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The Rydberg atom arrays based quantum simulation platform
The Hamiltonian of the Rydberg atom arrays is:

H

ℏ
= −

N∑
i=1

∆ni +
∑

<i,j>

V

|di − dj |6
ninj +

N∑
i=1

Ωσx
i

Figure: Experimental platform [1]
Figure: The phase diagram of 1D Rydberg
atoms chain [8]
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Promising quantum computation platform

Figure: Logical quantum processor based on reconfigurable atom arrays [2]
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A novel dynamics captured by Rydberg atom arrays experiments

Figure: Emergent oscillations in many-body dynamics
after sudden quench. [1]

Initial crystal state revivial with a
frequency of Ω/1.38 that is largely
independent of the system size are
observed. It behaves like
non-interacting dimers model.
MPS outcome and numerical
calculations from ED support that.
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Constrained model

After we turn off the laser quench the initial state and set ∆ = 0. Only consider strong
N.N. interaction limit(small ϵ = Ω

V ), we denote V = Vi,i+1:

H =
∑

i

nini+1 + ϵ
∑

i

Xi

then using the SW transformation, we introduce the low-energy subspace spanned by
configurations with no adjacent excited states. The projector onto this subspace can
be written as P = Πj(1 − nini+1). The first non trivial term is Heff = ϵP

∑
i XP .

After removing overall scale ϵ, we obtain , where Pi = 1 − ni

HPXP =
∑

i

Pi−1XiPi+1 (1)
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Constrained model

The dim of such low-energy subspace after
ruling out kinetically constrained states is a
Fibonacci sequence [5]{

dOBC
L = dL−1 + dL−2

dP BC
L = dL + dL−4

(2)

which mean, where Fl is Fibonacci
sequence{

dOBC
L = FL+2

dP BC
L = FL−1 + FL+1

(3)
Figure: The constrained Hilbert space graph of
the Fibonacci chain with L=6 sites over
Hamming distance [7]
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Symmetries for block diagonalization

The Exact Diagonalization need to consider the symmetry to block diagonalize.

Figure: Commutation relations among
the Hamiltonian and the symmetry
operators. [6]

Particle conservation symmetry:
N =

∑
i ni, H = H0 ⊕ · · · ⊕ HN ⊕ · · · ⊕ HL

Translational symmetry in PBC,
HN = HN,0 ⊕ · · · ⊕ HN,k ⊕ · · · ⊕ HN,L−1,build
Representative State out of
|n̄, k⟩ =

∑L−1
n=0 e

i2π
L

knT n|n̄⟩
spatial inversion symmetry R which maps
i → L − i + 1. R = R† where reflection
operator defined as ROlR = OL−i−l.
particle-hole symmetry X =

∏
i Xi, but

[R, T ] ̸= 0, [N, X] ̸= 0
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The Momentum sector and the maximum symmetry sector

Figure: Block diagonal structure of the
Hamiltonian matrix [6]

The discrete symmetry operators satisfy
X†(N − L/2)X = −(N − L/2).
In the half-filling sector N = L/2,
(H, N, T, X) are mutually commuting.

HN=L/2,k = HN=L/2,k,X=1⊕HN=L/2,k,X=−1

And R†TR−1 = T −1 means that at
momentum sector k = 0, k = L/2,
T = T −1, [R, T ] = 0.

HN,k = HN,k,R=1 ⊕ HN,k,R=−1

So we focus on the maximum symmetry
sector SN=L/2,k=0,R=1,X=1
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Symmetries of PXP model

Paticle-hole symmetry, {HPXP, X} = 0, leads to each |E⟩ has a partner |−E⟩ in
spectrum.
Then for PBC, we can explicitly evaluate the zero-momentum inversion-symmetric
sector for different sites.

size representatives/k=0 pure inversion k=0,R=1 MSS
L=24 4341 377 2359
L=26 10462 610 5536
L=28 25415 987 13201
L=30 62075 1597 31836
L=32 152288 2584 77436
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The consecutive level statistics

