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2 Introduction

In these lectures, we will consider how many-body quantum systems relax to equilibrium,
and how the resulting equilibrium properties return the expected behavior from (classical)
statistical mechanics.

Classically, our understanding of statistical mechanics starts from the notions of chaos
and ergodicity. The ergodic hypothesis says that, if we evolve a system in time, it will visit
every region in the accessible phase space, and the time spend in any region of the phase
space is proportional to the volume of the region. Every microstate in phase space results in
a specific value of the observable, but some microstates are much more likely to be visited
than others (as quantified through the notion of entropy), and the long-time behaviour of
any observable will correspond to the behaviour of these microstates. Such microstates can
be found by maximizing the entropy, resulting in a Gibbs ensemble describing the long-time
behaviour.

Quantum mechanically, the dynamics of an isolated system follows from the time-dependent
Schrödinger equation:

iħh
d
d t
|ψ(t)〉= Ĥ |ψ(t)〉 . (1)

For any initial state |ψ0〉, this equation can be formally solved as

|ψ(t)〉= e−iĤ t |ψ0〉=
∑

n

e−iEn t |n〉 〈n|ψ0〉 , (2)

where we have set ħh= 1 and introduced an eigenvalue decomposition of the Hamiltonian as

Ĥ |n〉= En |n〉 . (3)

Clearly, all dynamics is encoded in the eigenvalues and eigenstates of the Hamiltonian. There
are now two apparent issues.

First, on the practical level, we are interested in the dynamics of generic many-body systems
– by which we mean that these models cannot be solved analytically and we need to resort to
numerical approaches. However, for a system consisting of L spin-1/2 particles, we are faced
with the issue that the resulting Hilbert space has a dimension of 2L . Exact diagonalization
of the Hamiltonian matrix rapidly falls out of reach of any computational method for even
relatively modest system sizes, and it becomes impossible to exactly obtain the eigenstates.

On a more fundamental level, this dynamics corresponds to a unitary transformation of the
initial state with U(t) = e−iĤ t . In principle, it is possible to undo this transformation, and the
state at t = 0 can be exactly recovered from the state at an arbitrary time t by acting with the
operator U†(t). The unitarity clearly precludes any relaxation of the quantum state to equilib-
rium, since different initial states should give rise to the same equilibrium states. Furthermore,
statistical physics tells us that these equilibrium states should not depend on any microscopic
properties of the initial states (e.g. the overlaps with eigenstates of a Hamiltonian), but only
on the macroscopic properties encoded in the conservation laws (e.g. conservation of energy).

These issues can be resolved simultaneously: quantum mechanical systems relax locally
rather than globally, and for local observables the excited eigenstates of a chaotic Hamiltonian
can be treated as the eigenstates of random matrix. This local relaxation implies that, even
if the (global) state exhibits nontrivial dynamics, the system can be static if we focus on local
observables. Furthermore, eigenstates at a fixed energy behave as thermal states at the same
energy, in a way that will be made precise later. As such, rather than making exact statements
about specific eigenstates, within chaotic systems it is possible to make exact statements about
the statistical properties of many eigenstates. Chaotic Hamiltonians behave like random ma-
trices in many ways, and this emergent randomness gives rise to relaxation to equilibrium and
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the emergence of universal behavior at late times. Effectively, the full wave function acts as a
thermal bath for any local subsystem.

3 Local thermalization

As mentioned, quantum dynamics corresponds to the unitary transformation of an initial state.
However, these states are not physical observables. Consider a physical observable Ô, then its
dynamics is given by

〈ψ(t)| Ô |ψ(t)〉=
∑

m,n

c∗ncmOnme−i(Em−En)t , (4)

with Onm = 〈n| Ô |m〉 and cn = 〈n|ψ(t = 0)〉. We can separate the static part from the dynamic
part, writing

〈ψ(t)| Ô |ψ(t)〉=
∑

n

|cn|2Onn +
∑

n,m ̸=n

c∗ncmOnmei(En−Em)t , (5)

assuming that there are no degeneracies in the spectrum, i.e. En ̸= Em if n ̸= m. At long times,
we could expect that oscillations dephase and cancel out, such that

lim
t→∞
〈ψ(t)| Ô |ψ(t)〉=

∑

n

|cn|2Onn. (6)

In this way relaxation can be obtained. However, this is still far from thermalization: The final
value of the observable depends on the overlap of the initial state with all eigenstates of the
Hamiltonian, not just on the energy, and we have also assumed that the oscillations cancel out
in some way, which is not a given. For example, if there are a large amount of states for which
En−Em is approximately equal, these will not cancel out. So we need some further information
about both the eigenstates and the matrix elements of the observable. Additionally, dephasing
only can not be responsible for relaxation: the time scale for dephasing is set by the closest
energy difference (recall the Heisenberg uncertainty principle for time and energy), which is
exponentially small in system size. Still, any steady-state value should correspond to the above
result.

Eq. (5) also highlights that relaxation depends on the observable under consideration and
can not be generically expected for any Hermitian operator. If we consider e.g. a Hermitian
operator of the form Ô = |p〉 〈q|+ |q〉 〈p| and consider its time evolution from a random initial
state |ψ(t = 0)〉, we will have

〈ψ(t)| Ô |ψ(t)〉= c∗pcqei(Ep−Eq)t + c.c., (7)

which is pure oscillation and hence never reaches a steady-state value. If we wish to see
thermalization, we need to restrict ourselves in some way. This is usually done by considering
local observables, i.e. if we have a full lattice of L spins, we focus on operators that only act
on a local subset of these spins. The projection operators from the above equation are horribly
nonlocal, acting on the full system, whereas quantum systems typically relax locally. In this
way only ‘physical’ observables are expected to thermalize.

