the electromagnetic interaction of charged
particles with the quantized field scales with

√
ᾱ. The probability of recombination is small

because of the cubic scaling. The numerical evaluation of (8.58) is shown in Figure 8.2 for
three laser cycles. It confirms that the probability is indeed small and the approximation to set
cT,0 to one is justified. We note that the probability has to be multiplied by two to yield the
ground state occupation probability due to two transverse directions. The effect of wavefunction
diffusion can be seen for setting 2.
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Figure 8.2: The recombination probability (8.58) is shown for three laser cycles. The left plot (a)
corresponds to laser parameter setting 1 and the right plot (b) to setting 2.

8.6 Application to quantum simulation - hybrid model
Despite the drawback for scenario 2 from the previous section, the quantum simulation might
allow for an improved result over the analytical form from the preceding section. It presents
a good opportunity to study the shape of the twisted wavepacket in the combined system of
Coulomb potential and laser field. Already the right plot in Figure 7.18 shows the effect of
Coulomb focusing. This allows to use a more accurate wavefunction for the numerical calculation



78 8 Quantum Electrodynamical Approach

of the QED transition elements. The recombination spectrum can be approximated from the
numerically propagated wavefunction ψsim through the transition element

〈ψg|~̂p |ψsim〉 . (8.59)

It easily obtained from an analytical approximation of the ground state or a numerically acquired
ground state wavefunction at the instantaneous time t. Furthermore, the transition element is
easily obtained when both wavefunctions are transformed to momentum space. As we mentioned
in Chapter 7, some part of the propagated wavefunction might get caught in the smoothed
Coulomb potential. However, these contribution will yield only low-frequency components for
the transition element and may not matter for the analysis of HHG. The change of cT (t) due
to recombination is negligibly small and the fraction of bound contributions is also small in
the simulation. We perform the spectral evaluation (8.55) with the transition element (8.59)
extracted from the simulation for scenario 2 in Section 7.3.3 and the result is shown in Figure 8.3.
The integration time is one laser cycle. The hybrid spectrum is approximately one order of
magnitude larger than the theoretically obtained spectrum. We attribute this difference to the
effect of Coulomb focusing.
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Figure 8.3: The theoretical spectrum (8.55) is compared to the spectrum obtained with the hy-
brid transition element (8.59). The blue line corresponds to the theoretical result and
the orange line to the hybrid model. The dashed black lines indicate the theoretical
boundaries of the plateau region.

Based on this result we believe that this method is a good tool to study the interaction of twisted
electrons with the Hydrogen ground state even further and that it opens a possibility for future
work.
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In summary, we were able to qualitatively analyze the emission of high harmonics with twisted
electrons in a non-relativistic single-atom framework for the first time. After laying out the fun-
damental concepts of HHG and of vortex wavepackets we presented the model system for this
study including two possible scenarios for the initial conditions. Next, we successfully derived a
full analytical form for the twisted electron wavefunction including magnetic contributions from
the laser field. For central collisions and neglecting the magnetic field this allowed us to derive
an analytical expression for the dipole acceleration of the system with only one approximation
in the interference term. The result does not only hold for ground state recombination but is
a general formula for all bound states of Hydrogen. The magnetic field can be included with
our derivations but the calculations are rather lengthy and are not given in this thesis. The
obtained formula brought to light that the emission pattern displays a different characteristic
than for traditional HHG, namely that of a rotating electric dipole. This presents the first major
result of this thesis. Subsequently, we determined the corresponding spectral intensity by means
of a stationary phase approximation and found that the cutoff frequency is unchanged by the
use of vortex electrons. If the ionization process is part of the HHG dynamics, then the width
of the wavepacket moving under the influence of the laser field is fixed by the ionization rate.
However, for the laser-assisted scattering scenario it became clear that the initial width of the
wavepacket represents an additional degree of freedom for the dynamics. Hence, we were able
to reveal the dependence of the intensity on the initial width on the basis of the SPA result
and, furthermore, showed that an optimal width exists for the balance of wavepacket diffu-
sion and recombination probability. It is the second major result of this work and applies not
only to HHG with twisted electrons but to HHG dynamics in general. In order to support the
analytical findings we performed numerical integrations for the dipole acceleration and found
excellent agreement with our analytical results. Furthermore, it showed that the amplitude of
the dipole acceleration is at least one order of magnitude smaller than for Gaussian wavepac-
kets due to a smaller wavefunction overlap. Afterwards, we supplemented these findings with
numerical results for non-central collisions and examined the result based on the topology of
the system and the broken rotational symmetry due to the transverse shift. Additionally, the
magnetic field effects were numerically calculated and we found the change in dynamics to ori-
ginate from the transverse drift due to the magnetic field. To further support our results and
to gain additional insights into the dynamics of the twisted wavepackets under the influence of
the Coulomb potential, we built a full three-dimensional quantum solver with an approximation
scheme for the time evolution operator. Even though we presented a possibility to include the
magnetic field contribution we did not implement it and later argued that the magnetic drift is
of minor importance due to the strength of the Coulomb potential. The simulation outcomes
qualitatively confirmed our analytical and numerical findings. Despite this, it exposed a general
flaw of the dipole acceleration formalism and the omission of the quantized electromagnetic field
in the model Hamiltonian. Therefore, we derived analytical expressions for the spectrum and
the recombination probability within the framework of quantum electrodynamics and compared
them to the semiclassical dipole formalism. This presents the third major result of this thesis
and constitutes an intricate interplay between a non-perturbative strong field approximation
and perturbatively weak electromagnetic couplings to quantized field modes. We concluded our
work with a suggestion to combine the quantum electrodynamical formulas with the propagated
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wavefunction from the quantum simulation.

