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Odd Cosserat elasticity in active materials
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Stress-strain constitutive relations in solids with an internal angular degree of freedom can be modeled using
Cosserat (also called micropolar) elasticity. In this paper, we explore Cosserat materials that include chiral active
components and hence odd elasticity. We calculate static elastic properties and show that the static response to
rotational stresses leads to strains that depend on both Cosserat and odd elasticity. We compute the dispersion
relations in odd Cosserat materials in the overdamped regime and find the presence of exceptional points. These
exceptional points create a sharp boundary between a Cosserat-dominated regime of complete wave attenuation
and an odd-elasticity-dominated regime of propagating waves. We conclude by showing the effect of Cosserat
and odd-elasticity terms on the polarization of Rayleigh surface waves.
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I. INTRODUCTION

The elastic behavior of an isotropic solid at equilib-
rium can be characterized by two elastic constants, namely,
the shear modulus and the bulk modulus [1]. This sim-
ple description of elastic properties using two coefficients
is possible because of symmetries such as isotropy, parity,
and time-reversal invariance. However, this simple definition
does not apply to a variety of other systems, for example,
nematic solids [2] and Cosserat (or micropolar) solids [3].
Typical elastic solids can be microscopically modeled by
considering point masses connected by springs. By contrast,
Cosserat elasticity is based on a more complex picture and
includes an angle φ describing the microscopic orientational
degree of freedom. Even for models consisting of point
particles, Cosserat-like elasticity can emerge due to a ge-
ometry based on rotating elements [4]. Recent advances in
additive manufacturing (or three-dimensional printing) have
led to rapid developments in the design of metamaterials
with Cosserat elasticity [5–11]. Cosserat elasticity can also
emerge in disordered solids [12–17], elastic polymers [18,19],
and biomembranes with viscoelastic responses [20–22]. The
Cosserat filament model has been used to explore the effect of
microrotations in biological filaments [23–27].
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Active solids [28–33] are solids that are far from equi-
librium due to forcing at the microscopic scales [34–36]. To
consider the effect of activity and chirality, a situation that can
emerge when activity is present in the form of an active torque,
in an elastic Cosserat solid one must include the effect of odd
elasticity. We illustrate some of these systems and situations
where an odd-Cosserat-elasticity theory is relevant in Fig. 1.
Analogous to the study of Cosserat-like terms in granular
material [16] the presence of (rotational) activity would lead
to odd Cosserat elasticity as indicated in Fig. 1(c); Fig. 1(d)
indicates a chiral active biomembrane, which is another possi-
ble material that has odd Cosserat elasticity. The odd elasticity
is connected to the breaking of two essential symmetries of
classical solids, parity invariance and time-reversal invariance,
and appears in the elasticity tensor as a term breaking the
major symmetry of the fourth-rank elastic tensor, i.e., κo

i jkl =
−κo

kli j . Recent literature [37–52] has extensively studied the
effects of odd elasticity and other forms of odd responses in
solids and fluids and it is therefore worthwhile to study the
effects of odd elasticity in solids with active torques.

In this paper we show how the simultaneous presence of
both odd elasticity and the Cosserat term affects the static
and dynamic elastic response of chiral active solids in the
overdamped regime. We find that the static response to off-
diagonal stresses is strongly dependent on both Cosserat
and odd elasticity. We also find that dynamic modes have
an exceptional point [53,54] in the dispersion relation due
to the competition of Cosserat and odd elasticity. In the
overdamped regime, this exceptional point is characterized
by a transition from damped oscillations to diffusive (or
attenuating) solutions. Furthermore, the edge of these solids
exhibits edge modes [1,55,56] whose polarization is affected
by the combination of odd and Cosserat elasticity. The
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FIG. 1. Odd-Cosserat-elasticity materials. (a) The presence of extended objects at lattice points connected by springs necessitates an
additional angle variable to define the strain. These microrotations are described by the so-called Cosserat term. In addition, the bonds can be
chiral and active, which can be modeled (to leading order) using so-called odd elasticity. The active bonds illustrated above can be thought
of as springs that inject energy and angular momentum, i.e., possess some form of active torque. (b) Rodlike elastic filaments (such as
actin filaments in a cell) have an angular degree of freedom and the elastic properties of their networks have been modeled using Cosserat
elasticity [25]. (c) Granular material with active torque and (d) active biomembranes with active chiral processes are two other examples of
materials which could exhibit odd Cosserat elasticity.