In the above figure, suppose we have an operator ÔA that only acts on the subsystem A.
The corresponding operator for the full system can be written as Ô = ÔA⊗ 1B. We can write
the expectation value of this operator as

〈ψ(t)|Ô|ψ(t)〉= Tr
�

Ô |ψ(t)〉 〈ψ(t)|
�

= Tr
�

ÔA⊗1B |ψ(t)〉 〈ψ(t)|
�

= TrA

�

ÔAρA

�

, (8)
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Figure 1: Local relaxation in an isolated many-particle quantum system: we partition
the entire system into an arbitrary finite subsystem A and its complement B. We
then take the thermodynamic limit while keeping A fixed. Expectation values of all
operators that act non-trivially only in A will relax to stationary values at late times.

where we have introduced the reduced density matrix ρA as

ρA = TrB [|ψ(t)〉 〈ψ(t)|] . (9)

This reduced density matrix fully determines all expectation value of operator that purely act
on the local subsystem A. The crucial observation is that ρA can be static even if the wave
function |ψ(t)〉 is not.

Local relaxation. A system is said to relax locally if the limit

lim
t→∞

lim
L→∞

ρA(t) (10)

exists for any finite subsystem A. Note that the order of limits is important here – these do
not commute. For any finite system size L the limit t →∞ is undefined since there will be
recurrences at late times, which is why we first need to take the thermodynamic limit.

Steady-state density matrices. Clearly, if this limit exists for an initial state |ψ0〉, it nec-
essarily corresponds to

lim
t→∞

lim
L→∞

ρA(t) = TrB [ρDE] with ρDE =
∑

n

| 〈n|ψ0〉 |2 |n〉 〈n| , (11)

which reproduces the time-averaged value of Eq. (5) and where ρDE is also known as the
diagonal ensemble. However, this ensemble depends on the overlap of the initial state with
all eigenstates of the Hamiltonian, not just on the energy, so we need exponentially many
microscopic numbers determining this ensemble.

Thermalization. Crucially, different global operators can give rise to the same reduced
density matrices, e.g. different initial states can give rise to the same reduced density matrices
(since moving from global to local operators always induces a loss of information). The con-
nection with statistical mechanics is then made by observing that, in general chaotic quantum
systems, the steady-state reduced density matrices satisfy

lim
t→∞

lim
L→∞

ρA(t) = TrB [ρGibbs] with ρGibbs ≡
e−βH

Z
, (12)

in which the partition function Z = Tr
�

e−βH
�

=
∑

n e−βEn guarantees the normalization of the
reduced density matrices. In other words, the steady-state reduced density matrices and the
diagonal ensemble are locally equivalent to the thermal Gibbs distribution with a fixed inverse
temperature β .

At late times, the expectation value of any local observable Ô should then reproduce the
thermal expectation value, i.e.

lim
t→∞

lim
L→∞
〈ψ(t)|Ô|ψ(t)〉= Tr

�

ÔρGibbs

�

=
1
Z

∑

n

〈n|Ô|n〉 e−βEn . (13)
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Figure 2: Comparison of the spatial probability density for a highly excited state
within a chaotic cardioid billiard (right) and the probability distribution for a random
superposition of plane waves (left) at the same energy. From Ref. [1], originally from
Ref. [2].

As one particular example, the Hamiltonian is a sum over local observables, so that we can
calculate its expectation value from the Gibbs distribution, and we also know that energy
should be conserved, 〈E〉 = 〈ψ(t)|Ĥ|ψ(t)〉 = 〈ψ(0)|Ĥ|ψ(0)〉. As such, the energy from the
Gibbs state should reproduce the initial energy:

Tr
�

ĤρGibbs

�

=
1
Z

∑

n

En e−βEn =

∑

n En e−βEn

∑

n e−βEn
= 〈E〉 , (14)

which uniquely fixes the inverse temperature β in terms of the energy of the initial state. In
this way, we recover the expected result from statistical mechanics.

We emphasize that this equivalence between density matrices only holds locally: the full
density matrices are not identical, since they would not reproduce the correct dynamics for e.g.
the projectors from Eq. (7). Rather, expectation values of all operators that act non-trivially
only in a finite subsystem are identical to the corresponding thermal expectation values. The
physical picture underlying thermalization is that the infinitely large complement of our sub-
system acts like a heat bath with an effective inverse temperature β . Note also that this inverse
temperature need not be positive!

4 Aspects of Random Matrix Theory

In order to obtain a more quantitative understanding of thermalization, it is important to con-
sider the structure of the eigenvalues and eigenstates of generic Hamiltonians and understand
in which way we can treat these as random matrices. Here we can start from two numeri-
cal observations. A first observation is due to Michael Berry: in Fig. 2 we show the spatial
probability density for a single highly excited eigenstate of a single particle in a chaotic car-
dioid billiard, as compared to a random superposition of plane waves. Locally the two plots are
nearly indistinguishable, indicating a high degree of randomness in highly excited eigenstates.
A second numerical observation, originally due to Wigner, is that the eigenvalues of highly
complicated many-body Hamiltonians exhibit statistical features of the eigenvalues of random
matrices. Rather than trying to calculate individual eigenvalues, it is possible to make exact
statements about the statistical properties of the eigenvalue spectrum. In Fig. 3 we plot the
level spacing distribution, i.e. the probability distribution for the distance between subsequent
energy levels, En+1 − En with En+1 > En, for the “Nuclear Data Ensemble”, which comprises
1726 normalized level spacings for the eigenspectra various heavy nuclei (see Ref. [3] for a
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review and references to the original works). This probability distribution can be calculated
for an ensemble of random matrices, the so-called Gaussian Orthogonal Ensemble (GOE), and
the agreement between the two is remarkable. This distribution is also contrasted with the
Poisson distribution that would be obtained if the eigenvalues were statistically independent
variables.