Even though the results are already quite satisfactory they open up possible directions for future
investigations of HHG dynamics and we want to outline them. The first half will be independent
of the intrinsic orbital angular momentum of the recombining wavepacket. The influence of
the width of the Volkov wavepacket on the spectral intensity can be further investigated and
might lead to a better understanding of scaling properties in HHG scenarios [58, 78] and to
pulse engineering for higher efficiency. One of the major challenges for analytical derivations
of HHG dynamics is the influence of the Coulomb potential on the Volkov wavepacket. A
good approximation would lead to better qualitative and quantitative results. The use of three
dimensional quantum simulations might help to reach this goal and support the hitherto existing
findings. Attempts to derive Coulomb-Volkov wavefunctions have been undertaken, for example,
in references [79, 80, 81]. The use of a classical guiding trajectory method and free time-
varying width parameter, similar to the concept in [82], could help to estimate the motion of
the wavepacket center and the change of its extension due to the influence of the Coulomb
potential. Future work on the QED formalism for HHG might provide insight which form of
the dipole operator should be used for finite length time-series in a semiclassical context. In
addition, an analysis of the individual quantized field modes and the semiclassically obtained
electromagnetic fields could prove quite beneficial for a better understanding of the emission
pattern. The following recommendations for future research concern high harmonic generation
with twisted electrons. In this work the OAM quantization axis and the electric field polarization
were chosen to be collinear. Different non-collinear configurations may lead to dynamics worth
investigating. We also believe that it would prove useful to investigate the probability current
of the twisted wavepacket in the full quantum simulation with the influence of the Coulomb
potential. Furthermore, investigating the dynamics of the vorticity ~w = ~∇×~jT and vortex
lines [51] in the simulation, especially in off-axis scattering scenarios, might prove important to
disentangle the complexity of the influences of the laser field, the Coulomb potential and the
OAM of the electron. Additionally, the propagation of the twisted wavepacket in the quantum
simulation, including the magnetic field and neglecting the Coulomb potential, is a possibility
to evaluate how long the Taylor expansion in 1/c is valid for the analytical expression of the
twisted wavefunction. One significant step forward would be the relativistic treatment of the
investigated process for very strong laser fields with the Dirac equation. Finally, an important
open question is the realizability of HHG with twisted electrons in a macroscopic setting.



A Theorems
A.1 Plancherel theorem
The Fourier transform with symmetric normalization is used to transform the expression∫ ∞

−∞
dt|a(t)|2 =

∫ ∞
−∞

dt

( 1√
2π

∫ ∞
−∞

dω eiωta(ω)
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∫ ∞
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dω′ eiω
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(A.1)

= 1
2π

∫ ∞
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dω

∫ ∞
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dω′
∫ ∞
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dt ei(ω−ω
′)t
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=2πδ(ω−ω′)

a(ω)a∗(ω′) (A.2)

=
∫ ∞
−∞

dω|a(ω)|2 . (A.3)

This is also referred to as Parceval’s theorem. Note that for an asymmetric normalization of the
Fourier transform and its inverse an additional factor of 2π appears.

A.2 Ehrenfest theorem
The time derivative of the expectation value of an arbitrary operator Ô(t) in the Schrödinger
picture

d

dt
〈ψ(t)|Ô(t)|ψ(t)〉 = 〈ψ̇(t)|Ô(t)|ψ(t)〉+ 〈ψ(t)|Ô(t)|ψ̇(t)〉+ 〈ψ(t)|

(
dÔ(t)
dt

)
|ψ(t)〉 (A.4)

can be expanded with the product rule of differentiation. The time argument implies the possibi-
lity of explicit time dependence. The time derivative of the bra and ket state can be substituted
by the Schrödinger equation

|ψ̇(t)〉 = − i
~
Ĥ|ψ(t)〉 (A.5)

and its complex conjugate

〈ψ̇(t)| = i

~
〈ψ(t)|Ĥ . (A.6)

This gives the final expression for the famous Ehrenfest theorem

d

dt
〈Ô(t)〉 = i

~

〈[
Ĥ, Ô(t)

]〉
+
〈
dÔ(t)
dt

〉
. (A.7)





B Calculations
B.1 Plane-wave Volkov solutions in velocity and length gauge
The Schrödinger equation with Hamiltonian (5.6) reads

i~ψV(~r, t) =
{
~̂p 2 − 2q ~A(t) · ~̂p+ q2 ~A 2(t)

2me
+ (~ek · ~r)

mec

[
q

(
d

dt
~A(t)

)
· ~̂p− q2

2
d

dt
~A 2(t)

]
︸ ︷︷ ︸

≡Ĥc(~r,t)

}
ψV(~r, t) .

