
Classical fractional discrete time crystals

The goal of this project is to investigate the dynamics of a classical time crystal. In particular we
want to observe fractional spontaneous symmetry breaking in the prethermal plateau of an all-to-all
coupled spin model with Hamiltonian
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where σαj denote the Pauli matrices, J sets the strength of the Ising interaction, and h is the strength
of the spin flip field. This model is known as the Lipkin-Meshkov-Glick (LMG) model, and can
be mapped to a system of two interacting bosons (ψ↑/↓) whose dynamics can be investigated. The
project is based on the paper Higher-order and fractional discrete time crystals in clean long-range
interacting systems by Pizzi et al., Nature Communications volume 12, Article number: 2341
(2021). This project is numerical with a small analytical component, and requires writing a custom
code.

• Derive the EOM given in Eq. (2) of the above paper from the LMG model (see supplemental
material to paper). Show that the spin magnetization m is given by m = |ψ↑|2 − |ψ↓|2.

• Write a code to numerically solve the corresponding Gross-Pitaevskii equation (GPE), i.e. Eq. (2).
Plot the dynamics of the magnetization m(t) and find signatures of a DTC.

• Reproduce the figure below (Fig. 1 from the paper).

Due to its foundational and technological relevance, the study
of condensed matter systems out of equilibrium has attracted
growing interest in recent years, accounting among others for

the discovery of dynamical phase transitions1,2, quantum scars3, and,
particularly, discrete time crystals (DTCs)4–12. A DTC is a none-
quilibrium phase of matter breaking the discrete time translational
symmetry of a periodic (i.e., Floquet) drive. In the thermodynamic
limit, the defining feature of an n-DTC is a subharmonic response at
1/nth of the drive frequency (n > 1), which is robust to perturbations
and which persists up to infinite time12. Following the first seminal
proposals4–8, DTCs have been widely investigated both theoretically
and experimentally12–23.

In this context, most work has focused on spin-1/2 systems, which
have largely been shown to exhibit a 2-DTC where at every Floquet
period each spin (approximately) oscillates between the states "j i and
#j i leading to period doubling (n= 2). This fact naturally emerges
from the dimension 2 of the local Hilbert space of the spins6, and can
be generalized to n-DTCs in models of n-dimensional clocks24,25.
Another well-studied setting is that of bosons in a gravitational field
bouncing on an oscillating mirror9, where the single-particle Hilbert
space dimension is infinite (as the particle’s position is continuous)
and where n-DTCs with arbitrary integer26 and fractional27n have
been shown.

In these systems, heating to a featureless “infinite temperature”
state is typically avoided by introducing disorder, which leads to a
(Floquet) many-body-localized (MBL) phase5,8. Alternatively, in
clean (i.e., non-disordered) systems, heating can be escaped with
all-to-all interactions12,25,28, or significantly slowed down with long-
range interactions29–32. Very recently, ref. 32 has provided the the-
oretical framework to study Floquet, clean, long-range interacting
systems, in which novel prethermal phases of matter are expected.
While their framework allows for the possibility of n-DTCs with n
larger than the size of the local (or single-particle) Hilbert space, their
concrete examples are limited to n= 2. From our analysis below, we
see that part of the difficulty in numerically observing what we call
“higher-order” DTCs may lie in their emergence at system sizes that
are typically beyond the reach of exact diagonalization.

Here, we overcome this limitation by considering a system
amenable to a set of complimentary methods, which enable us to
discover an unusually rich dynamical phase diagram hosting a zoo of
novel, exotic (and arguably prethermal) nonequilibrium phases of
matter. More specifically, we show that a clean spin-1/2 chain in the
presence of long-range interactions (Fig. 1a) can sustain robust
higher-order n-DTCs with integer and, remarkably, even fractional n
> 2 (e.g., n= 3, 4, 8/3, and beyond). These novel dynamical phases
give rise to a peculiar fragmentation of the magnetization spectrum,
which is intriguingly reminiscent of the plateau structure of the
fractional quantum Hall effect.