Figure 3: Nearest neighbor spacing distribution for the “Nuclear Data Ensemble”
comprising 1726 spacings (histogram) versus s = S/D, where D is the mean level
spacing and Sn = En+1 − En is the actual spacing. Lines represent the GOE and the
Poisson distributions. From Ref. [3].

These two pieces of evidence indicate that it is not absurd to treat the (highly structured)
Hamiltonians as random matrices. Random matrices have the properties that (a) their eigen-
values obey the so-called Wigner-Dyson statistics and (b) their eigenvectors are uncorrelated
random unit vectors. We will now briefly review some concepts from random matrix theory
(RMT).

Eigenstate properties

If we have eigenstates labelled n, m and expand them in arbitrary basis states labelled i, j (with
expansion coefficients c i

n, c i
m, . . . ), then random matrix theory tells us that the matrix elements

are Gaussian random variables satisfying

�

c i
n

�∗
(c j

m) = δi jδmn
1
D

, (15)

which holds for arbitary basis states, and D is the dimension of the Hilbert space. Here the
overline represent the averaging over different random matrices. Different coefficients of two
different states are uncorrelated Gaussian variables, where the variance |cn

i |
2 is independent

of both the state and the index. Because of the normalization of the initial state we need that
∑D

i=1 |c
n
i |

2 = 1,∀n, which implies the appearance of the factor 1/D.
Suppose we have an observable Ô =

∑

i Oi |i〉 〈i|. The eigenvectors of this operator are a
random basis for the eigenstates of the Hamiltonian, so we have

Onn =
∑

i

Oi

�

cn
i

�∗ �
cn

i

�

=
1
D

∑

i

Oi =
1
D

Tr[Ô]≡ O, (16)

Omn =
∑

i

Oi

�

cm
i

�∗ �
cn

i

�

= 0, (17)
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where we have replaced everything with its average value, since we expect fluctuations to be
suppressed for large systems. In other words, in the eigenbasis of the Hamiltonian the diag-
onal matrix elements of an observable are approximately constant, whereas the off-diagonal
elements vanish.

Moreover, the fluctuations of the diagonal and off-diagonal matrix elements are suppressed
by the size of the Hilbert space. For the diagonal elements

O2
nn −
�

Onn

�2
=
∑

i, j

OiOj

�

cn
i

�∗ �
cn

i

�

�

cn
j

�∗ �
cn

j

�

−
∑

i, j

OiOj

�

cn
i

�∗ �
cn

i

�

�

cn
j

�∗ �
cn

j

�

(18)

=
∑

i

O2
i

�

|cn
i |4 − |c

n
i |2

2�

=
2
D2

∑

i

O2
i ≡

2
D

O2 (19)

where we have used that these are independent variables for i ̸= j, and for i = j Gaussian

variables satisfy |cn
i |4 = 3|cn

i |2
2

and we have |cn
i |2 = 1/D. Assuming that none of the eigen-

values Oi scales with the size of the Hilbert space, as is the case for physical observables, we
see that the fluctuations of the diagonal matrix elements of Ô are inversely proportional to the
square root of the size of the Hilbert space.

However, we should be careful with the previous derivation: there exist additional corre-
lations in the overlaps due to the fact that the eigenstates form a complete basis. The effect of
these correlations can be seen by choosing Ô = 1, for which we would always recover Onn = 1
and Omn = 0. Crucially, adding any multiple of the identity to the observable should not
change the matrix element statistics – whereas it clearly changes O2. The issue arises because
in the above summations there can be coherent contributions, leading to terms where we can
use unitarity. Such coherent contributions are avoided if O = 0, since then the fact that Oi
fluctuates around zero prevents such coherent contributions. These additional correlations
can easily be taken into account by redefining Ô→ Ô−O1, which does not change the matrix
element statistics and corresponds to redefining O2 → O2 − (O)2 = σ2

O as the variance of the

eigenvalues of O. As such, in all results we should read O2 as the variance, and the diagonal
elements satisfy

O2
nn −
�

Onn

�2
=

2
D
σ2

O . (20)

For off-diagonal elements we similarly find that

O2
mn −
�

Omn

�2
=

1
D
σ2

O . (21)

Combining these expressions we see that, up to leading order in 1/D, the matrix elements of
any operator in the eigenbasis of the Hamiltonian can be written as

Omn = Oδmn +

√

√

√σ2
O

D
Rmn, (22)

where Rmn is a real variable satisfying Rmn = Rmn and Gaussian distributed with Rmn = 0
and R2

mn = 1 if m ̸= n and R2
nn = 2 otherwise. It is straightforward to check that this ansatz

reproduces the calculated mean and variance of the matrix elements.
Crucially, this ansatz also results in thermalization! Plugging this ansatz into the diagonal

ensemble, we immediately get

lim
t→∞
〈ψ(t)| Ô |ψ(t)〉=

∑

n

|cn|2Onn =
∑

n

|cn|2O = O . (23)
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For any initial state, random matrix theory predicts that the steady-state value is given by O,
which is also the Gibbs expectation value at infinite temperature (β = 0) since O = Tr[Ô]/D.
Furthermore, from Eq. (18) it follows that the long-time fluctuations around this steady-state
value are suppressed by a factor 1/D.