(B.1)

The subscript V indicates the velocity gauge form and the correction terms have been defined
as the Hamiltonian Ĥc(~r, t). For simplicity, we assume that ~A(t0) = 0 (see Section 4.1) and
transform the wavefunction with ψV = Û1ψ

′, where Û1 is defined as

Û1(~r, t) ≡ exp
[
− i
~

(∫ t

t0
dt′ Ĥc(~r, t)

)]
(B.2)

= exp
[
− i
~

(~ek · ~r)
mec

(
q ~A(t) · ~̂p− q2

2
~A 2(t)

)]
. (B.3)

This unitary transformation resembles the form of a Kramers-Henneberger transformation [83,
84], but includes a time-derivative. This close connection will be further explored below.
Whenever the time and position arguments are omitted, the vector potential ~A is considered to be
in its dipole approximation form, namely ~A(t). Noting that

[
Ĥc, Û1

]
= 0 and

[
~A(t) · ~̂p, Û1

]
= 0,

the transformed Schrödinger equation is

Û1
(
i~∂tψ′ + Ĥcψ

′
)
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~̂p− q ~A

)2

2me
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 Û1ψ
′ , (B.4)

⇒ i~∂tψ′ = Û †1

(
~̂p− q ~A

)2

2me
Û1ψ

′ (B.5)

=
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1
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ψ′ . (B.6)

The first term can be evaluated with

~̂p 2Û1ψ
′ = ~̂p Û1

[
~̂p− ~ek

mec

(
q ~A · ~̂p− q2

2
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= Û1

[
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2
~A 2
)]2

ψ′ . (B.8)

Plugging this result into (B.6) leads to the Schrödinger equation

i~∂tψ′ =
1

2me

[
~̂p− q ~A− ~ek

mec

(
q ~A · ~̂p− q2

2
~A 2
)]2

ψ′ . (B.9)



84 B Calculations

Before proceeding further with the derivation it is interesting to note that in this form the Ha-
miltonian does not have a position dependence. Hence it makes for an excellent candidate to use
in numerical simulations employing a split-operator method since it does not involve products of
momentum and position any longer. The advantage was recognized and employed by Brennecke
and Lein [66]. One has to check how the transformation Û1 acts on a position-dependent po-
tential V (~r ). Now the connection to a Kramers-Henneberger transformation, mentioned above,
comes into play and the transformed operator reads

Û †1V (~̂r )Û1 = exp
[
i

~
q(~ek · ~̂r )
mec

~A(t) · ~̂p
]
V (~̂r ) exp

[
− i
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mec

~A(t) · ~̂p
]
. (B.10)

The operator relation, also known as Hadamard’s lemma or Baker-Haussdorff lemma, eL̂M̂e−L̂ =∑∞
n=0

1
n!

[
L̂, M̂

]
n
with
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L̂,
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0

= M̂ can be used to simplify

this expression [30]. The Coulomb gauge ensures that
[(
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)
,
(
~A(t) · ~̂p

)]
= 0, see Section 5.1.

The first few terms in the series expansion are[
i
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These terms can be recognized from the Taylor expansion
∞∑
n=0

1
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and lead to a shifted potential, known from the Kramers-Henneberger frame. The full Schrö-
dinger equation

i~∂tψ′ =
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2me
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contains no products of momentum and position. This is the result obtained in [66].

The Volkov solution (V = 0) emerges easily by recognizing that equation (B.9) has only mo-
mentum operators on the right side and can be solved with a product of a time-dependent
function and momentum operator eigenfunctions [61]. The ansatz ψ′~p(~r, t) = f~p(t) · e

i
~ ~p·~r gives a

differential equation for f~p, i.e.,
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, (B.17)
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which has an exponential solution. For notational economy a new symbol, i.e., ~π(t), for the
kinetic momentum has been introduced. The full plane-wave Volkov wavefunctions in velocity
gauge read

ψV,~p(~r, t) = f~p(t0) exp
[
i

~
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)]
. (B.18)

The transformation to length gauge with ψL,~p(~r, t) = exp
(
−iq ~A(t) · ~r/~

)
ψV,~p(~r, t) leads to the

elegant form
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This is exactly the result given in reference [43]. The normalization shall not be important here.

