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We investigate how randomly oriented cell traction forces lead to fluidization in a vertex model of
epithelial tissues. We find that the fluidization occurs at a critical value of the traction force magnitude Fc.
We show that this transition exhibits critical behavior, similar to the yielding transition of sheared
amorphous solids. However, we find that it belongs to a different universality class, even though it satisfies
the same scaling relations between critical exponents established in the yielding transition of sheared
amorphous solids. Our work provides a fluidization mechanism through active force generation that could
be relevant in biological tissues.
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During tissue development, many cells collectively self-
organize in dynamic patterns and morphologies. Therefore,
a central problem in biophysics of development is under-
standing the interplay of tissue mechanics and active force
generation [1–6]. Cells in a tissue can generate traction
forces through mechanical linkages with a substrate [7–10]
and impairment of this coupling can interrupt the move-
ment of cells as observed, for example, in cancerous
spheroid assays of carcinoma and human breast organoids
[11,12]. The response of biological tissues to mechanical
forces is often described as that of viscoelastic active fluids
[13–16]. However, recent experimental and theoretical
studies have revealed complex mechanical phenomena,
including jamming, glass transitions [17–22], and yield
stress rheology [23,24]. These observations suggest that
developing biological tissues can behave as active amor-
phous solids.
Recently there has been an increasing interest in the

rheology of active amorphous solids [25,26]. In particular,
comparing uniform shear to random forcing of particles
revealed a similar nonlinear response [27]. A hallmark of
sheared amorphous solids is a transition from a solid to a
plastically flowing state at the yield stress Σc. The plastic
strain rate γ̇ at stress Σ above the yielding transition typically
follows the Herschel-Bulkley law γ̇ ∼ ðΣ − ΣcÞβ, where
β ≥ 1 is the flow exponent. Yielding has recently been

reported under random forcing in systems of jammed self-
propelled particles [28]. This raises the question of what is
the nature of the yielding transition under random forces and
how it is related to the yielding transition under uniform
shear. Such random yielding is relevant in the context of
biological tissues, allowing them to fluidize through gen-
eration of cell traction forces, as recently reported in a study
of mouse pancreas spheres [29].
Here, we investigate fundamental properties of the

yielding transition through which biological tissues can be
fluidized by randomly oriented cell traction forces using the
vertex model of epithelial tissues [30]. Vertex model can
recapitulate yielding transition under uniform shear [24]
and has been used extensively to study epithelial mechanics
[30]. We find that randomly oriented traction forces beyond
a critical magnitude Fc fluidize the vertex model cellular
network. We call this transition the “random yielding
transition” (RYT) and quantify the critical exponents
characterizing overall cell flow, patterns of cell rearrange-
ments, and even the geometry of the cellular network.
Interestingly, we find that some of the critical exponents
differ between the RYT and the uniform shear yielding
transition (YT), implying that they belong to different
universality classes. Furthermore, we find that RYT critical
exponents satisfy the scaling relations between exponents
established for the YT [31]. These relations imply that the
statistical properties of tissue dynamics and cellular geom-
etry are not independent.
Random traction vertex model.—To explore the critical

properties of RYT, we use the vertex model of epithelial
tissues [30] that we extend to a spherical geometry and
equip it with cell traction forces [29,32] [Fig. 1(a)]. We
focus on the spherical geometry, which is ubiquitous in
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multicellular systems such as the early developmental
stages of many tissues, including early vertebrate embryos
[33,34], and early stages of organoids [29,35,36].
We represent cells as polygons outlined by straight

bonds, and constrain the polygon vertices to move on a
sphere of radius R. Geometry of the cellular network
evolves following the dynamical equation

ζum ¼ f am −
∂W
∂Xm

þ f nm; ð1Þ

where um is the velocity of vertex m, ζ is the friction
coefficient, f am is the traction force, W is the vertex model
energy function, and f nm is the normal force constraining the
motion of vertices on the sphere surface [see Supplemental
Material (SM) [37] for details]. The vertex model energy
function that accounts for cell area elasticity, cell bond
tension, and cell perimeter elasticity reads