Cosserat-elasticity coefficient results in a renormalization of
the usual elastic terms for these edge waves, while the odd-
elasticity coefficient mixes the longitudinal and transverse
waves at the edge.

II. EFFECTIVE THEORY WITH ODD ELASTICITY

We begin by considering the stress tensor in a two-
dimensional odd-Cosserat-elasticity solid (Fig. 1). The min-
imal coupling of the angle and the strain can be obtained
by considering the Cosserat part [3–6] of the stress, which
has the form κc/2εi j (φ − 1

2∇ × u) in two dimensions, while
the presence of activity and chirality leads to the pres-
ence of odd elasticity, as discussed in Ref. [57]. We can
write the constitutive relation between stress σi j and strain ui j

in these materials as

σi j = μui j + Bδi jukk + κc

2
εi j

(
φ − 1

2
∇ × u

)

+ κo(∂iu
∗
j + ∂∗

i u j ). (1)

Here the vector u is the displacement field. The stress tensor
σi j depends on the strain tensor ui j , which is defined as the
spatial gradient of the displacement ui j = 1/2(∂iu j + ∂ jui ),
described by the elastic coefficients μ and B. The coefficient
of Cosserat elasticity κc describes the coupling of the internal
displacement gradients to an orientational degree of freedom
with angle φ. The two-dimensional Levi-Cività symbol is
denoted by εi j . The odd-elasticity coefficient is denoted by κo

and we define u∗
i = εi ju j . The odd-Cosserat-elasticity model

described in Eq. (1) respects rotational invariance.
The dynamics of solids can depend not just on the relation

between the elastic stresses and strains, but also on viscous

stresses proportional to the strain rates, i.e., σ vis
i j = ηi jkl u̇kl .

A combination of viscous and elastic stresses in solids is
described by the Kelvin-Voigt model of viscoelasticity, which
in turn can be generalized to include odd-elasticity terms [39].
However, in this paper we focus on the elastic properties only
and hence neglect for simplicity the viscous stress.1 In addi-
tion to the constitutive relation given in Eq. (1), the equation of
motion for the displacement field can be written as

ρ∂2
t ui + 
∂t ui = ∂ jσi j,

I∂2
t φ + 
φ∂tφ = α∇2φ − κc

(
φ − 1

2∇ × u
) + τ a, (2)

where ρ is the mass density and I is the moment of inertia
density. The coefficients 
 and 
φ are friction coefficients that
arise due to the damping of relative motion with respect to a
substrate. The coefficient α is a diffusive coefficient. The term
proportional to κc is required by angular momentum conser-
vation.2 The active torque is denoted by τ a. Equations (2) do
not take into account nonlinear terms.

So far we have discussed the presence of odd elasticity
in the equation for ui j . We now consider terms that con-
stitute active contributions in the equation of motion for φ.

1In the overdamped case, we consider a dominance of frictional
damping due to the interaction with a substrate over the intrinsic
viscous damping. In a more mathematical language we can say that
the net damping is given by (
 + ηk2)∂t u, where 
 is the friction
coefficient, η is the viscous coefficient, k is the wave number, and u
is the internal displacement. We consider the long-wavelength limit
where 
 � ηk2.

2We can use ∇ × u and ∇∗ · u interchangeably without affecting
any physics.
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The Cosserat term can be derived from a free energy F =∫
dx(κc/2)(φ − 1

2∇ × u)2. Model A–type dynamics [58,59]
using this free energy gives us the equations of motion for
Cosserat materials (see Appendix C). In order for a term to
qualify as an active contribution, the term has to be such that it
cannot be derived from an equilibrium free energy. Therefore,
we do not find a linear active term in the equation for φ. The
leading-order active contribution arising in this equation is
nonlinear and given by τ a = λ|∇φ|2 + · · · . Mathematically,
these terms are similar to the type of active terms that arise
in active binary mixtures [60–62].3 An important point to
be noted here is that because of the positive-definite nature
of the term, the sign of λ determines the sense of the active
torque, making the system naturally chiral.