B.2 Derivation of φ-integration in plane-wave decomposition
Using the Jacobi-Anger expansion

eiz cos(θ) =
n=∞∑
n=−∞

inJn(z)einθ

allows to derive the analytical result for the integral∫ 2π

0
dφ eilφeiξ cos(φ−ϕ) =

n=∞∑
n=−∞

inJn(ξ)
∫ 2π

0
dφ eilφein(φ−ϕ)

=
n=∞∑
n=−∞

inJn(ξ)e−inϕ
∫ 2π

0
dφ ei(l+n)φ︸ ︷︷ ︸

=2πδ−l,n

= 2πeilϕi−l J−l(ξ)︸ ︷︷ ︸
=i2lJl(ξ)

= 2πil eilϕ Jl(ξ) .

B.3 Momentum space integration of Volkov wavefunctions
Before performing the actual integration in momentum space it is necessary to expand the
exponent in the non-dipole Volkov wavefunctions (5.13)

ψL,~p(~r, t) ≈
[
1 + iF1(p‖)

] [
1 + ip⊥ sinφF0(p‖)

]
× (B.20)

exp
[
i

~

{
−qA(t)z + p‖ (z − rω0(t)) + p⊥ρ cos(φ− ϕ)− Sω0(t)−

(p2
⊥ + p2

‖)t
2me

}]

to first order in 1/c. The auxiliary correction terms

F0(p‖) = −
p‖rω0(t) + Sω0(t)

~mec
, (B.21)

F1(p‖) = ρ sinϕ
~mec

(
q2

2 A
2(t)− qA(t)p‖

)
(B.22)
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were introduced. An analysis of the limits of this approximation is given below in Section B.3.2.
The normalization constant is neglected for now. First, we examine the ϕ-integration

(5.17) ∝
∫ 2π

0
dφ eilφeiξ cos(φ−ϕ)

[
1 + iF0(p‖)p⊥ sinφ

]
(B.23)

=
∫ 2π

0
dφ eilφeiξ cos(φ−ϕ)

[
1 +

F0(p‖)p⊥
2

(
eiφ − e−iφ

)]
. (B.24)

For convenience, the variable ξ = p⊥ρ/~ was introduced. The integral can be evaluated with
the integral representation for Bessel functions (Appendix B.2) and is a sum of three Bessel
functions, namely

(5.17) ∝ 2πileilϕ
[
Jl(ξ) + i

F0(p‖)p⊥
2

(
eiϕJl+1(ξ) + e−iϕJl−1(ξ)

)]
. (B.25)

The two remaining integrations are

ψ
(c)
T (~r, t) ∝

∫ ∞
−∞

dp‖ e
−p2
‖γα(t)/2

e
i
~p‖(z−rω0 (t)) [1 + iF1(p‖)

]
×

∫ ∞
0

dp⊥ p
l+1
⊥ e−p

2
⊥γβ(t)/2

[
Jl(p⊥ρ/~)

+ i
F0(p‖)p⊥

2
(
eiϕJl+1(p⊥ρ/~) + e−iϕJl−1(p⊥ρ/~)

) ]
(B.26)

with the auxiliary variables

γα(t) =
(
α2

~2 + i
t

me~

)
≡ α2

~2 (1 + iτα) with τα(t) ≡ ~t
meα2 , (B.27)

γβ(t) =
(
β2

~2 + i
t

me~

)
≡ β2

~2 (1 + iτβ) with τβ(t) ≡ ~t
meβ2 . (B.28)

The τi are dimensionless times which correspond to the spreading time scale of the wavepacket
in longitudinal and transverse direction.

Integrals involving Bessel functions

The necessary solutions to these integrals can be found in reference [85]. The relations

∫ ∞
0

dx Jν(yx)xν+1e−σx
2/2 = 1

σν+1 y
ν exp

(
− y

2

2σ

)
, (B.29)

⇒
∫ ∞

0
dx Jν−1(yx)xν+2e−σx

2/2 = 2
σν+1 y

ν−1 exp
(
− y

2

2σ

) [
ν − y2

2σ

]
︸ ︷︷ ︸

=Lν−1
1 (y2/2σ)

(B.30)

hold for <σ > 0, < ν > −1 and y > 0 . The last result was obtained with the help of a deriva-
tive with respect to σ. In general, using this procedure further would allow to derive analytical
results for higher modes Laguerre-Gaussian modes with more than one local extremum.
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Hence, equation (B.26) reduces to

(B.26) = 1
γl+1
β

(
ρ

~

)l
exp

(
− ρ2

2~2γβ

)∫ ∞
−∞

dp‖ e
−p2
‖γα(t)/2

e
i
~p‖(z−rω0 (t)) [1 + iF1(p‖)

]
×[

1 + i
F0(p‖)

2

{
eiϕ

(
ρ

γβ~

)
− e−iϕ

(
ρ

~γβ
− 2l~

ρ

)}]
. (B.31)

Expanding the squared brackets

[1 + iF1] [1 + iF0(. . . )] ≈ 1 + i [F1 + F0(. . . )] ≡ 1 + i
[
F3 − p‖F2

]
(B.32)

and neglecting terms proportional to O
(
c−2) makes the definition of new auxiliary variables

desirable. The new variables are

F2 ≡
1

~mec

[
qA · ρ sinϕ+ F4 · rω0

]
, (B.33)