However, we are not there yet. Because of the randomness, the final value of the observable
has become completely independent of the initial state, and does not depend on the initial
energy! So, apparently eigenstates of physical Hamiltonians have some more structure than
a random matrix. This structure is the subject of the Eigenstate Thermalisation Hypothesis
(ETH), as proposed by Mark Srednicki in Ref. [4].

The Wigner surmise

Before moving on to ETH, we will first derive an important result on the eigenvalue spac-
ing statistics of random matrices. The Gaussian Orthogonal Ensemble (GOE) is a model for
random symmetric matrices (i.e. matrices M satisfying M T = M) whose entries are inde-
pendent (up to the symmetricity constraint) normal random variables. These matrices are
randomly distributed, and the probability of obtaining a given matrix is invariant under or-
thogonal transformations, i.e. P(OT MO) = P(M) for OOT = 1. For the GOE the probability
density of a matrix M is given by

P(M) =
1

ZGOE
exp
�

−
D
4

Tr(M2)
�

, (24)

with normalization obtained as

ZGOE =

∫∫

∏

m≤n

dMmn exp
�

−
D
4

Tr(M2)
�

. (25)

Note that other ensembles exist, the Gaussian Unitary Ensemble and the Gaussian Symplectic
Ensemble, defined for complex matrices and quaternionic ensembles respectively, but here we
focus on the GOE. The GOE models real Hamiltonians with time-reversal symmetry, whereas
the GUE is appropriate when time-reversal symmetry is broken.

Remarkably, the results from Fig. 3 can be derived already from a simple random matrix
with D = 2. Suppose we have a 2× 2 random matrix

M =

�

M11 M12
M12 M22

�

, (26)

where the matrix elements are random variables with Gaussian distribution

P(M)∝ exp
�

−
1
2

�

M2
11 +M2

22 + 2M2
12

�

�

. (27)

In other words, the diagonal elements are random variables from a Gaussian distribution
N (µ,σ2)with mean µ= 0 and varianceσ2 = 1, whereas the off-diagonal element is a random
variable from a Gaussian distribution N (µ= 0,σ2 = 1/2).

This matrix has two eigenvalues E±, which can be directly obtained from the characteristic
equation
�

�

�

�

M11 − E M12
M12 M22 − E

�

�

�

�

= 0 ⇒ E2 − (M11 +M22)E + (M11M22 −M2
12) = 0, (28)

leading to

E± =
M11 +M22

2
±

1
2

q

(M11 −M22)2 + 4M2
12, (29)
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from which we can now calculate the probability density P(s) = P(E+ − E− = s) for the level
spacing s. We see that M11 + M22 = Tr[M] only results in a constant shift for both eigenval-
ues, since we can subtract Tr[M]1 from the initial matrix without changing the eigenvalue
spacing, and the diagonal elements only appear through (M11 − M22). The difference of two
Gaussian variables with variance σ2 = 1 is a Gaussian variable with variance σ2 = 2. Writing
λ= M11 −M22 and v = M12, we have

P(s) =
1

2π

∫

dλ

∫

dv e−v2−λ2/4δ
�

s−
p

λ2 + 4v2
�

. (30)

This integral can be evaluated by introducing polar coordinates v = r cos(θ )/2 andλ= r sin(θ ),
resulting in a Jacobian dvdλ= rdrdθ/2 and returning

P(s) =
1

4π

∫ 2π

0

dθ

∫ ∞

0

dr re−r2/4δ(s− r) =
s
2

e−s2/4. (31)

It is often convenient to rescale s in terms of the average level spacing ratio
∫∞

0 dssP(s).
Redefining P(s) for this normalized level spacing ratio, we find that

P(s) =
πs
2

exp(−πs2/4). (32)

This result is also known as the Wigner surmise and is illustrated in Fig. 4. While this expression
is not exact for D > 2, it is clearly a very good approximation to the general GOE level spacing
statistics also observed in Fig. 3. This statistical behavior is also known as Wigner-Dyson level
statistics, and the emergence of Wigner-Dyson statistics for level spacings is often considered
as a defining property of quantum chaotic systems.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

s

0.0

0.2

0.4

0.6

0.8

1.0

P
(s

)

GOE

Wigner Surmise

Poisson

Figure 4: Comparison of the Wigner surmise with the numerically obtained level
spacing distribution for a GOE of random matrices and a Poissonian distribution.
The histogram represents the spacing for the eigenvalues of a chaotic Hamiltonian
(GOE) and for purely random variables (Poisson). In both cases the distributions
have been normalized to return an average value of unity.

Level repulsion. One important result from Eq. (32) is that the probability of observing a
level spacing s vanishes as s→ 0. Effectively, chaotic models exhibit level repulsion. This can
be made apparent by showing the eigenstate spectrum of a chaotic Hamiltonian as a variable in
this Hamiltonian is smoothly changed, as illustrated in Fig. 8 below. Clearly, the eigenvalues
‘repel’ each other and exhibit avoided crossings. Physically, this highlights the difficulty of
preparing systems in excited eigenstates of chaotic systems, since each avoided crossing will

9



Lecture Notes

result in Landau-Zener dynamics (see later) and excited states can not be smoothly connected
to eigenstates in a simple, e.g. noninteracting, limit.

