Variational CD Driving
recall: $A_{\lambda}:=\left(i \partial_{\lambda} U_{د}\right) U_{\lambda}^{+}, \& U_{\lambda}^{+} H_{\lambda} U_{\lambda}=$ diagonal - for a aen-int. many body system, U_{s} is generated by a noulocal operator
\Rightarrow issue: A_{λ} is a uanlocal vp. (A generates $U_{>}$) \rightarrow cannot be implemented in the lab
Q : can we find a good local approximation?
recall: def of gauge pot.

$$
\partial_{\lambda} H+i\left[A_{\lambda}, H\right]=-M_{\lambda}
$$

def: $G_{\lambda}(x)=\partial_{\lambda} H+i[x, H]$ op.-valued function亿nmbnown ap.
\Rightarrow if $G_{\lambda}(x)+M_{\lambda}=0$, then $x=A_{\lambda}$
idea: cast problem of looking for a sole to $G_{\lambda}(x)+M_{\lambda}=D$ as optimization problem writ X
\rightarrow since $G_{>}(x)$ is lines in X, use a quadratic nato ix norm (Frobenius nom):

$$
\begin{aligned}
D^{2}(x): & =\operatorname{tr}\left[\left(G_{\lambda}(x)+M_{\lambda}\right)^{+}\left(G_{\lambda}(x)+M_{\lambda}\right)\right] \\
& \begin{aligned}
\text { hermitian } & \stackrel{l}{ }\left[\left(G_{\lambda}(x)+M_{\lambda}\right)^{2}\right]=\operatorname{tr} G_{\lambda}^{2}+\operatorname{tr} M_{\lambda}^{2}+2 \operatorname{tr} M_{\lambda} G_{\lambda} \\
D^{2}(x)= & \Leftrightarrow G_{\lambda}=-M_{\lambda} \\
& G_{\lambda}(x)=\partial_{\lambda} H+i[x, H]
\end{aligned}
\end{aligned}
$$

\rightarrow calculate:

$$
\begin{aligned}
& \operatorname{tr} M_{\lambda} G_{\lambda}=\operatorname{tr}\left(M_{\lambda} \partial_{\Delta} H\right)+i \underbrace{\operatorname{tr}\left(M_{\lambda}[X, H]\right)}_{\lambda}=-\operatorname{tr} M_{\lambda}^{2} \\
& \left.=\operatorname{tr}\left(\underline{M}_{a}, H\right] X\right)=0 \\
& =0 \\
& \mu_{\lambda}=\sum_{n}^{i}\left(\partial_{\lambda} E_{V}\right)|n\rangle\langle n| \\
& \rightarrow \operatorname{tr}\left(M_{\lambda} \partial_{\lambda} H\right)=\operatorname{tr}\left(M_{\lambda}\left(-i\left[A_{\lambda}, H\right]-M_{\lambda} 1\right)\right. \\
& =-i \operatorname{tr}(\underbrace{\left[M_{\lambda}, H\right]}_{=} A_{\lambda})-\operatorname{tr} M_{\lambda}^{2} \\
& =-\operatorname{dr} M_{\lambda}^{2} \\
& \Rightarrow D^{2}(x)=\operatorname{tr}\left(G^{2}(x)\right)-\underbrace{\operatorname{tr}\left(M_{\lambda}^{2}\right)}_{\text {index. of } x}
\end{aligned}
$$

\rightarrow drop w/ changing value of unininum

- define a least action principle for adiabatic gauge pot t

$$
S[x]=\operatorname{tr} G^{2}(x)=\operatorname{tr}\left(G^{+}(x) G(x)\right)
$$