F3 ≡
1

~mec

[
ρ sinϕ · q

2

2 A
2 − F4 · Sω0

]
, (B.34)

F4 ≡ e−iϕ
l~
ρ

+ i
ρ

~γβ
sinϕ . (B.35)

The last integral is frequently encountered in physics and has the solution∫ ∞
−∞

dp‖ e
−γαp2

‖/2e
i
~p‖(z−rω0 )

[
1 + iF3 − iF2p‖

]
=
√

2π
γα

[
1 + iF3 + (z − rω0)

~γα
F2

]
e
− (z−rω0 )2

2~2γα

(B.36)

The final result for the twisted wavefunction, including a normalization constant NT, is

ψ
(c)
T = [1 + F ] NT e

ilϕe−
i
~ [qAz+Sω0 ]ρl exp

[
−1

2

(
(z − rω0)2 · (1− iτα)

σ2
α

+ ρ2 · (1− iτβ)
σ2
β

)]
︸ ︷︷ ︸

≡ψT

, (B.37)

or

|ψ(c)
T 〉 =

[
1 + F̂

]
|ψT〉 (B.38)

and includes the correction term

F ≡ iF3 + ~(z − rω0) · (1− iτα)
σ2
α

F2 ∝ O
(
c−1

)
(B.39)

and the time-dependent longitudinal and transverse widths

σα(t) ≡ α
√

1 + τ2
α(t) , σβ(t) ≡ β

√
1 + τ2

β(t) . (B.40)

B.3.1 Normalization
The normalization constant NT still has to be determined to get the full wavefunction, fulfilling
the normalization condition

∫
dV |ψ(c)

T (~r, t)|2 = 1. The probability density is given by

∣∣∣ψ(c)
T

∣∣∣2 = [1 + 2<F ] · |ψT|2 = N 2
T [1 + 2<F ] ρ2l exp

[
−
(

(z − rω0)2

σ2
α

+ ρ2

σ2
β

)]
, (B.41)
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neglecting ∝ c−2 terms again. The function arguments are omitted for the sake of simplicity.
The integration over R3 determines the normalization constant. Since the correction term F
depends on ∝sinϕ and ∝cosϕ terms only, it vanishes for the integration over ϕ. This means
that the correction term

〈ψT|F̂ |ψT〉 = 0 (B.42)

is orthogonal to the dipole approxmation form of the twisted wavepacket. The density is other-
wise cylindrical symmetric and a factor of 2π is obtained for the ϕ-integration. Performing two
standard integrations for ρ and z gives the expressions∫

dV |ψT|2 = N 2
T · 2π

∫ ∞
0

dρ ρ2l+1 exp
[
− ρ

2

σ2
β

]
︸ ︷︷ ︸

= l!
2 σ

2(l+1)
β

∫ ∞
−∞

dz exp
[
−(z − rω0)2

σ2
α

]
︸ ︷︷ ︸

=
√
πσα

= N 2
T · π l!σ

2(l+1)
β ·

√
πσα

!= 1 ,

⇒ NT =
(
π1/4σl+1

β

√
πl!σα

)−1

for the normalization.

B.3.2 Limits of approximations
The expansions of (5.13) can only be valid as long as the two correction terms ∝ O(c−1) are
sufficiently small. The first correction term is F1 (see equation (B.22)) and has to fulfill |F1| � 1,
leading to∣∣∣∣∣ρ sinϕ

(
q2

2 A
2(t)− qA(t)p‖

)∣∣∣∣∣ ≤ ρ
(
q2

2 A
2
0 + q|p‖|A0

)
� me~c . (B.43)

We approximate ρ with the transverse width σβ(t) and p‖ with the longitudinal width in mo-
mentum space, namely ~/σα(t). It has to hold that

|q|A0

[ |q|A0σβ(t)
2~ + σβ(t)

σα(t)

]
� mec . (B.44)

The quantity |q|A0 represents the maximal momentum the electron can gain in the laser field.
Later the widths will be set to be equal and, therefore, σβ(t)/σα(t) = 1 and is usually smaller
than the first term, for sufficiently strong laser fields. The approximation will depend on the
length Tmax of the laser pulse. The resulting twisted wavepacket can only be valid up to a certain
time tc, since σβ(t) is monotonically increasing.

The second approximation concerns the term p⊥ sinφF1. The quiver motion rω0(t) is bound by
|q|A0/(meω0) and, hence, the limit reads∣∣∣p⊥ sinφ

(
p‖rω0(t) + Sω0(t)

)∣∣∣ ≤ p⊥ ( |q|A0
meω0

p‖ + |Sω0(t)|
)
� me~c . (B.45)

We will use the time-average of the action Sω0(t) ≈ Upt = q2A2
0t/(4me) and approximate the

momenta with the same treatment as above, giving

|q|A0
meω0σβ(t)

( ~
σα(t) + |q|A0 · ω0t

4

)
� mec . (B.46)
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The right-hand side is monotonically decreasing and the relation has to be valid at an initial time
t0 to be fulfilled for all times. Additionally, the first term in brackets is usually much smaller for
times t & T0 = 2π/ω0.