Non-chaotic models. As one comment, we note that integrable (i.e. non-chaotic) sys-
tems do not exhibit Wigner-Dyson statistics. This is the subject of the Berry-Tabor conjecture:
Berry and Tabor postulated that the energy spectra in “generic” integrable systems satisfies
Poisson statistics with P(s) = e−s [5]. The qualitative argument underlying the conjecture is
very intuitive and can be illustrated using the simple example of N harmonic oscillators with
incommensurate frequencies. The incommensurability here is precisely the condition defining
that this system is “generic” integrable, and we can consider a Hamiltonian

Ĥ =
N
∑

k=1

ħhωk â†
k âk . (33)

The frequencies ωk can e.g. represent the normal modes of a harmonic chain. The energy
spectrum of this model immediately follows as the sum of the energies of different modes:

En1,...nN
=
∑

k

ħhωknk, (34)

where nk are arbitrary integers. Unless the frequenciesωk are commensurate with each other,
the high-energy states are completely uncorrelated because states with a similar energy can
arise from very different combinations of the occupation numbers nk. Such a lack of corre-
lations between nearby levels is characteristic of a Poisson process, where energy levels are
randomly chosen.

Poissonian statistics would also be observed in models with additional symmetries, even
if Wigner-Dyson statistics appears within individual symmetry sectors, as evidenced by the
possibility of level crossings between states corresponding to different symmetry sectors.

5 Eigenstate Thermalization Hypothesis

If the Hamiltonian were completely random, any observable expressed in the eigenstate basis
of the Hamiltonian would become completely diagonal, with all diagonal elements equal to
the average value of the operator. ETH proposes a different structure for observables in the
eigenstate basis of a Hamiltonian, given by

Omn = O(E)δmn + e−S(E)/2 fO(E,ω)Rmn, (35)

with O(E) the microcanonical expectation value and fO(E,ω) smooth functions of the average
energy E = (Em + En)/2 and the energy difference ω = Em − En, and Rmn a random variable
with zero mean, unit variance, and satisfying Rmn = Rnm. The thermodynamic entropy S(E)
is defined as the logarithm of the (coarse-grained) density of states, i.e. the number of eigen-
states with energy E is given by eS(E). The function fO(E,ω) is also known as the spectral
function and satisfies fO(E,−ω) = fO(E,ω) for real Hamiltonians.

What does this say? The matrix elements of an observable, expressed in the eigenbasis
of a Hamiltonian, have a specific structure. (1) The diagonal elements vary smoothly with
the energy of the states. (2) The off-diagonal elements are much smaller than the diagonal
elements, and fluctuate with a structure determined by a smooth envelope function fO(E,ω) .
Furthermore, off-diagonal elements vanish exponentially for large entropy. So if many states
have a similar energy, their off-diagonal elements will be exponentially suppressed.

Quantum mechanically, ergodicity and thermalization is essentially translated into prop-
erties of eigenstates. This reproduces the RMT result if we focus on a region for fixed E where

10
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fO(E,ω) is constant. So RMT predicts the correct substructure of observables in narrow energy
windows, but the energy variations are only captured by the ETH. The energy scale at which
ETH simplifies to RMT is known as the Thouless energy.

5.1 Thermalization

The diagonal elements encode the connection with the Gibbs ensemble. Consider thermal
expectation values of the form

〈Ô〉β ≡ Tr
�

Ôe−β Ĥ
�

/Z. (36)

Introducing an eigenvalue decomposition of the Hamiltonian, we find that

〈Ô〉β =
1
Z

∑

n

e−βEnOnn =
1
Z

∑

n

e−βEn O(En), (37)

where in the last equality we plugged in the ETH ansatz. The discrete sum can be replaced by
an integral, taking into account the density of states,

∑

n→
∫

dEneS(En), leading to

〈Ô〉β =
1
Z

∫

dE O(E) eS(E)−βE . (38)

Both terms in the exponential are extensive, i.e. scale with system size, such that for large
system sizes we can evaluate this integral to extremely good approximation using a saddle
point approximation. This fixes the energy and the entropy according to the standard ther-
modynamic prescription as S′(E) = β at the thermodynamic energy E = Eβ . Here we also
recognize the thermodynamic free energy F = E − β−1S.

Taking into account the proper normalization, we find that

〈Ô〉β ≈ O(Eβ). (39)

In other words, the smooth function necessarily corresponds to the thermal expectation value
of the operator at the corresponding thermal energy. In this way the diagonal elements lead
to the thermal distribution.

We can now show that the ETH reproduces the expected thermalization. For the steady-
state value we find that

lim
t→∞
〈ψ(t)| Ô |ψ(t)〉=

∑

n

|cn|2O(En). (40)

Suppose that energy fluctuations in the initial state are small, e.g. the initial state has an exten-
sive energy and sub-extensive energy fluctuations δE2 = 〈ψ0|Ĥ2|ψ0〉 − 〈ψ0|Ĥ|ψ0〉

2
. Within

ETH we can do a Taylor expansion around the average energy of the initial state 〈E〉 and say

O(En)≈ O(〈E〉) + (En − 〈E〉)O
′
(〈E〉) +

1
2
(En − 〈E〉)2O

′′
(〈E〉), (41)

such that

lim
t→∞
〈ψ(t)| Ô |ψ(t)〉 (42)

=
∑

n

|cn|2O(〈E〉) +
∑

n

|cn|2(En − 〈E〉)O
′
(〈E〉) +

1
2

∑

n

|cn|2(En − 〈E〉)2 O
′′
(〈E〉) (43)

= O(〈E〉) +
δE2

2
O
′′
(〈E〉) , (44)

11
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In the first equality we have introduced the Taylor expansion, and in the second equality the
definition of the average and energy variance. since we have assumed that the energy variance
of the initial state is sufficiently small, we find that the steady-state value reproduces the
microcanonical expectation value O(〈E〉) at the average energy.