W ¼
X

α∈ cells

1

2

�
KðAα − A0Þ2 þ ΛLαþΓðLαÞ2�: ð2Þ

Here, Aα is the cell area, Lα is the cell perimeter, A0 is the
preferred cell area,K is the area stiffness, Λ is the perimeter
tension magnitude, and Γ is the perimeter elastic modulus.
This energy function choice describes individual cells’
mechanical properties, and the tissue mechanics emerge
from their collective behavior [30,38–40]. We choose
units of length, force, and velocity to be A1=2

0 , KA3=2
0

andKA3=2
0 =ζ, respectively. The dimensionless bond tension

Λ̄≡ Λ=ðKA3=2
0 Þ is set to Λ̄ ¼ 0.1. We focus on the case

Γ ¼ 0, and we show in SM that our results remain
unchanged when varying the value of Γ within the solid
phase of the vertex model [30,41]. Implementation details
are given in the SM [37].
We consider a planar cell polarity pα that directs the

traction force exerted by cell α on the surrounding matrix
[Fig. 1(b)]. We initialize the direction of the cell polarity
vectors pα from a uniform distribution, and evolve it
following the dynamical equation

Dpα
Dt

¼ 0; ð3Þ

where D=Dt denotes a corotational time derivative (see
SM [37]), and we impose jpαj ¼ 1. This equation describes
an infinitely persistent polarity direction in the reference
frame of the cell. We define the active traction force f am on
a vertex m by uniformly redistributing the cell traction
force fαpα of each of the abutting cells with Mα number of
vertices:

f am ¼
X

α

fαpα
Mα

: ð4Þ

Random yielding transition.—Randomly oriented trac-
tion forces induce stresses in the vertex model network. The
stress magnitude is controlled by the magnitudes of cell
traction forces fα. For small magnitudes of traction forces,
we find that the elastic forces generated by the vertex model
network balance the traction-induced forces, and the net-
work remains solid. However, upon further increasing fα,
the network begins to flow through cell rearrangements. To
quantitatively explore this transition, we introduce the
tissue traction force magnitude F≡P

α fα=N, which in
RYT plays the role analogous to the shear stress in the YT.
Application of uniform fα is susceptible to finite-size

effects that prevent us from probing the transition. Namely,
a finite-size system can by chance reach an unusually stable
configuration so that the system does not flow even at
high F values. To avoid this issue, we implement a model
of traction forces where the attachment of a cell to the
substrate moves with speed v along the vector pα and the
traction force is transmitted to a spring of stiffness κ that
connects the attachment and the cell [Fig. 1(b)]. Therefore,
the dynamics of the traction force magnitude for a cell α
follows

dfαðtÞ
dt

¼ −κðpα · uα − vÞ: ð5Þ

Here, the term −κpα · uα represents the relaxation of the
force in the spring due to motion of the cell with velocity
uα. Limits of infinitely soft κ → 0 and infinitely stiff

FIG. 1. (a) Spherical vertex model tissue with N ¼ 200 cells
with randomly oriented traction forces (red arrows). (b) Traction
force is generated by extending a spring of stiffness κ at speed v
in direction of the polarity pα. (c) Example of the tissue traction
force magnitude dynamics F as a function of spring displacement
vt. (d) Dynamics of ensemble-averaged tissue traction force
magnitude. As the spring extension speed v approaches the
quasistatic driving limit v → 0, the traction force magnitude
averaged over ensemble realisations hFi converges to its critical
value Fc marked by the dashed line (see SM [37]).
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κ → ∞ springs correspond to imposed traction forces and
imposed cell center velocities, respectively. In the follow-
ing, we use κ ¼ 0.01 and vary the imposed spring extension
velocity v.
An example of FðtÞ dynamics as a function of spring

