Friederike Metz

Curriculum Vitae

☑ friederike.metz@gmail.com
② orcid.org/0000-0002-4745-7329
in linkedin.com/in/friederike-metz
③ github.com/frmetz
④ twitter.com/frmetz

Education

2017 - Present Okinawa Institute of Science and Technology, Japan, Ph.D. student.

Working on (quantum) machine learning applications for the study and control of quantum systems; supervised by Prof. Dr. Thomas Busch.

2015 - 2016 University of Waterloo, Canada, M.Sc. (Theoretical Physics).

Perimeter Scholars International program at Perimeter Institute for Theoretical Physics. Research Essay: Towards an Effective Theory of Monopole - Fermion Scattering; supervised by Prof. Dr. Cliff Burgess.

2011 - 2015 $\,$ RWTH Aachen University, Germany, B.Sc. (Physics).

 GPA^{1} : 1.2.

Bachelor's Thesis: Space-Time Circuit-to-Hamiltonian Construction Applied to a MERA Circuit; supervised by Prof. Dr. Barbara Terhal.

2013 - 2014 University of California, Davis, USA.

Year abroad in cooperation with RWTH Aachen University, GPA²: 3.92.

2009 - 2011 **Theodor-Heuss-Gymnasium, Dinslaken, Germany**, high school. GPA¹: 1.3.

2008 - 2009 Ogaki-Shogyo High School, Japan, high school.

Exchange student through AFS Intercultural Programs Germany.

Internships and Work Experience

- May 2022 Quantum Researcher Summer Intern, IBM, Yorktown Heights, USA.
 - Aug 2022 Developed code for quantum software algorithms and tools as part of the prototypes team. Member of the quantum intern advisory board.
- Jan 2022 Guest Scientist, Max Planck Institute for the Physics of Complex Systems, Dresden,
- May 2022 Germany.

Pursued research on quantum many-body control and reinforcement learning.

- May 2017 High school teacher intern, Theodor-Heuss-Gymnasium, Dinslaken, Germany.
 - Jul 2017 Taught physics and mathematics to high school students.
- Sept 2012 Student research assistant in the AMS project, Physics Institute IB at RWTH
 - Aug 2013 Aachen University, Germany.

Developed and maintained monitoring software for AMS-02.

- Jul 2011 Internship, Nuclear Physics Institute at Jülich Research Centre, Germany.
- Sept 2011 Contributed to the development of dipole magnets for the HESR synchrotron.

Achievements

2022 IBM Be(e) Innovative Challenge Top 5 Teams.

Designed an MVP involving a technology solution that tackles sustainability issues in supply chains in a team of 5.

2021 Winner of the Qiskit Hackathon Europe: Research Study Groups.

Developed a quantum machine learning algorithm for quantum data in a team of 4. I implemented the training framework in Qiskit.

2016 2015/2016 Perimeter Scholars International Honourary Scholarship Award.

Recognizing my academic performance as a PSI master's student at Perimeter Institute.

 $^{^{1}}$ On a 1.0(A) - 5.0(F) grade scale.

 $^{^{2}}$ On a 4.0(A) - 0.0(F) grade scale.

- 2015 2016 **Perimeter Scholars International Award**, received from Perimeter Institute and the University of Waterloo.
 - Full financial support for the duration of the PSI program.
- 2013 2015 **Dean's List**, received from RWTH Aachen University.

 Ranked in the upper 5% of the physics class for the academic years of 2013/14 and 2014/15.
 - 2014 **Award for outstanding leadership performance**, received from University of California, Davis.
 - Recognizing my work as an ambassador for foreign students at the University of California, Davis.
 - 2014 Award for academic excellence, received from University of California, Davis.
 - 2013 First prize of the Undergraduate Research Project Competition, held by the Department of Physics at RWTH Aachen University.
- 2012 2013 Scholarship from the Education Fund of RWTH Aachen University, supported by a donation from Hans Hermann Voss-Stiftung.

 For excellent academic performance and in expectation of outstanding achievement at university.
 - 2011 German Physical Society (DPG) Book Award.

 In recognition of outstanding performance in the subject of physics.

Outreach and Teaching

- Mar 2021 **Teacher of OIST Mini Course: Julia**, Okinawa Institute of Science and Technology, Japan.
 - Taught introductory lecture on the Julia programming language.
- 2017 2019 **Teaching programming to kids**, Okinawa, Japan.

 Taught children MIT's programming language Scratch through interactive lectures and tutorials at local science events in Okinawa.
- 2018 2019 **Tutor for OIST Science Challenge**, Okinawa Institute of Science and Technology, Japan.
 - Tutored undergraduate students on research related topics and presentation skills during week-long workshops.
 - 2018 Organizer of TEDxOIST2018, Okinawa Institute of Science and Technology, Japan. Co-organized a TEDx event for an audience size of 500. My tasks included: license application, budget planning, speaker recruitment & training, coordination of volunteers, etc.
- May 2017 High school teacher internship, Theodor-Heuss-Gymnasium, Dinslaken, Germany.
 - Jul 2017 Prepared and conducted physics and mathematics classes at a local high school.