Figure: Level statistics and in the Fibonacci chain

illustrating that it has a Gaussian form without any anomalies, except for the spike at
E=0 due to zero modes. [1]
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Zero mode

The lower bound of zero-energy eigenstates
in the zero-momentum sector [3]:

Z0
2l ≥ |Q(0,+)

2l − Q
(0,−)
2l | = Fl−1 PBC

(4)
Z0

2l ≥ Fl+1 OBC (5)

Figure: Density of states in PXP model and the
zeros mode with L=28
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Loschmit echo and entanglement entropy
we observe the special dynamics to calculate the Loschmit echo|⟨ |e− iHt

ℏ | ⟩|2
and entropy curve S = tr(ρlnρ) over time. And then compare different initial state

Figure: The Loschmit echo and the
Von-Neumann entanglement entropy

Figure: Entanglement entropy growth for
different initial state, N = 24, TDVP
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Dynamics of entanglement and local correlation function

Figure: Dynamics of entanglement Figure: Dynamics of local correlation function
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Overlap of states

Figure: Overlap between eigenstates and |Z2⟩,
L = 20, in K space

Figure: Overlap between eigenstates and |Z2⟩,
L = 28, in MSS space



Quantum many-body scars
Special eigenstates in spectrum

Overlap of states
However, it’s hard to identify many degenerate zero modes |E = 0⟩. We expect only
one state in Hzero modes described by FSA state, i.e. we can use
Pzero modesPFSAPzero modes, only one basis state with a non-zero overlap with |Z2⟩.

Figure: Overlap between eigenstates and |Z2⟩, L = 16, in constrained space, ruling out the
degeneracy
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FSA(Forward Scattering Approximation) and Emergent SU(2)
symmetry [4]

Such special scar states can be spanned by FSA basis,
{|Z2⟩ , H+ |Z2⟩ /b1, (H+)2 |Z2⟩ /b2 . . . (H+)n |Z2⟩ /bn}. where the H± is defined as:

H± =
∑

j∈even
Pj−1σ±

j Pj+1 +
∑

j∈odd
Pj−1σ∓

j Pj+1

where βn = ⟨n| H |n − 1⟩ = ⟨n + 1| H |n⟩.And the z-projection of spin
Hz = 1

2 [H+, H−] =
∑L

i (−1)nσz
n/2

Then [Hz, H±] ≈ ±H±, from which we can perceive the SU(2) symmetry with a spin
L/2 representation.
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FSA and Emergent SU(2) symmetry [4]

Noting it only contains L + 1 basis as the
maximum Hamming distance is L + 1, and
in FSA basis, the PXP Hamiltonian be like:

HFSA =



0 β1
β1 0 β2

β2 0 . . .
. . . . . . βL

βL 0


Henergyeigen = HFSA ⊕ Hthermal

Figure: The FSA state and scar state in L = 12
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FSA state and Exact state

Figure: Overlap between FSA basis |n⟩ and the
FSA states(black) or the exact states(red)

Figure: Overlap between FSA basis |n⟩ and the
FSA states(black) or the exact states(red)
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Initial state with perturbation
These anomalous eigenstates (O(L)) are immersed in a much larger sea of thermal
eigenstates(O(2L)), but underpin the real-time dynamics.

Figure: Scarrd dynamics with a deviation add to initial state
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Quantum many-body scars and weak breaking of ergodicity.
Nature Physics, 17(6):675–685, may 2021.

Xue-Jia Yu, Sheng Yang, Jing-Bo Xu, and Limei Xu.
Fidelity susceptibility as a diagnostic of the commensurate-incommensurate
transition: A revisit of the programmable rydberg chain.
Physical Review B, 106(16), oct 2022.


	Emergent Oscillations in Many-body Dynamics
	Level Statistics and Zero Modes in the Fibonacci Chain
	Dynamics: Periodical Revivals in the Dynamics of Entanglement Entropy and Local Correlation Function
	Special eigenstates in spectrum
	Reference