For both parameter settings from Section 5.5 the corresponding limits are shown in Figure B.1.
For setting 1 the limit function approaches its break down point. However, the approximation
is only less accurate for the outer regions of the twisted wavepacket. These regions are not
important for the calculations of transition elements with Hydrogen bound states for small and
medium values for the impact parameter. For large impact parameters the Hydrogen bound
state will probe the outer regions of the twisted wavepacket, but the characteristic structure of
a vortex is not important anymore in this region. In these cases, the overlap of the bound state
is calculate from an exponentially decaying wavefunction with an almost constant phase value
(see Figure 7.3).
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Figure B.1: The functions (B.44) and (B.46) for both parameter settings (see Table 5.1) are
shown on the left and the right plot, respectively. Setting 1 is indicated by the
orange color and setting 2 by the blue color. The black dashed lines indicate the
limiting value mec. The curves are shown for the longest laser pules length employed
in this thesis, namely three laser cycles (3T0). The function values are given in atomic
units (Appendix C.1).

B.4 Main integral

One of the major integrals in this thesis occurs whenever a transition element between the bound
and the free part has to be calculated. It will be of the form 〈ψb|rmrumu

√
1− u2 nu |ψT〉. Such

terms are proportional to a volume integral and the two-dimensional integration over r and
u = cos θ in spherical coordinates will be considered here. It is defined as

Il,∆n,n,l′,m(mr,mu, nu, t) ≡
∫ ∞

0
dr rl+l

′+mre
− r
na0 e

− r
2(1−iτ(t))

2σ2(t) L2l′+1
∆n

( 2r
na0

)

×
∫ 1

−1
du umu

√
1− u2l+nue

ru

(
rω0 (1−iτ(t))

2σ2(t)
− i

~ qA

)
Pml′ (u) . (B.47)
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For the sake of simplicity, ∆n = n − l − 1 was introduced. In order to solve it analytically the
approximation

e
− r

2(1−iτ(t))
2σ2(t) e

− r
na0 ≈ (1 + . . . ) · e−

r
na0 (B.48)

has to be made. This is reasonable as long as σ(t) � na0. Even if the initial width is smaller
than a0, the wavefunction diffuses very quickly and the width is, again, larger than the atomic
state extension when the free part hits the core. This will be true for small enough n, but since
we expect the strong field approximation to break down for higher lying states, it seems a fair
approximation. If necessary, higher order terms in the Taylor expansion could be included easily.
Now the integral has the form

Il,∆n,n,l′,m(mr,mu, nu) ≈
∫ ∞

0
dr rl+l

′+mre
− r
na0L2l′+1

∆n

( 2r
na0

)
×
∫ 1

−1
du umu

√
1− u2l+nueiaruPml′ (u) (B.49)

and can be solved analytically. All time arguments are omitted in the following and a new
auxiliary variable a ≡ −qA/~− rω0(i+ τ)/σ2 is introduced for the sake of clarity. In case that
m = −|m| < 0, the property

P
−|m|
l (x) = (−1)|m| (l − |m|)!(l + |m|)!P

|m|
l (x) (B.50)

of the associated Legendre polynomials is used. For the derivation it is assumed that m ≥ 0,
but a prefactor Mm is kept in order to cover this case as well. We define it as

Mm =

1 m ≥ 0
(−1)|m| (l−|m|)!(l+|m|)! m < 0

. (B.51)

The first integral can be re-expressed as∫ 1

−1
duumu

√
1− u2l+nuPml′ (u)eiaru = (−1)m

2l′(l′)!

∫ 1

−1
duumu

√
1− u2l+m+nu

eiaru ∂m+l′
u (u2− 1)l′ .

(B.52)

The polynomial can be further expanded with the help of the binomial formula and gives

∂m+l′
u (u2 − 1)l′ = ∂m+l′

u

l′∑
k=0

(
l + ∆l
k

)
(−1)l′−ku2k (B.53)

=
l′∑

k=
⌈
m+l′

2

⌉
(
l′

k

)
(−1)l′−k (2k)!