In the following, we present a rather general model of long-range
interacting spins, thoroughly study its semiclassical (i.e., mean-field)
limit, and finally show that the physics observed extends far beyond
the fine-tuned limit. We note that our work is distinct from tradi-
tional MBL DTCs, which do not have such a semiclassical limit. On a
conceptual level, our analysis is closer to that of equilibrium statistical
physics, where, for example, the ferromagnetic phase in the Ising
model is best understood in a mean-field description, which is exact
in the limit of all-to-all interactions. In our out-of-equilibrium and
clean setting, the existence of a conceptually simple mean-field limit
is particularly valuable, and highlights profound differences between
the clean DTCs considered here and the pioneering works on
MBL DTCs.

Results
We consider a one-dimensional chain of N spins in the ther-
modynamic limit (N→∞), driven according to the following

time-periodic Hamiltonian
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where σðx;y;zÞj denote the standard Pauli operators for the jth spin,
periodic boundary conditions are assumed, and both ℏ and the
drive frequency have been set to 1. J measures the strength of a
power-law interaction with characteristic exponent α, λ is the
strength of a nearest-neighbor interaction, and πh is the average
over one drive period of the monochromatic transverse magnetic
field. The Kac normalization N N;α ¼ ∑N

j¼2
1

ðr1;jÞ
α guarantees

extensivity, and conveniently allows to stretch the model to the
Lipkin–Meshkov–Glick (LMG) limit of all-to-all interactions (α
= λ= 0), in which the underlying complex physics is reduced to
its essence and most easily interpreted.

The dynamics from an initially z-polarized state ψð0Þj i ¼
"; "; ¼ ; "j i is integrable in the noninteracting limit J= λ= 0, for
which the magnetization mðtÞ ¼ hσzj iðtÞ at stroboscopic times t
= 0, 1, 2, … reads mðtÞ ¼ cosð2πhtÞ, that is h is the system’s
characteristic frequency. The essential question to diagnose a n-
DTC is whether, upon switching on the interactions, there exists a
finite range of h for which the system’s characteristic frequency ν
remains instead locked to a constant value 1/n < 1, signaling the

Fig. 1 Higher-order and fractional discrete time crystals. a A spin-1/2
chain with long-range interactions and initial z-polarization is driven with a
monochromatic transverse magnetic field of strength h, inducing a spin
precession around x. b The time crystallinity is probed by the Fourier
transform j~mðνÞj of the magnetization along z. The spectrum fragments in a
multitude of plateaus with constant frequency 1/n for a magnetic field
strength h in a finite range ≈1/n, each of which signals a higher-order n-
DTC robust to perturbations of the drive (n is indicated in blue font for
some of the resolved DTCs). Especially remarkable are fractional n-DTCs,
with n= p/q and p and q some coprime integers. This spectrum refers to
the LMG limit (α= 0, λ= 0), at fixed interaction J= 0.5, restricting to the
first frequency Brillouin zone −0.5≤ ν≤ 0.5, for 500 and 2000 drive
periods in the top and bottom panels, respectively.
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Figure 1: Signatures of a fractional classical discrete time crystal. (For more details, see reference.)
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modulation of the magnetization on top of the subharmonic
response.

The subharmonic peak magnitude j~mð1=4Þj can be used to
trace out the 4-DTC phase in the (J, h) plane (c). The 4-DTC
phase opens up from the integrable point J= 0, h= 1/4 for
increasing interactions, in analogy with the opening of the stan-
dard 2-DTC from J= 0, h= 1/216. This opening, which in
dynamical system theory would be referred to as Arnold’s tongue,
confirms that larger interactions J allow the higher-order DTCs to
bear larger detunings in the field h. However, at even larger J⪆
0.8 semiclassical chaos sets in and the time crystalline order is
broken irrespectively of h. To see this, we introduce a decorrelator
hd2ðtÞit (see “Methods” and Supplementary Note 3), measuring
the average distance between two initially very close copies of the
system evolving under Eq. (2). hd2it # 1 corresponds to sensi-
tivity to the initial conditions, that is, to classical chaos, which in
turn signals quantum thermalization35.