Observables satisfying the ETH thermalize to a limiting value only determined by the av-
erage energy of the initial state, as is known classically! Since everything only depends on
the average energy, the Gibbs ensemble will correctly reproduce the values of the observables,
since this state is fully determined by the average energy. Furthermore, while ETH reduces
the microcanonical expectation values, in the presence of ‘equivalence of ensembles’ as es-
tablished for e.g. spin chains with short-range interactions, the microcanonical expectation
values reproduce the expectation values from the Gibbs ensemble. In this way, the Gibbs state
can be seen as some kind of ’representative state’ for all states with a given energy. From the
ETH ansatz, higher-order fluctuations can also be calculated, showing that fluctuations vanish
as e−S(〈E〉).

Quantum quenches. One specific setup in which the above argument to hold is in quan-
tum quenches. In a so-called quantum quench the system is prepared in the ground state
|ψ0〉 of an initial (local) Hamiltonian Ĥ0, and at t = 0 the Hamiltonian is abruptly changed
(’quenched’) to a Hamiltonian Ĥ0 + Ĥ1 and the system is left to evolve under this new Hamil-
tonian. In such a quench setting we find that the energy fluctuations in the original state in
the eigenbasis of the new Hamiltonian are given by

δE2 = 〈ψ0|(Ĥ0 + Ĥ1)
2|ψ0〉 − 〈ψ0|(Ĥ0 + Ĥ1)|ψ0〉

2

= 〈ψ0|(Ĥ1)
2|ψ0〉 − 〈ψ0|Ĥ1|ψ0〉

2
, (45)

using that |ψ0〉 is an eigenstate of Ĥ0. For a local Hamiltonian we can write Ĥ1 =
∑

j ĥ j , where

ĥ j are local operators indexed by lattice sites j, to obtain

δE2 =
∑

j1, j2

�

〈ψ0|ĥ j1 ĥ j2 |ψ0〉 − 〈ψ0|ĥ j1 |ψ0〉 〈ψ0|ĥ j2 |ψ0〉
�

. (46)

In the absence of long-range connected correlations in the ground state (which is typically the
case for ground states of gapped systems), the contributions to these summations decay expo-
nentially as | j1− j2| increases, such that the number of terms that contribute to this summation
will scale as L (with L the number of lattice sites). We find that ∆E∝ L1/2 and since E∝ L
the relative energy fluctuations vanish as δE/E∝ L−1/2.

5.2 Fluctuations

The spectral function fO(E,ω) appearing in the off-diagonal matrix elements encodes all fluc-
tuations of the operator, both static and dynamic.

Let us first consider the dynamic fluctuations. While our previous discussion showed that
the diagonal ensemble is equivalent to the Gibbs ensemble, the diagonal ensemble in principle
only follows as the long-time average of the observable. It could be possible that the system
does not equilibrate but rather keeps exhibiting large fluctuations around the time-average
thermal value. However, ETH additionally predicts that this is not the case and we can think
of the thermal value as the constant equilibrium value. Consider the long-time average of
the fluctuations, i.e. we quantify how much the expectation value of Ô(t) deviates from the
thermal prediction at each time and average this quantity:

δO2
t = lim

T→∞

1
T

∫ T

0

d t
�

〈Ô(t)〉 − 〈Ô〉β
�2
= lim

T→∞

1
T

∫ T

0

d t

�

�

�

�

�

∑

n,m ̸=n

c∗ncmOnmei(En−Em)t

�

�

�

�

�

2

. (47)

12
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Assuming that Em − En = Em′ − En′ only if m = m′ and n = n′ (recall that we made a similar
assumption, Em = En only if m= n, in deriving the diagonal ensemble), we find that

δO2
t =
∑

n,m ̸=n

|cn|2|cm|2|Onm|2 ≤max |Onm|2∝ e−S(E) . (48)

Fluctuations around the thermal value are hence exponentially suppressed!
Let us next consider the static fluctuations. Suppose we are able to prepare the system in

an eigenstate |n〉 of the Hamiltonian. If we measure the observable, we will obtain different
measurement outcomes and the expectation value of the operator corresponds to the average
value of the measurement outcomes. The fluctuations on these measurement outcomes follow
as

δO2
n = 〈n|Ô

2|n〉 − 〈n|Ô|n〉2 =
∑

m ̸=n

|Omn|2 . (49)

It is natural that the off-diagonal elements appear here, since if the observable was diagonal
in the eigenbasis of the Hamiltonian all eigenstates would have a fixed value of the observable
and we would observe no fluctuations. Plugging in the ETH ansatz, we find that

δO2
n =
∑

m ̸=n

e−S(En+ω/2)| fO(En +ω/2,ω)|2R2
mn . (50)

Here we introducedω= (Em− En)/2 such that E = (Em+ En)/2= En+ω/2. For a sufficiently
large density of states we can replace R2

mn with its average value. Replacing the summation
with an integral and introducing the corresponding density of states, we have that