X : is an op-valued narkwow variable
least action principle: $\frac{\delta S[x]}{\delta x} \stackrel{!}{=} 0$
exchange: $w \Leftrightarrow n$

$$
\frac{\delta S}{\delta X_{i j}}=\frac{\delta}{\delta x_{i j}}\left(\underset{\sim}{G_{n n}} G_{m n}\right)=\frac{\delta G_{n m}}{\delta x_{i j}} G_{m n}+G_{n n} \frac{\delta G_{m u}}{\delta x_{i j}}
$$

using einsun

$$
=2 \frac{\delta G_{n m}}{\delta X_{i j}} G_{m m}
$$

$$
\begin{aligned}
\frac{\delta G_{n m}}{\delta X_{i j}^{i}} & =\frac{\delta}{\delta X_{i j}}(\underbrace{\partial H_{n m}}_{i n d_{n \rho} \text { ot } x}+i\left(\left[X_{1} H\right]\right)_{n n}) \\
& =i \frac{\delta}{\delta X_{i j}}\left(X_{n l} H_{l m}-H_{n l} X_{l e m}\right) \\
& =i\left(\delta_{i n} \delta_{j l} H_{l m}-\delta_{i l} \delta_{j m} H_{n l}\right)
\end{aligned}
$$

$$
\begin{aligned}
& i \frac{\delta G_{m n}}{\delta X_{i j}} G_{m n}=\delta_{i n} \delta_{j e} H_{e m} G_{m n}-\delta_{i i} \delta_{j m} H_{u e} G_{m n} \\
&=H_{j m} G_{m i}-G_{j u} H_{u i} \\
&=\left(\left[H_{1} G\right]\right)_{j i} \\
& \Rightarrow \frac{\delta S}{\delta x} \stackrel{!}{=} 0 \Leftrightarrow[H, G] \stackrel{!}{=} 0 \\
& \Rightarrow\left[H, \partial_{\lambda} H+i[X, H]\right] \stackrel{!}{=} 0
\end{aligned}
$$

defining eq. for $A_{د}$, solved by $X=A_{\lambda}+c H$

- least action principle allows us to cast the problem of finding A_{Δ} as a variational optimization problem:
ansate: $\quad X_{2}=\sum_{n} \alpha_{n}\left(A_{1} \Omega_{2}\right.$
variational (educated guess)
wetticients (educated guess)
\rightarrow to be found respect locality
by minimizing, can be implemented in lab action $S\left[\begin{array}{c}x \\ x\end{array}\right]$...

$$
S[x]=S(3 \alpha, 3)
$$

goal: find $\alpha_{n}(\lambda)$, s.t. $x_{\lambda} \approx A_{\lambda}$
τ_{i} the sense of D^{2}
procedure : i) $\frac{\partial S}{\partial \alpha_{n}}[x]!0$
ii) solve for α u
iii) unite down $X=\sum \alpha, Q_{4}$

- consider $H(\lambda)$ veal-valued:
$\Rightarrow U^{+}+1 U=$ ding $: U$ is real-valued
$\Rightarrow A_{\lambda}=i\left(\partial_{\lambda} U\right) U^{+}$is purely imaginary (e.g. vt)
$\Rightarrow\langle n| A_{1}|n\rangle=0$: diag. elements vanish
recall:

$$
\begin{aligned}
& \langle n| A_{a}|n\rangle=-i \frac{\langle n| \partial_{\lambda} H|n\rangle}{E_{n}-E_{m}} \\
& =\frac{\langle n| \partial_{\lambda} H|m\rangle}{i\left(E_{-}-E_{m}\right)}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\langle n| \partial_{\Delta} H|m\rangle}{\varepsilon+i\left(E_{m}-E_{-}\right)} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{\infty} d t e^{-\varepsilon t} e^{-i\left(E_{-}-E_{n}\right) t}\langle n| O_{\lambda} H|m\rangle \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{\infty} d t e^{-\varepsilon t}\langle\left. n \underbrace{\frac{e^{-i H t}}{\rho^{t}} \partial_{\lambda} H e^{+i H t}} \right\rvert\, m\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-i t)^{k}}{k!} \underbrace{\left[H,\left[H, \ldots\left[H, \partial_{\lambda} H\right] . .\right]\right.}_{k-\text { fold }}
\end{aligned}
$$

