Classical fractional discrete time crystals

The goal of this project is to investigate the dynamics of a classical time crystal. In particular we
want to observe fractional spontaneous symmetry breaking in the prethermal plateau of an all-to-all
coupled spin model with Hamiltonian
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where o7 denote the Pauli matrices, J sets the strength of the Ising interaction, and £ is the strength
of the spin flip field. This model is known as the Lipkin-Meshkov-Glick (LMG) model, and can
be mapped to a system of two interacting bosons (¢)1,;) whose dynamics can be investigated. The
project is based on the paper Higher-order and fractional discrete time crystals in clean long-range
interacting systems by Pizzi et al., Nature Communications volume 12, Article number: 2341
(2021). This project is numerical with a small analytical component, and requires writing a custom
code.

e Derive the EOM given in Eq. (2) of the above paper from the LMG model (see supplemental
material to paper). Show that the spin magnetization m is given by m = [¢4]? — |1 |2

e Write a code to numerically solve the corresponding Gross-Pitaevskii equation (GPE), i.e. Eq. (2).
Plot the dynamics of the magnetization m(t) and find signatures of a DTC.

e Reproduce the figure below (Fig. 1 from the paper).
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Figure 1: Signatures of a fractional classical discrete time crystal. (For more details, see reference.)
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Figure 2: Poincare maps of the semiclassical dynamics, illustrating the emergence of ‘islands’ responsible
for the DTC dynamics. (For more details, see reference.)

e Investigate the structure of the phase space portrait and reproduce Fig 2 from the paper.

e Optional goal: Add small temporal perturbations to the periodic drive: wh[l + sin(27t)] —
wh[1 4 sin(27t(1 + 0))] where § is a random number drawn from a normal distribution with
zero mean and variance you can control. Investigate how the fractional response reacts as the
value of the noise ¢ is increased.