δO2
n =

∫

dω eS(En+ω)−S(En+ω/2)| fO(En +ω/2,ω)|2 . (51)

This expression can be simplified by introducing a Taylor expansion, writing

S(En +ω)− S(En +ω/2)≈ S′(En)
ω

2
=
βω

2
, (52)

where we have again defined β = S′(En), and similar for the spectral function, to obtain

δO2
n =

∫

dω eβω/2
�

| fO(En,ω)|2 +
ω

2
∂

∂ E
| fO(En,ω)|2
�

. (53)

This Taylor expansion can be motivated from the fact that the spectral function decays ex-
ponentially for large ω. Crucially, we observe that the fluctuations of the observable are a
smooth function of their energy, and can be written as an appropriately weighted integrable
over all possible fluctuation frequencies. As such, if we have small energy fluctuations, we can
approximate the fluctuations in the steady state by the fluctuations of an eigenstate with the
same energy as the initial state. This is an example of the equivalence of ensembles: thermal
fluctuations (canonical ensemble) correspond to single-eigenstate fluctuations (microcanoni-
cal ensemble).

Comments. ETH is only expected to be valid from states in the bulk of the spectrum,
so away from the edges, precluding the ground state and the low-lying excited states. ETH
is said to be satisfied in a strong (weak) sense if all (almost all) eigenstates obey Eq. (35).
Similarly, ETH is only expected to hold for physical observables, which is here guaranteed by
the restriction to local operators. ETH also makes clear that exponentially long times may
not be needed for relaxation. By destroying phase coherence between a finite fraction of the
eigenstates, we can average over the random variables appearing in the off-diagonal matrix
elements within ETH, such it is possible to approach the infinite-time prediction with high
accuracy in a time much shorter than the inverse (many-body) level spacing – which is required
to destroy coherence between all eigenstates.

13



Lecture Notes

6 Numerical verification

Using QuSpin, it is now straightforward to verify ETH. We consider a representative chaotic
Hamiltonian as given by the mixed-field Ising model

Ĥ = J
L
∑

j=1

σz
jσ

z
j+1 + hx

L
∑

j=1

σx
j + hz

L
∑

j=1

σz
j , (54)

where we impose periodic boundary conditions σz
L+1 ≡ σ

z
1 and fix the parameters (J , hx , hz)

= (1.0, 0.9045,0.8090). These parameters are generic but often appear in numerical studies of
this model as a testbed of quantum chaos. In order to avoid the effect of unwanted symmetries,
we restrict ourself to the symmetry subsector with even parity and zero momentum. Within
this symmetry sector, the eigenspectrum exhibits Wigner-Dyson statistics.

As a representative observable, we consider a local hopping term along the x direction,

Ô =
1
L

L
∑

j=1

σx
j σ

x
j+1 . (55)

The diagonal matrix elements are illustrated in Fig. 5, and we can clearly observe that these
behave as a smooth function of the energy, becoming increasingly narrow as the system size L
is increased. The off-diagonal matrix elements are illustrated in Fig. 6 for E = 0. These matrix
elements clearly exhibit large fluctuations, with a smooth enveloping function.

Figure 5: Expectation values of Ô =
∑L

j=1σ
z
j in the eigenstates of the mixed-field

Ising Hamiltonian (54) as a function of the energy of the corresponding eigenstate.

It is also possible to verify whether the off-diagonal matrix elements satisfy a Gaussian
distributoin. For Gaussian variables Rmn with zero mean, it is a straightforward calculation to
show that

Γ ≡ |Rmn|2/|Rmn|
2
=
π

2
. (56)

We can perform a similar averaging for Omn at fixed average energy E and for different fre-
quencies ω, and as illustrated in Fig. 7 we observe a value close to the expected value of π/2
at all frequencies.

To conclude, we can also illustrate the presence of level repulsion and avoided crossings
in chaotic many-body systems. In Fig. 8 we show the eigenspectrum of the mixed-field Ising
model for a longitudinal field λhz where we change λ from 0 to 1. It should be apparent
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Figure 6: Off-diagonal matrix elements of Ô =
∑L

j=1σ
z
j in the eigenstates of the

mixed-field Ising Hamiltonian (54) as a function of the energy difference ω for av-
erage energy E ∈ [−0.1,0.1] and system size L = 18.

Figure 7: Value of Γ [Eq. (56)] in the off-diagonal eigenstates of the mixed-field
Ising Hamiltonian (54) as a function of the energy difference ω for average energy
E ∈ [−0.1, 0.1] and system size L = 18. At all frequencies the calculated value is
close to π/2 (dashed black line), consistent with a Gaussian distribution.

that the energy levels exhibit an abundance of avoided crossings as the longitudinal field is
changed, and no exact level crossings are present (even if some levels can get arbitrarily close
together). Note that ETH also implies that excited eigenstates at the same energy cannot be
physically distinguished using local measurements.