III. ELASTOSTATICS OF ODD-COSSERAT-ELASTICITY
MATERIALS

Using the stress tensor in Eq. (1), we now discuss the static
properties of odd-Cosserat-elasticity materials. In static equi-
librium, solids balance external stresses by the elastic stresses,
which are proportional to the strain. This force balance can
be written as a set of linear equations with the applied stress
on one side and the internal stress on the other side. If we
now additionally neglect the higher-order spatial gradients,
we then have a linear problem where we can choose a profile
of external stress and from that obtain the strain in static
equilibrium. Material properties like the Young modulus E ,
Poisson ratio ν, and odd ratio νo (defining the transverse tilt
of the solid under uniaxial compression; see Ref. [57]) can
be computed using this method. We find the emergence of
auxetic properties (negative value of ν) in the limit of large
odd elasticity 2(κo)2 > μB, which was previously reported for
non-Cosserat odd-elasticity solids in Ref. [57]. Details of this
computation are provided in Appendix C.

While the moduli E , ν, and νo remain largely unaffected
under the application of a uniaxial pressure, we can ob-
tain generic expressions of strain in the presence of applied
stress. Let us consider a problem where we have only applied
rotational and transverse stresses, i.e., only σxy and σyx are
nonzero. Under such an external stress, components of the
strain tensor have the form

∂xux = −κo(v1 + v2)

4κo2 + μ2
, ∂yuy = κo(v1 + v2)

4κo2 + μ2
,

∂xuy = −φ − v1 − v2

κc
+ μ(v1 + v2)

2(4κo2 + μ2)
,

∂yux = φ + v1 − v2

κc
+ μ(v1 + v2)

2(4κo2 + μ2)
, (3)

where v1 = σxy and v2 = σyx.

3The φ here is a pseudoscalar, while the concentration field in
the binary mixture problem is a scalar field, which implies that the
coefficient λ is a pseudoscalar. Also, the references here have a
nonequilibrium model B dynamics while the Cosserat has a model
A dynamics.

IV. ELASTODYNAMICS OF ODD-COSSERAT-ELASTICITY
MATERIALS

We now consider the dynamics of the system described by
Eqs. (1) and (2). In the underdamped limit, i.e., 
/ρ → 0 and

φ/I → 0, and ignoring other viscous effects, we can obtain
oscillatory solutions from the elastic terms, which represent
the usual elastic waves [1]. In the overdamped limit, i.e., when

/ρ → ∞ and 
φ/I → ∞, a dominant odd elasticity gives
odd-elasticity waves [57]. In this paper we focus on the over-
damped limit in order to prevent any additional instability that
can arise in the underdamped limit. We consider propagating
waves of the form exp[i(k · x − ωt )], where x is the position
coordinate and k is the wave vector which gives us wave
number k = |k|. The frequency is given by ω and t is time.

In typical elastic materials, such an overdamped limit gives
rise to damped modes due to the effects of the shear modulus
and bulk modulus. Odd elasticity gives rise to propagating
waves, which are analogous to the Avron waves in odd-
viscosity fluids [48,63,64]. However, for an odd solid these are
waves in displacement and not in velocity. We now compute
the dispersion relation for a Cosserat solid in the presence of
odd elasticity. For the purpose of this calculation, we consider
the limit where we can neglect the fluctuations in φ, i.e.,
φ = φ0. We obtain a closed-form expression of the dispersion
relation given by

ω = i
k2

8
[−8μ − 4B − κc ±

√
(4B − κc)2 − 64κo2], (4)

where we find an exceptional point at 4B − κc = 8κo, where
the eigenvalues are degenerate and have a square-root branch
point [53,54]. At the exceptional point, two eigenvectors coa-
lesce to a single one and the eigenvalues are degenerate. At
this exceptional point, we find the transition from a diffu-
sive solution with diffusivity proportional to

√
4B − κc to a

damped wave solution with speed proportional to
√

κo. This
is the key differentiating feature of the odd Cosserat elasticity
from both equilibrium elastic solids and active odd-elasticity
solids. In the odd-Cosserat-elasticity solids we see the coex-
istence of the exceptional point due to the Cosserat elastic
constant and the bulk elastic constant.