(2k −m− l′)!u
2k−m−l′ . (B.54)

The ceiling function is denoted by dxe. We introduce new auxiliary integer variables γ = γ(k) ≡
2k −m − l′ + mu and ν ≡ l + m + nu. The analytical solution of the integrals depends on the
parity of γ. The results

∫ 1

−1
du uγ

√
1− u2νeiaru = Γ

(2 + ν

2

)
Γ( 1+γ

2 )
Γ( 3+ν+γ

2 ) · 1F2
(

1+γ
2 ; 1

2 ,
3+ν+γ

2 ;−a2r2

4

)
for γ even

iar
Γ( 2+γ

2 )
Γ( 4+ν+γ

2 ) · 1F2
(

2+γ
2 ; 3

2 ,
4+ν+γ

2 ;−a2r2

4

)
for γ odd



B.4 Main integral 91

(B.55)

are valid for γ > −1 and ν > −2. Summing up all terms gives the solution

∫ 1

−1
duumu

√
1− u2l+nuPml′ (u)eiaru

=
l′∑

k=dm+l′
2 e

(
l′

k

)
(−1)m+l′−k(2k)!

2l′ l′!(2k −m− l′)!

∫ 1

−1
du uγ

√
1− u2νeiaru (B.56)

=
l′∑

k=dm+l′
2 e

(
l′

k

)
(−1)m+l′−k(2k)!

2l′ l′!(2k −m− l′)!Γ
(2 + ν

2

)
︸ ︷︷ ︸

≡Mk

·


Γ( 1+γ

2 )
Γ( 3+ν+γ

2 ) · 1F2
(

1+γ
2 ; 1

2 ,
3+ν+γ

2 ;−a2r2

4

)
for γ(k) even

iar
Γ( 2+γ

2 )
Γ( 4+ν+γ

2 ) · 1F2
(

2+γ
2 ; 3

2 ,
4+ν+γ

2 ;−a2r2

4

)
for γ(k) odd .

(B.57)

To tackle the r-integration it is necessary to expand the generalized Laguerre polynomial

L2l′+1
∆n

( 2r
na0

)
=

∆n∑
s=0

(
− 2
na0

)s(∆n+ 2l′ + 1
∆n− s

)
rs

s! . (B.58)

The general solution for the integrals involving the generalized hypergeometric functions is

∫ ∞
0

dr rk e
− r
na0 · 1F2

(
n0
2 ; n1

2 ,
n2
2 ;−a

2r2

4

)

= (na0)k+1k!3F2

(
k + 1

2 ,
k + 2

2 ,
n0
2 ; n1

2 ,
n2
2 ;−a2n2a2

0

)
(k > −1) . (B.59)

With yet another helper variable κ = κ(s) ≡ l + l′ +mr + s, the resulting expression reads

∫ ∞
0

dr rκ e
− r
na0 ·


Γ( 1+γ

2 )
Γ( 3+ν+γ

2 ) · 1F2
(

1+γ
2 ; 1

2 ,
3+ν+γ

2 ;−a2r2

4

)
for γ even

iar
Γ( 2+γ

2 )
Γ( 4+ν+γ

2 ) · 1F2
(

2+γ
2 ; 3

2 ,
4+ν+γ

2 ;−a2r2

4

)
for γ odd

(B.60)

= (na0)κ+1κ! ·


Γ( 1+γ

2 )
Γ( 3+ν+γ

2 ) · 3F2
(
κ+1

2 , κ+2
2 , 1+γ

2 ; 1
2 ,

3+ν+γ
2 ;−a2n2a2

0

)
for γ even

iana0(κ+ 1) Γ( 2+γ
2 )

Γ( 4+ν+γ
2 )

·3F2
(
κ+2

2 , κ+3
2 , 2+γ

2 ; 3
2 ,

4+ν+γ
2 ;−a2n2a2

0

)
for γ odd

.

(B.61)

We define another prefactor

Ms ≡
(
− 2
na0

)s(∆n+ 2l′ + 1
∆n− s

)
(na0)κ(s)+1κ(s)!

s! (B.62)

=
(

∆n+ 2l′ + 1
∆n− s

)
(−2)sκ(s)!

s! (na0)l+l′+mr+1 (B.63)
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for convenience. The full solution, including m < 0 cases, reads

Il,∆n,n,l′,m(mr,mu, nu, t) = Mm

∆n∑
s=0

Ms

l′∑
k=d |m|+l

′
2 e

Mk

×



Γ
( 1+γ(k)

2

)
Γ
( 3+ν+γ(k)

2

) · 3F2
(
κ(s)+1

2 , κ(s)+2
2 , 1+γ(k)

2 ; 1
2 ,

3+ν+γ(k)
2 ;−a2(t)n2a2

0

)
for γ(k) even

ia(t)na0(κ(s) + 1) Γ
( 2+γ(k)

2

)
Γ
( 4+ν+γ(k)

2

) ·
·3F2

(
κ(s)+2

2 , κ(s)+3
2 , 2+γ(k)

2 ; 3
2 ,

4+ν+γ(k)
2 ;−a2(t)n2a2

0

)
for γ(k) odd

,

(B.64)
γ(k) = 2k − |m| − l′ +mu , (B.65)
κ(s) = l + l′ +mr + s , (B.66)
ν = l + |m|+ nu . (B.67)

Despite not being very elegant, it helps to formally solve all integrals involved in the interference
terms. For example, the overlap term can be expressed as

〈ψb(t)|ψT(t)〉 ∝ I(2, 0, 0, t)
∫ 2π

0
dϕ ei(l−m)ϕ . (B.68)

For fixed values of the quantum numbers the occuring hypergeometric functions can be expres-
sed in elementary functions, for example 3F2

(
1
2 , 1,

1
2 ; 1

2 ,
3
2 ;−a2

)
= arctan(a)/a.