- started w/ $\frac{1}{E_{i}-E_{n}}$ odd tu of $\left(E_{0}-E_{m}\right)$

$\Rightarrow\langle m|$ ever $\#$ comm. $|n\rangle=0$

$$
\langle n| A_{\perp}|n\rangle=\lim _{2 \rightarrow 0^{+}} \int_{0}^{\infty} d t e^{-\varepsilon t} \sum_{k=0}^{\infty} \frac{(-i t)^{2 k+1}}{(2 k+1)!}\langle u| \underbrace{\left[\left[H_{1} \ldots,\left[H_{1} \partial_{\lambda} H\right]\right]|n\rangle\right.}_{\text {odd }}
$$

$\operatorname{det}:$

$$
A_{\lambda}=(\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{\infty} d t e^{-c t} \sum_{2} \frac{(-i t)^{2 h+1}}{(2 k+1)!}[\underbrace{\left[L H, \ldots,\left[H, \partial_{\lambda} H\right]\right.}_{\text {odd }})-{\underset{c}{q}}_{\text {subdracts }}^{M_{\lambda}}
$$

oubtrects off-diag. matrix elth.
\Rightarrow ausatz for gauge prod.

$$
x_{\nu}=\sum_{u} \alpha_{p} u+1 \underbrace{\left[H, \ldots,\left[H, \partial_{2} H\right]\right]}_{2 h+1 \text { tiures }}
$$

vamiational wethicients
exauples:

1) $2 L S$ revisited: $H(\lambda)=\Delta \sigma^{z}+\lambda \sigma^{*}$
acsatz: $\quad x_{\lambda}=\alpha \sigma^{x}+\beta \sigma^{y}+\gamma \sigma^{z}$
(all possible operatios)
need : $\partial_{\alpha} S, \partial_{\beta} s, \partial_{\gamma} S$
i) compute: $S[x]=\operatorname{tr} \operatorname{co}^{2}(x)$

$$
\begin{aligned}
G[x] & =\partial_{\Delta} H+i[x, H] \\
& =\sigma^{x}+i\left[\alpha \sigma^{x}+\beta \sigma^{y}+\gamma \sigma^{z}, \Delta \sigma^{z}+\lambda \sigma^{x}\right] \\
& =\sigma^{x}+2\left(\alpha \Delta \sigma^{y}-\beta \Delta \sigma^{x}+\beta \lambda \sigma^{z}-\gamma \lambda \sigma^{y}\right) \\
& =(1-2 \beta \Delta) \sigma^{x}+2(\alpha \Delta-\gamma \lambda) \sigma^{\gamma}+2 \beta \lambda \sigma^{z}
\end{aligned}
$$

$$
\begin{aligned}
& G^{2}(x)=(1-2 \beta \Delta)^{2}+4\left(\alpha \Delta-\gamma^{\lambda}\right)^{2}+4(\beta \lambda)^{2}+\sum_{i} f_{i}(\cdots) \underbrace{\sigma^{i}}_{\text {2h- } 1} \\
& S=\operatorname{tr} G^{2}(x)=2\left[(1-2 \beta \Delta)^{2}+4(\alpha \Delta-\gamma \lambda)^{2}+4(\beta \lambda)^{2}\right]
\end{aligned}
$$

ii) ninimize action $S(\alpha, \beta, \gamma)$:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{\alpha} S \infty \Delta\left(\alpha \Delta-\gamma^{\lambda}\right) \stackrel{!}{=} 0 \\
\partial_{\beta} S \infty-2 \Delta(1-2 \beta \Delta)+4 \lambda^{2} \beta \stackrel{!}{=} 0 \\
\partial_{\gamma} S \infty-\lambda\left(\alpha \Delta-\gamma^{\lambda}\right) \stackrel{!}{=} 0 \\
\Rightarrow\left\{\begin{array}{l}
\alpha \Delta=\gamma \lambda+\text { relation bdo } \alpha \cdot \gamma(*) \\
-2 \Delta+4 \beta\left(\Delta^{2}+\lambda^{2}\right)=0 \Rightarrow \beta=\frac{1}{2} \frac{\Delta}{\Delta^{2}+\lambda^{2}}
\end{array}\right. \\
\Rightarrow x_{\lambda}=\frac{1}{2} \frac{\Delta}{\Delta^{2}+\lambda^{2}} \sigma^{y}+\alpha \sigma^{x} \stackrel{(x)}{+} \alpha \frac{\Delta}{\lambda} \sigma^{z} \\
=A_{\lambda}+\frac{\alpha}{\lambda} \underbrace{\left(\Delta \sigma^{z}+\lambda \sigma^{*}\right)}_{=H(\lambda)}
\end{array}\right.
\end{aligned}
$$

