
Discrete Time Crystals on Quantum Computers using Qiskit

The goal of this project is to implement a discrete time crystal (DTC) in a (quantum) simulation
using IBM’s software package Qiskit. You will learn to write simulations in Qiskit, and become
familiar with the effect of noise. In particular, we will consider the Floquet unitary
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whereXj (Zj) denote the Pauli matrices; each ϕi is sampled uniformly at random from [−1.5π,−0.5π]
and each hi is sampled uniformly at random from [−π,+π]. The parameter g is set within the range
[0.5, 1.0] to explore the transition between a DTC and thermal phase. This project is based on the
paper Time-crystalline eigenstate order on a quantum processor by Mi et al., Nature volume 601,
531–536 (2022). This project is numerical. Prior familiarity with Qiskit is required (or prepare to
work harder!).

• Make yourself familiar with Qiskit; you should learn how to build circuits, and how to apply
gates generated by the X, Z and ZZ operators, with a preset gate angle.

• Using Qiskit, implement the unitary UF in a dissipation-free and noise-free simulation. Play
with the model parameters and try to observe both the MBL-DTC and the thermal phase.
What is a proper initial state to start from?

• Optional goal: Use one of Qiskit’s noise models and investigate the effect of noise on the DTC
signal. Can you apply the noise-mitigation technique from the paper above?

• Optional goal: modify your circuit to implement the circuit from Fig. 4a from the paper.

• Optional goal: Run your circuit on an actual IBM machine (you can register online at IBM
Quantum to get access).
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Dynamics in a Floquet system is governed by a unitary time evolution 
operator, whose eigenvalues lie on the unit circle. While the entire Floquet 
spectrum is featureless in a thermalizing phase (Fig. 1b), an MBL Floquet 
phase can have an order parameter associated with each eigenstate. As an 
example, in the spatiotemporally ordered MBL-DTC, the spectrum has a 
distinctive pattern of pairing between long-range ordered ‘Schrödinger 
cat’ eigenstates whose eigenvalues are separated by an angle π (refs. 7,9,10; 
Fig. 1c). This pairing manifests as a stable subharmonic response, wherein 
local observables show period-doubled oscillations that spontaneously 
break the discrete time translation symmetry of the drive for infinitely 
long times. The unique combination of spatial long-range order and time 
translation symmetry breaking in an isolated dissipation-free quantum 
many-body system is the hallmark of the MBL-DTC.

Experimentally observing a non-equilibrium phase such as the 
MBL-DTC is a challenge owing to limited programmability, coherence 
and size of noisy intermediate-scale quantum hardware. Subharmonic 
response, by itself, is not a unique attribute of the MBL-DTC; rather, it 
is a feature of many dynamical phenomena whose study has a rich his-
tory24 (also Ch. 8 in ref. 12). Most recently, interesting DTC-like dynamical 
signatures have been observed in a range of quantum platforms from 
trapped ions25 to nitrogen vacancy centres26 to NMR spins27,28. However, 
each of these platforms lacks one or more necessary conditions for sta-
bilizing an MBL-DTC12,29, either owing to an absence of the requisite type 
of disorder25,27 or owing to the interactions being too long ranged26–28. 
The observed signatures, instead, have been shown to arise from slow 
thermalization26,30, effectively mean-field dynamics28, or prethermal 
dynamics from special initial states12,29,31,32, and are separated from 
the MBL-DTC by a spectral phase transition where eigenstate order 
disappears. Thus, despite the recent progress, observing an MBL-DTC 
remains an outstanding challenge12,29.

Here we perform the following necessary benchmarks for experimen-
tally establishing an eigenstate-ordered non-equilibrium phase of matter: 
drive parameters are varied to demonstrate stability of the phase in an 
extended parameter region and across disorder realizations; the limita-
tions of finite size and finite coherence time are addressed, respectively, 
by varying system size and verifying that any decay of the subharmonic 
response is consistent with purely extrinsic decoherence assessed in an 
independent experiment; the existence of spatiotemporal order across 
the entire spectrum is established. The flexibility of our quantum pro-
cessor, combined with the scalable experimental protocols devised in 
the following, allows us to fulfil these criteria and observe an MBL-DTC.

The experiment is conducted on an open-ended, linear chain of L = 20 
superconducting transmon qubits (Q1 to Q20) that are isolated from a 
two-dimensional grid. We drive the qubits via a time-periodic (Floquet) 
circuit Û

t
F with t identical cycles (Fig. 2a) of ÛF:
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Fig. 1 | Order in eigenstates. a, Equilibrium phases are characterized by 
long-range order in low-energy eigenstates of time-independent Hamiltonians 
(for example, an Ising ferromagnet with a pair of degenerate ground states that 
resemble ‘Schrödinger cats’ of polarized states). b, Thermalizing Floquet 
systems typically have no ordered states in the spectrum. c, In MBL Floquet 
systems, every eigenstate can show order. In MBL-DTC, every eigenstate 
resembles a long-range ordered ‘Schrödinger cat’ of a random configuration of 
spins and its inversion, with even/odd superpositions split by π.
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Ā /Ā 0
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Fig. 2 | Observing an MBL-DTC. a, The experimental circuit composed of t  
identical cycles of the unitary ÛF. The local polarization of each qubit, $Z tˆ( )%,  
is measured at the end. In the following panels, we investigate a number of 
disorder instances each with a different random bit-string initial state.  
b, Experimental values of $Z tˆ( )% measured at Q11. Data are shown for five 
representative circuit instances deep in the thermal (g = 0.60; left) and 
MBL-DTC (g = 0.97; right) phases. c, Autocorrelator A Z Z t= $ ˆ(0) ˆ( )% at Q11, 

obtained from averaging the results of 36 circuit instances. For the same circuit 
instances, the average autocorrelator at the output of U U Uˆ = ( ˆ ) ˆt

ECHO
t

F
†

F is also 
measured and its square root, A0, is shown alongside A  for comparison. The left 
(right) panels correspond to g = 0.60 (0.97). d, Top panels: the ratio A A/ 0 
obtained from c. Bottom panels: A A/ 0 as a function of t  and qubit location.  
The left (right) panels correspond to g = 0.60 (0.97) .

Figure 1: DTC on a quantum computer. (For more details, see reference.)
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