7 Fluctuation-dissipation relations.

Let us illustrate how ETH can be used to recover standard results from statistical mechanics.
These calculations help to illustrate how the spectral function does not just fully determine the
equilibrium fluctuations but also the dynamical fluctuations. Specifically, the spectral function
naturally appears in linear response, underlying the important fluctuation-dissipation relation,
and determines the nontrivial operator dynamics. Consider two-point autocorrelation func-
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Figure 8: Part of the energy spectrum of the mixed-field Ising Hamiltonian (54) as
hz is varied from 0 to 1 for L = 14. As the Hamiltonian is changed the energy levels
undergo avoided crossings and exhibit level repulsion.

tions at an inverse temperature β of the form

κ2(t) = 〈Ô(t)Ô〉β − 〈Ô〉
2
β . (57)

These naturally appear in the anticommutator

F(t) =
1
2
〈
�

Ô(t), Ô
	

〉
β
− 〈Ô〉2β , (58)

which quantifies the fluctuations of the system in thermal equilibrium, and the commutator

ρ(t) = 〈
�

Ô(t), Ô
�

〉
β

, (59)

which appears in Kubo linear response theory and fully determines the dissipation in the sys-
tem. Their Fourier transforms F̃(ω) and ρ̃(ω) fully determine the thermal fluctuations at a
given frequency and the system’s response to an external perturbation at a given frequency
respectively. The former corresponds to the quantum equivalent of the power spectrum. Here
we define the Fourier transform as F̃(ω) = 1

2π

∫

dω eiωt F(t).
One cornerstone of statistical mechanics is the fluctuation-dissipation relation, relating

these two quantities as

F̃(ω) =
�

1
eβω − 1

+
1
2

�

ρ̃(ω) . (60)

On the right we have ρ̃(ω), setting the dissipative response to an external perturbation at a
fixed frequencyω, and on the left we find the thermal fluctuations F̃(ω) at the same frequency
ω, where the two are related through a Bose-Einstein distribution (which also appears the
classical fluctuation-dissipation relation) as well as a constant 1/2 that can be thought of as
quantum fluctuations. Intuitively, for every process that dissipates energy, turning it into heat
(e.g., friction), there is a reverse process related to thermal fluctuations. This holds quantum
mechanically as well as classically, e.g. Brownian motion and drag, or thermal noise in a
resistor and resistance.

The fluctuation-dissipation equation can also be rewritten in a slightly more compact form
as

F̃(ω) =
1
2

coth
�

βω

2

�

ρ̃(ω) . (61)
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Both quantities can be related to the Fourier transform of the autocorrelation function as

F̃(ω) =
κ̃2(ω) + κ̃2(−ω)

2
, ρ̃(ω) = κ̃2(ω)− κ̃2(−ω) . (62)

Let us now make these relations explicit within the context ETH and show how the spectral
function naturally appears.

Introducing the eigenvalue decomposition of the Hamiltonian, the autocorrelation reads

κ2(t) =
1
Z

∑

m,n

e−βEn ei(En−Em)t |Omn|2 −
�

1
Z

∑

n

e−βEn 〈n|Ô|n〉
�2

. (63)

The diagonal contribution in the first term can again be evaluated as

1
Z

∑

n

e−βEn |Onn|2 ≈
1
Z

∫

dE eS(E)−βE O(E)2 ≈ O(Eβ)
2 ≈ 〈Ô〉2β , (64)

and hence cancels with the contribution 〈Ô〉2β .
For the remaining off-diagonal contribution, we find that

κ2(t) =
1
Z

∑

m,n̸=m

e−βEn ei(En−Em)t |Omn|2 . (65)

Plugging in the ETH ansatz, we can write

κ2(t) =
1
Z

∑

m,n̸=m

e−βEn−S(Emn) e−iωmn t | fO(Emn,ωmn)|2|Rmn|2, (66)

with Emn = (Em + En)/2 and ωmn = Em − En. If the spectrum is sufficiently dense we can
replace |Rmn|2 by its average value of 1 and replace the summations by integrals, taking into
account the density of states, to obtain

1
Z

∫

dEm

∫

dEn e−βEn+S(Em)+S(En)−S(Emn) | fO(Emn,ωmn)|2 e−iωmn t (67)

This integration can be simplified by switching to so-called Wigner variables E ≡ Emn and
ω≡ωmn, such that Em,n = E ±ω/2, to return

1
Z

∫

dE

∫

dω e−β(E−ω/2)eS(E+ω/2)+S(E−ω/2)−S(E) | fO(E,ω)|2 e−iωt , (68)

where we can Taylor expand the thermodynamics entropies to return

S(E +ω/2) + S(E −ω/2) = 2S(E) + S′′(E)
ω2

4
+O(ω4) . (69)

The integral then returns

1
Z

∫

dEeS(E)−βE

∫

dω eβω/2eS′′(E)ω2/4 | fO(E,ω)|2 e−iωt . (70)

The inverse of the second derivative scales extensively (since both S and E are extensive), such
that the term eS′′(E)ω2/4 is only significantly different from 1 for very large frequencies (propor-
tional to system size), where however the spectral function vanishes exponentially. As such,
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we can put this term equal to one. The integral over E can again be evaluated using a saddle-
point approximation, which again fixes the energy and corresponding inverse temperature to
satisfy β = S′(Eβ), and we end up at the final result that

κ2(t) =

∫

dω eβω/2 | fO(Eβ ,ω)|2 e−iωt . (71)

The Fourier transform can be read off as

κ̃2(ω) = eβω/2 | fO(Eβ ,ω)|2, (72)

and we find that

F̃(ω) = cosh
�

βω

2

�

| fO(Eβ ,ω)|2, ρ̃(ω) = 2sinh
�

βω

2

�

| fO(Eβ ,ω)|2 . (73)

The fluctuation-dissipation is clearly satisfied since

F̃(ω) =
1
2

coth
�

βω

2

�

ρ̃(ω) . (74)

While it it not surprising that the fluctuation-dissipation is satisfied, since this should hold
more generally, the remarkable result is that the spectral function naturally appears in these
quantities, such that it can also be experimentally determined.
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