2) Quartum $X Y$ nodel
re-parame trixe: $J_{x}=\frac{1+\gamma}{2} J_{R}$ exchange scale
$J_{y}=\frac{1-\gamma}{2} J \quad($ set $J=1$ to fix evergy slak)

- consider rotating, \bar{H} about z-axis at angle $\phi / 2$

$$
\begin{aligned}
& u_{\phi}=\prod_{j} e^{-i \phi / 2 \frac{\sigma_{j}^{z}}{2}} \\
& \Rightarrow H(\gamma, \phi, h)=u_{\phi}^{+} \tilde{H}(\gamma, k) U_{\phi}
\end{aligned}
$$

- symmetries: i) $H(\gamma)=H(-\gamma) \Rightarrow$ restrict to $\gamma \geq 0$
ii) $H(\phi)=H(\phi+\pi): \quad \sigma^{x} \rightarrow \sigma^{y}$

$$
\sigma^{y} \rightarrow-\sigma^{x}
$$

- apply Jordan-Wigner transformation:

$$
\sigma_{j}^{z} \sim 1-c_{j}^{+} \cdot c_{j}, \quad \sigma^{+} \sim \prod_{i<j} \sigma_{i}^{z} c_{j}^{+}
$$

A go to momentum space:

$$
\begin{aligned}
& \lambda=\sum_{k \in B Z}^{0} \psi_{k}^{+} H_{k} \psi_{k}, \quad H_{k}=-\left(\begin{array}{cc}
h-\cos k & \gamma^{\sin k e^{-i \phi}} \\
\gamma^{\sin k e^{+i \phi}}-(b-\cos k)
\end{array}\right)
\end{aligned}
$$

Nambu spinor $\psi_{k}=\left(C_{k}^{+}, C_{-k}\right)$
Hamiltonian reduces to a collection of independent 2LS's, one for each momentum mode k, described by $H_{k}(\gamma, \phi, l)$

- 3 parameters to tune: $\vec{\lambda}=(\gamma, \phi, h)$
- want gauge potential wot γ, ϕ, h
\rightarrow make ausatz for var'l gauge pot::

$$
X_{k}(\vec{J})=\frac{1}{2}\left(\alpha_{k}^{x}(\vec{d}) \sigma^{x}+\alpha_{k}^{y}(\vec{J}) \sigma^{J}+\alpha_{k}^{z}(\vec{J}) \sigma^{z}\right)
$$

\rightarrow congrite:

$$
\begin{aligned}
i\left[x_{u}, H_{k}\right] & =\left(\alpha^{y}(h-\cos h)-\alpha^{z} \gamma \sin k \sin \phi\right) \sigma^{x} \\
& +\left(\alpha^{z} \gamma^{\left.\sin k \cos \phi-\alpha^{x}(h-\sin k)\right) \sigma \delta}\right. \\
& +\gamma^{\sin k}\left(\alpha^{x} \sin \phi-\alpha^{y} \cos \phi\right) \sigma^{z}
\end{aligned}
$$

- action: for $A_{h}: G_{\phi}(\vec{j})={\underset{\gamma}{\gamma}}_{\gamma_{\phi}}^{\gamma_{\phi}} H_{k}+i\left[\mathcal{X}_{k}, H_{k}\right]$

$$
\begin{aligned}
\frac{1}{2} S_{L}[x] & =\left(-1+\alpha^{x} \gamma \sin k \sin \phi-\alpha^{y} \gamma^{\sin k \cos \phi}\right)^{2} \\
& +\left(\alpha^{y}(h-\cos k)-\alpha^{z} \gamma \sin k \sin \phi\right)^{2} \\
& +\left(\alpha^{z} \gamma^{\left.\sin k \cos \phi-\alpha^{x}(h-\cos k)\right)^{2}}\right.
\end{aligned}
$$