Another approximation can be made to render I either real or purely imaginary, namely

ia ≈ − i
~
qA , (B.69)

since rω0(1 − iτ)/σ2 is small for |rω0 | � α2. The approximation works well for times when the
free wavepacket is close to the core region (rω0(t) ≈ 0, A(t) ≈ max) and decreases in accuracy
when the quiver amplitude has its peak (rω0(t) ≈ max, A(t) ≈ 0). Furthermore, the transition
elements have a prefactor exp

[
− r2

ω0 (t)(1−iτ(t)
2σ2(t)

]
additionally suppressing the terms which are not

so well approximated.

B.5 Summation over emission directions

The integration over all possible field mode directions is performed in spherical coordinates

~ek = ~er , ~ε~k,1 = ~eθk , ~ε~k,2 = ~eϕk (B.70)

The unit vectors can be expressed with their cartesian counterparts

~ek = sin θk cosϕk~ex + sin θk sinϕk~ey + cos θk~ez , (B.71)
~ε~k,1 = cos θk cosϕk~ex + cos θk sinϕk~ey − sin θk~ez , (B.72)

~ε~k,2 = − sinϕk~ex + cosϕk~ey . (B.73)
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We calculate the dot product with an arbitrary complex vector ~a and its absolute square. The
expressions read

~ε~k,1 · ~a = sin θk cosϕkax + sin θk sinϕkay + cos θkaz , (B.74)∣∣∣~ε~k,1 · ~a∣∣∣2 = sin2 θk cos2 ϕk |ax|2 + sin2 θk sin2 ϕk |ay|2 + cos2 θk |az|2

+ 2<
[

cos2 θk cosϕk sinϕka∗xay − sin θk cos θk cosϕka∗xaz

− cos θk sin θk sinϕka∗yaz

]
, (B.75)

~ε~k,2 · ~a = − sinϕkax + cosϕkay , (B.76)∣∣∣~ε~k,2 · ~a∣∣∣2 = sin2 ϕk |ax|2 + cos2 ϕk |ay|2 − 2< [cosϕk sinϕka∗xay] . (B.77)

The integration over the unit sphere can be carried out∫
dΩk

∣∣∣~ε~k,1 · ~a∣∣∣2 =
∫ 2π

0
dϕk

∫ π

0
dθk cos θk

∣∣∣~ε~k,1 · ~a∣∣∣2 (B.78)

= 2π
3
[
|ax|2 + |ay|2 + 4 |az|2

]
, (B.79)∫

dΩk

∣∣∣~ε~k,2 · ~a∣∣∣2 = 2π
3
[
3 |ax|2 + 3 |ay|2

]
, (B.80)

⇒
∫
dΩk

∑
λ

∣∣∣~ε~k,λ · ~a∣∣∣2 = 8π
3
[
|ax|2 + |ay|2 + |az|2

]
= 8π

3 |~a|
2 . (B.81)

and all real part terms vanish for the ϕk integration.





C Miscellaneous
C.1 Atomic units
Atomic units are often employed in atomic physics to simplify the equations and to express
physical quantities in units of typical scales of the system. For example, the typical length scale
for a Hydrogen atom is the Bohr radius a0 and is set to unity. All quantities set to unity are
listed in Table C.1 alongside with some derived quantities.

Quantity Atomic units SI units

Bohr radius a0 1 5.29× 10−11 m
Reduced Planck’s constant ~ 1 1.06× 10−34 J

Electron mass me 1 9.10× 10−31 kg
Electric charge |e| 1 1.60× 10−16 C

Vacuum permittivity ε0 1/4π 8.85× 10−12 F/m
Vacuum speed of light c 137.0 3× 108 m/s

Table C.1: The physical quantities defining the atomic unit system and two additional constants
are presented with their corresponding values in SI units [56].

C.2 Expectation value of momentum operator for stationary bound
eigenstates

For the time-independent Schrödinger equation

En|n〉 = Ĥ|n〉 =
[
~̂p 2

2me
+ V (~̂r )

]
|n〉 ,

the expectation value of the momentum operator

〈n|~̂p |n〉 ∝ 〈n|
[
Ĥ, ~̂r

]
|n〉 = 〈n|

[
En, ~̂r

]
︸ ︷︷ ︸

=0

|n〉 = 0

vanishes for energy eigenstates. Physically speaking, a stationary bound state for a time-
independent potential must be bound to some region in space. If the expectation value were non-
zero, then it would correspond to a bulk motion of the whole wavefunction, namely 〈~̂r 〉 6= const.
After some time the wavepacket would leave the region it is bound to.
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