As shown, the DTCs rely on the interactions being sufficiently
(but not too) strong. Crucially, in contrast to the standard 2-DTC,
higher-order DTCs also necessitate the interactions to be suffi-
ciently long range. We now probe the robustness of the higher-
order DTCs along yet a different direction in the drive space,
exploring the effects of non-all-to-all interaction on higher-order
DTCs, particularly assessing their stability upon breaking the
mean-field solvability of the dynamics with power-law (α > 0) and
nearest-neighbor (λ > 0) interactions. In this case, the system is no
longer described as a collective spin, and spin-wave excitations
are rather generated. To account for them, we adopt a spin-wave
approximation (see “Methods”), in which the central dynamical
variable is the density of spin-wave excitations ϵ(t)

ϵ ¼ 2
N

∑
N

k≠0
hbykbki; ð3Þ

where byk and bk are bosonic creation and annihilation operators
for the spin-wave excitations with momentum k.

In the LMG limit (λ= α= 0), no spin-wave excitation is generated
and ϵ= 0 at all times. When departing from such a limit, two sce-
narios are possible (Fig. 4a): (i) ϵ rapidly reaches a plateau⪅ 0.1 (up
to some small fluctuations), for which we consider the spin-wave
approximation consistent, or (ii) ϵ rapidly grows to values⪆ 1, for
which the spin-wave approximation breaks down. Although the
method is not exact and may fail to capture the very long-time
physics, it suggests that (i) and (ii) correspond to prethermalization
and thermalization, respectively15,36,37.

We observe that the higher-order DTCs are stable (at least in a
prethermal fashion) for sufficiently long-range interactions (i.e.,
sufficiently small λ and α), whereas thermalization quickly sets in
for shorter-range interactions (Fig. 4a). The transition between
these two dynamical phases is sharp and can be located com-
paring the spin-wave density time average 〈ϵ〉t with a threshold
0.1 (Fig. 4b). The stability of the n-DTC in the presence of
competing power-law and nearest-neighbor interactions can be
investigated in the (α, λ) plane plotting the amplitude of the
subharmonic peak j~mð1=nÞj in Fig. 4c and the time-averaged
spin-wave density 〈ϵ〉t in Fig. 4d. The n-DTC is stable for a whole
region of the parameter space surrounding the LMG point (α= λ
= 0), that is, if the interactions are sufficiently long range. The
DTC is also robust to arbitrary perturbations to the initial state, as
long as the initial spin-wave density ϵ(0) is sufficiently small, as
we have checked by injecting a small amount of spin-wave
excitations to the initial state. For completeness, in the Supple-
mentary Note 5 we also investigate the stability of the 4-DTC
against the introduction of a longitudinal field of strength hz. We
found in this case that the expected prethermal nature of the DTC
is only changed quantitatively, with the heating time scaling

Fig. 2 Phase space structure of the dynamical phases. Poincare maps of the semiclassical dynamics (2) for various magnetic field strengths h and a fixed
interaction J= 0.5. Red markers highlight the trajectory starting in the z-polarized state (m= 1, θ= 0, green asterisk). a Dynamical ferromagnet (F): the
magnetization m remains ≈1 at all times; b stroboscopic ferromagnet (sF): the magnetization m changes sign during the micromotion and yet it remains
positive at stroboscopic times; c 2-DTC: the system alternatively visits two islands of the phase space—one with m≈ 1 (numbered as 0) at even times, and
the other with m≈− 1 (numbered as 1) at odd times; d, e higher-order n-DTCs with integer n= 4, 8, respectively: the system visits cyclically n islands of
the phase space (accordingly numbered in red), with one tour of the islands corresponding to one complete revolution of the spins around the Bloch
sphere. f Higher-order n-DTC with fractional n= q/p= 8/3: it takes p revolutions of the spins for the system to tour q islands of the phase space, resulting
in a sharp magnetization oscillation frequency ν= p/q. The insets on the right zoom on the island visited at times t= 8k+ 5, k= 0, 1, 2, … for the 8-DTC
(top) and the 8/3-DTC (bottom).
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Figure 2: Poincare maps of the semiclassical dynamics, illustrating the emergence of ‘islands’ responsible
for the DTC dynamics. (For more details, see reference.)

• Investigate the structure of the phase space portrait and reproduce Fig 2 from the paper.

• Optional goal: Add small temporal perturbations to the periodic drive: πh[1 + sin(2πt)] →
πh[1 + sin(2πt(1 + δ))] where δ is a random number drawn from a normal distribution with
zero mean and variance you can control. Investigate how the fractional response reacts as the
value of the noise δ is increased.

2