displacement vt is shown in Fig. 1(c) (see also Movie 1).
Initially, the cellular network responds elastically, and the
traction forces grow linearly with spring displacement vt.
As F increases further, the cellular network begins to yield
through cell rearrangements, visible as sharp drops of F in
Fig. 1(c). Finally, in the steady state, the system dynamics
consist of periods of elastic loading punctuated by ava-
lanches of cell rearrangements that are visible as sudden
drops of F. Ensemble-averaged FðtÞ for different values of
v is shown in Fig. 1(d).
The observed behavior of F is reminiscent of the stress

vs strain curve in sheared amorphous solids, such as
metallic glasses [42], where sudden drops of stress corre-
spond to avalanches of particle rearrangements [43].
In amorphous solids near the YT, the avalanche size,
defined as the number of particle rearrangements S in an
avalanche, is distributed according to a scaling law
PðSÞ ¼ S−τfðS=ScÞ, where Sc is the cutoff beyond which
PðSÞ rapidly vanishes. The cutoff is set by the correlation
length ξ: Sc ∼ ξdf , where df is the avalanche fractal
dimension [44]. However, approaching the YT, ξ diverges
and becomes larger than the system size. Therefore, in a
finite system of N cells, the cutoff Sc is set by the system
size Sc ∼ Ndf=d. Furthermore, the duration of an avalanche
T is expected to scale with the size as T ∼ Sz=df , where z is
the dynamical exponent [44].
To measure the avalanche size distribution, we measure

drops in F in the steady state at the lowest value v ¼
2 × 10−4 we used. Then, we estimate the avalanche size
corresponding to a force drop ΔF as S ≃ NΔF=κ. We find
that the avalanche sizes are indeed power-law distributed,
as shown in Fig. 2(a), with a system-size dependent cutoff.
Moreover, we find τ ¼ 1.35� 0.11 [45], which is consis-
tent with the values measured in the YT of 2D elastoplastic
models (τ ¼ 1.25� 0.05 in Ref. [46] and τ ¼ 1.36� 0.03
in Ref. [44]), of a lattice model (τ ¼ 1.342� 0.004 [47]),

and of a finite element model (τ ¼ 1.25� 0.05 [48]). We
next estimated the avalanche fractal dimension df ¼
0.75� 0.15 by finite-size scaling analysis of the avalanche
distribution cutoff using Sc ∼ hS3i=hS2i; see SM [37].
Finally, we find that the avalanche duration follows a
power-law relationship with the avalanche size (see Fig. 2)
from which we estimate z=df ¼ 0.68� 0.04.
Scaling relations connect cellular dynamics and geom-

etry.—Exponents of YT are related through several scaling
relations [44]. Here, we examine two of these relations in
the context of the RYT and show that in the vertex model
with random traction forces they also provide a relationship
between statistics of avalanches of cell rearrangements and
cell bond length distribution.
The first scaling relation follows from the fact that in the

steady state hΔFi ¼ 0 [44], which we now briefly repro-
duce. Increases of F between avalanches are balanced
by decreases during avalanches: hjΔFjiþ ¼ hjΔFji−.
The scaling of the average decrease of F with system size
can be estimated from the avalanche size distribution as
hjΔFji− ∼ hSi=N ∼ Nð2−τÞdf=d−1. After an avalanche, F
will increase until the next T1 transition. Therefore, the
increases in F are determined by the network regions
closest to a T1 transition. In amorphous solids the density
of plastic excitations, defined as local increase in shear
stress Δσ required to trigger a plastic event, exhibits a
pseudogap PðΔσÞ ∼ Δσθ, with θ > 0 [31,43]. Thus, the
average smallest Δσ in a system of size N scales as
hΔσmini ∼ N−1=ð1þθÞ (see Ref. [44]). Since hjΔFjiþ ∼
hΔσmini it follows that