Publications and Preprints

- 2022 <u>F. Metz</u>, M. Bukov, Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks, arXiv:2201.11790 (2022).
- 2021 K. Kottmann*, <u>F. Metz</u>*, J. Fraxanet, N. Baldelli, *Variational Quantum Anomaly Detection:* Unsupervised mapping of phase diagrams on a physical quantum computer, Phys. Rev. Research **3**, 043184 (2021).
- 2021 K. Gietka, <u>F. Metz</u>, T. Keller, and J. Li, *Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts to adiabaticity are applied*, Quantum 5, 489 (2021).
- 2021 <u>F. Metz</u>, J. Polo, N. Weber, and T. Busch, *Deep learning based quantum vortex detection in atomic Bose-Einstein condensates*, Mach. Learn.: Sci. Technol. **2**, 035019 (2021).
- 2020 A. Gratsea, <u>F. Metz</u>, and T. Busch, *Universal and optimal coin sequences for high entanglement generation in 1D discrete time quantum walks*, J. Phys. A Math. Theor. **53**, 44 (2020).
- 2018 R. Sachdeva*, <u>F. Metz</u>*, M. Singh, T. Mishra, and T. Busch, *Two-leg-ladder Bose-Hubbard models with staggered fluxes*, Phys. Rev. A **98**, 063612 (2018).

^[*] indicates co-first authorship

Talks and Invited Seminars

- May 2022 ICFO, Barcelona, Spain.
 - Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks.
- Apr 2022 Flatiron Institute, New York, USA, (virtual).
 - Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks.
- $\label{eq:marginal_conference} \mbox{Mar 2022} \ \ \mbox{\bf AMLD EPFL 2022, Lausanne, Switzerland}, \ (\mbox{conference}).$
 - ${\bf Self\text{-}Correcting}\ {\bf Quantum}\ {\bf Many\text{-}Body}\ {\bf Control}\ {\bf using}\ {\bf Reinforcement}\ {\bf Learning}\ {\bf with}\ {\bf Tensor}\ {\bf Networks}.$
- Mar 2022 Forschungszentrum Jülich, Germany, (virtual).
 - Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks.
- Dec 2018 Institute of Laser Physics, Hamburg, Germany.
 - Staggered fluxes for the Bose-Hubbard model in two-leg ladder configuration.
- Oct 2018 Shanghai University, China.
 - Staggered fluxes for the Bose-Hubbard model in two-leg ladder configuration.

Experience in Supervision

- May 2020 Natalya Weber.
 - Aug 2020 Rotation student.
- May 2019 Aikaterini Gratsea.
 - Oct 2019 Intern student.

Attended Conferences and Schools

- Apr 2022 Simulating Quantum Many-Body Systems on Noisy Intermediate-Scale Quantum Computers, MPI-PKS, Dresden, Germany.
 - International Focus Workshop.
- Mar 2022 AMLD EPFL 2022, Lausanne, Switzerland.
 - Applied Machine Learning Days.
- Aug 2021 Machine Learning in Quantum Physics and Chemistry, Warsaw, Poland.
- Jan 2021 The Hitchhiker's Guide to Condensed Matter and Statistical Physics: Machine Learning for Condensed Matter, ICTP Virtual School.
- Sept 2020 Mesoscopic cold atom systems in and out of equilibrium, Virtual Workshop.
- $\label{eq:Jul_2020} \mbox{Jul 2020 } \mbox{ Ellis QPhML 2020 Virtual Meeting}.$
 - Quantum and Physics based machine learning.
- Nov 2019 TENSOR19, San Sebastian, Spain.
 - Tensor Network based approaches to Quantum Many-Body Systems.
- Sept 2019 CQD, Okinawa, Japan.
 - Okinawa School in Physics: Coherent Quantum Dynamics.
- Jul 2019 Machine Learning for Quantum Design, Waterloo, Canada.
- May 2019 Synthetic Topological Matter, Dresden, Germany.
- Mar 2019 FPUA2019, Okinawa, Japan.
 - International Workshop on Fundamental Physics Using Atoms.
- Sept 2018 CQD, Okinawa, Japan.
 - Okinawa School in Physics: Coherent Quantum Dynamics.
 - Jul 2018 ICAP2018, Barcelona, Spain.
 - International Conference on Atomic Physics and Summer School.
- Sept 2017 CQD, Okinawa, Japan.
 - Okinawa School in Physics: Coherent Quantum Dynamics.

Skills

Research expertise

Quantum physics Quantum simulation, quantum many-body systems, quantum control, quantum computation,

quantum metrology, quantum phases of matter

Machine learning Reinforcement learning, object detection, tensor network-based machine learning

Numerical tools Tensor networks (DMRG, TEBD), optimization methods

Technical skills

Programming Python, Julia

Libraries Qiskit, JAX, TeNPy, QuSpin, PyTorch, Flux (Julia)

Other Git, HPC, Mathematica, LATEX, Unit testing

Languages

German native

English fluent

Japanese intermediate JLPT (Japanese Language Proficiency Test) Level 3

Additional relevant skills

Research Referee for MLST journal; IOP trusted reviewer certificate.

Communication Trained student peer supporter, certified by Ganjuu Wellbeing Service at OIST, Okinawa.

References

Prof. Thomas Busch, Ph.D. supervisor.

Okinawa Institute of Science and Technology, Japan.

Dr. Marin Bukov, collaborator.

Max Planck Institute for the Physics of Complex Systems, Germany.