\rightarrow minimizing action S_{h} writ $\alpha^{x / g / t}$ gives:

$$
\begin{aligned}
& \alpha_{k}^{x}=\frac{\gamma \sin k \sin \phi}{\gamma^{\sin ^{2} k}+(k-\cos k)^{2}} \\
& \alpha_{k}^{y}=-\frac{\gamma \sin k \cos \phi}{\gamma^{\sin ^{2} k}+(h-\cos k)^{2}} \\
& \alpha_{k}^{z}=0
\end{aligned}
$$

\rightarrow read off gauge pot.:

$$
A_{h}=\frac{1}{2} \sum_{k} \frac{\gamma \sin k}{(\cos k-h)^{2}+\gamma^{2} \sin ^{2} k} \psi_{k}^{+}\left(\sin \phi v^{x}-\cos \phi \sigma^{y}\right) \psi_{k}
$$

\rightarrow similarly for A_{γ}, A_{ϕ}
Rolls:
\rightarrow gauge potentials look simple in momentum space but can be non-local (long-range) in real space
\rightarrow gauge potential contain long strings if Pauli up's, when written in terms of the original spin op's (inverting JW transf.)
to see this: fix $\gamma=1, \phi=0$

$$
\begin{aligned}
& A_{h}=-\frac{1}{2} \sum_{k} \frac{\sin k}{(\cos h-h)^{2}+\sin ^{2} k} \quad \psi^{t} \sigma^{\gamma} \psi_{\varepsilon} \\
& \text { use: } 1) \psi_{u}^{+} v^{3} \psi_{k}=\frac{1}{L} \sum_{l} \sin (l k) \sum_{j} i\left(c_{j}^{+} c_{j+l}^{+}-c_{j+l} c_{j}\right) \\
& \text { 2) } D_{l}:=2 i \sum_{j} c_{j}^{+} c_{j+e}^{+}-c_{j+l} c_{j} \\
& \text { inv. JW } \\
& \begin{array}{l}
\underline{2} \sum_{j} \sigma_{j}^{\sigma_{j}^{x}} \underbrace{\sigma_{j+1}^{z} \cdots \cdot \sigma_{j+l-1}^{z}}_{\text {no--local }} \sigma_{j+l}^{y}+\sigma_{j}^{y} \underbrace{\sigma_{j+1}^{z} \cdot \ldots \cdot \sigma_{j+l-1}^{z}} \sigma_{j+l}^{x} \sigma_{j+1}^{z}
\end{array}
\end{aligned}
$$

then $A_{h}=\sum_{l} \alpha_{l} O_{p}$
where $\quad \alpha_{l}=-\frac{1}{y L} \sum_{k \in B Z} \frac{\sin (\ell k) \sin k}{(\cos k-h)^{2}+\sin ^{2} k}$

$$
\begin{array}{r}
\underset{L \rightarrow \infty}{\rightarrow D \text { limit }}-\frac{1}{4 \pi} \int_{-\pi}^{\pi} d k \frac{\sin (l h) \sin k}{(\cos k-h)^{2}+\sin ^{2} k} \\
=-\frac{1}{8} \begin{cases}h^{l-1}, & |h| \leq 1 \\
\frac{1}{h^{l+1}},|h| \geq 1\end{cases}
\end{array}
$$

Le 1 it cusp: critical point

$\alpha_{l}(h)$ decays exponentially in in space (i.e. in l) away from cortical pt. at $C_{c}=1$
\rightarrow away from critical point, truncate:

$$
\begin{aligned}
A_{\lambda} \approx & \alpha_{1} ण_{1}+\alpha_{2} ण_{2} \\
= & \alpha_{1} \sum_{j} \sigma_{j}^{x} \sigma_{j+1}^{j}+\sigma_{j}^{y} \sigma_{j+1}^{x} \\
& +\alpha_{2} \sum_{j} \sigma_{j}^{x} \sigma_{j+1}^{z} \sigma_{j+2}^{y}+\sigma_{j}^{y} \sigma_{j+1}^{z} \sigma_{j+2}^{x}
\end{aligned}
$$

local approximation