τ ¼ 2 −
θ

1þ θ

d
df

: ð6Þ

Using the measured values of τ and df, this scaling relation
predicts θ ¼ 0.32� 0.11.
This prediction can be tested independently by consid-

ering the statistics of the bond length distribution as
follows. In a vertex model network, each T1 transition
corresponds to a vanishing bond; hence, short bonds
anticipate the upcoming T1 transitions. Because of cusps
in the vertex model energy landscape at the onset of a T1, it
was shown for the planar vertex model [24] that for short
bonds the corresponding Δσ is proportional to the bond
length l. We show that this relation also holds in the
spherical vertex model tissue by measuring the additional
tension Δf required to shrink a bond of length l to 0; see
Fig. 3(a). In general, local change in shear stress Δσ will
generate a proportional change in the bond tension Δf.
Therefore, observed scaling of imposed Δf with bond
length l characterizes the scaling of Δσ. As a consequence,
short bonds in the network for F ≤ Fc are distributed
according to PðlÞ ∼ lθ. Figure 3(b) shows the cumulative
bond length distribution CðlÞ ¼ R

l
0 Pðl0Þdl0 obtained in

FIG. 2. Avalanche statistics. (a) Avalanche size has a power-law
distribution PðSÞ ∼ S−τ, with exponent τ ¼ 1.35� 0.11. (b) Ava-
lanche duration T scales with avalanche size S with exponent
z=df ¼ 0.68� 0.04.
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the steady-state simulation at v ¼ 2 × 10−4, where we
measure bond lengths of networks at time points just after
an avalanche. We find that the predicted value of the
exponent θ is consistent with the bond length distribution
(see also SM [37]).
The second scaling relation reflects that the flow in the

vicinity of the critical point Fc is composed of avalanches
of spatial extension corresponding to the correlation length
ξ ∼ ðF − FcÞ−ν. Since the average avalanche size scales
with S ∼ Sc ∼ ξdf and its duration scales as T ∼ ξz the
contribution of the average avalanche to the overall flow v
will scale as v ∼ S=ðTξdÞ ∼ ðF − FcÞνðd−dfþzÞ [44]. This
determines the exponent β ¼ νðzþ d − dfÞ defined by v∼
ðF − FcÞβ. Here, we do not directly measure ν and instead
we use an additional scaling relation ν ¼ 1=ðd − dfÞ [44].
Therefore, we arrive at the relation

β ¼ 1þ z
d − df

; ð7Þ

which allows us to estimate β ¼ 1.41� 0.098. To test this
prediction, we analyze the steady-state flow properties for
various magnitudes of loading rate v as shown in Fig. 4 for
two sizes N ¼ 100, 200. We find a good agreement
between numerical results and the value of β predicted
by the scaling relation (7).

Finally, we tested whether the values of critical expo-
nents τ, θ, df, and z depend on the details of the vertex
model energy function by changing the value of the
perimeter elastic modulus Γ. We find that for values of
the dimensionless perimeter elasticity Γ̄ ¼ Γ=KA0 equal to
0.02 and 0.04, for which the cellular network remains in the
solid phase, the critical exponents remain consistent with
those reported in Table I; see SM [37].
Discussion.—We have shown that a simple model of a

spherical epithelium subject to random cellular traction
forces exhibits a dynamical phase transition separating the
solid and flowing phases. Our work suggests that this
random yielding transition is critical, similar to the well-
studied yielding transition of amorphous solids under shear,
but with different values of some of the critical exponents.
Furthermore, we find that scaling relations between the
critical exponents of the YT also hold in the RYT.
We find that the values of fractal dimension df and

pseudogap exponent θ are clearly different from the YT
values; see Table I. In particular, df ≈ 1.1 in 2D YT is
associated with the one-dimensional shape of avalanches of
plastic events, arising from the anisotropy of the Eshelby
stress propagator of individual plastic events that are
aligned by the globally imposed shear axis. In the RYT
we find df ¼ 0.75� 0.15, which shows that avalanches are
sparser and suggests that plastic events are not aligned on
the large scales.

FIG. 3. Density of plastic excitations in the tissue. (a) Additional
tension Δf required to collapse the bond as a function of bond
length l. A linear scaling is observed (solid line). (b) Cumulative
bond length distribution CðlÞ in the steady state for v ¼
2 × 10−4. The predicted value of the exponent θ ≈ 0.32 is
indicated by the solid line. At low l we observe a linear scaling
of CðlÞ (dashed line), corresponding to a constant bond length
distribution, as expected at finite v and for finite system sizes.

FIG. 4. Steady-state flow curve measured in spherical vertex
model networks with N ¼ 100 (blue squares) and N ¼ 200

(orange circles). Curves show best fit to v ∼ ðhFi − FcÞ1.41 for
N ¼ 100 (dashed line) and N ¼ 200 (solid line); see SM [37] for
discussion of Fc finite-size scaling.

TABLE I. The critical exponents of RYT on a sphere in comparison with reported values for YT in a 2D
elastoplastic model [44].

Exponent Expression RYT on a sphere YT in 2D elastoplastic model

β v ∼ ðhFi − FcÞβ 1.41� 0.098 1.52� 0.05
τ PðSÞ ∼ S−τ 1.35� 0.11 1.36� 0.03
z T ∼ Sz=df 0.51� 0.11 0.57� 0.03
df Sc ∼ Ndf=d 0.75� 0.15 1.1� 0.04
θ PðΔσÞ ∼ Δσθ 0.32� 0.11 0.57� 0.01
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It is interesting to compare the value of pseudogap
exponent we found, θ ¼ 0.32� 0.11, to the yielding
transition in a mean-field elastoplastic model where the
Eshelby stress propagator is randomly redistributed in
space, thereby removing all spatial correlations [49]. In
this mean-field model the pseudogap exponent θ ¼ 0.39�
0.02 has been reported numerically and supported by
analytical calculations. This value is consistent with our
observation in RYT, while being significantly lower than
the 2D YT value θ ≈ 0.57 [44]. It will be interesting to test
whether RYT is in the mean-field yielding transition
universality class by measuring and comparing other
relevant critical exponents.
To test the influence of spherical geometry on the RYT

we have measured the critical exponents τ, z, and z=df in
flat 2D biperiodic vertex model simulations (see SM [37]).
We found no significant difference in their values, which
suggests that spherical geometry does not alter the critical
behavior of the vertex model near the RYT.
The dynamical exponent z describes the dynamics of

avalanche propagation T ∼ lz, where l is the linear exten-
sion of the avalanche. The value z ¼ 0.51� 0.11we find is
consistent with reported values in YT in 2D elastoplastic
model z ¼ 0.57� 0.03 [44] and z ≃ 0.5 [50]. However, in
the thermodynamic limit z < 1 cannot hold due to the finite
propagation speed of elastic interactions, which requires
z ≥ 2 in overdamped systems. Indeed z ≥ 2 was reported
in a large system of disks with overdamped dynamics [28].
On the other hand, in elastoplastic models interactions
are instantaneous and are not constrained by the finite
propagation speed. This suggests that, for the biologically
relevant system sizes we consider, the elastic interactions in
our model propagate much faster than avalanches, effec-
tively behaving as instantaneous.
The fluidization of biological tissue by random traction

forces we describe in this Letter could allow the biological
tissues to transition between a stable solid phase and a
malleable fluid phase without the need to alter tissue density
[23] or cell mechanical properties [41]. At the transition the
cell dynamics become critical, which leads to large-scale
correlations in cell dynamics that could be observed in
experiments as a signal of RYT. Furthermore, we speculate
that RYT is not limited to tissues with traction forces, but
also would occur in tissues where cells generate randomly
oriented active stresses instead.
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