If we now do not ignore fluctuations in φ we obtain the
eigenvalues as solutions to cubic equations (Appendix E). In
Fig. 2 we show the real and imaginary parts of the dispersion
relations showing the emergence of a nonzero real part for
finite odd elasticity as a signature of the exceptional points.
In odd-Cosserat-elasticity solids we find that that there exists
a third eigenmode which remains purely dissipative, as indi-
cated in Fig. 2(a) by the zero real part of the eigenvalue.

V. RAYLEIGH WAVES

We consider the effect of both the Cosserat and the odd
terms on a stress-free edge. We consider solutions of the
form u = Uei(kx−ωt )eay (and ignore fluctuations in φ) and a
boundary on the line parallel to the x axis, i.e., the y di-
rection is normal to the edge. Implementing a zero normal
stress implies σyy = σxy = 0 (and φ = 0). We find that while
Cosserat elasticity renormalizes parameters, the polarization
of these edge waves depends crucially on the presence and

064609-3



PIOTR SURÓWKA et al. PHYSICAL REVIEW E 108, 064609 (2023)

FIG. 2. Dependence of frequency on odd and Cosserat elas-
ticity. Real and imaginary parts of the dispersion relation for an
odd-Cosserat-elasticity solid are shown. The three solutions of ω

(three eigenfrequencies) have both real and imaginary parts: (a) and
(b) eigenfrequency corresponding to the first eigenmode, (c) and
(d) eigenfrequency corresponding to the second eigenmode, and (e)
and (f) eigenfrequency corresponding to the third eigenmode for
the behavior of (a), (c), and (e) the real part and (b), (d), and (f)
the imaginary part. The real part corresponds to oscillations and
emerges only for finite odd elasticity in both the second and the third
eigenmodes. For these plots, we have fixed the values of B, μ, and k
at B = 0, μ = 1, and k = 1.

nature of odd elasticity. We perform the detailed computation
in Appendix F.

We now define two types of waves: one that is transverse
and one that is longitudinal. The decay length in the y direc-
tion for the transverse and longitudinal waves are at and al ,
respectively. The amplitudes are given by Ut and Ul and the
ratio of the amplitudes is given by ξ .

The amplitudes acquire phases proportional to the odd
elasticity. Physically, this occurs because the odd-elasticity
term mixes the longitudinal and the transverse waves at the
edge while the Cosserat term has a much less drastic effect of
simply renormalizing the equilibrium elastic constants. There-
fore, in an odd-Cosserat-elasticity solid, we obtain surface
waves that are in a mixed state of the usual longitudinal and
transverse waves and the effective parameters are renormal-
ized due to the presence of the Cosserat elasticity. In Fig. 3 we
choose ξ = exp(−iπ/2) and show that the edge waves appear
for negative values of odd elasticity and the exact nature of the
amplitudes depends on the magnitude of the Cosserat term.
The complex length scale in the figures is located entirely
in the negative κo half of the figures corresponding to the
negative polarization between the transverse and longitudinal
components, while the width of values of odd elasticity for

FIG. 3. Edge modes in odd-Cosserat-elasticity material. Here al

and at are the decay rates of the edge modes as we move away
from the edge. We use ξ = exp(−iπ/2), which means we have
left circular polarization in terms of the transverse and longitudinal
modes. We find that the real and imaginary parts of al and at are 0 for
positive odd elasticity. This means that, depending on the sign of odd
elasticity, the edge modes have a sense of polarization. (a) Real part
of al , (b) imaginary part of al , (c) real part of at , and (d) imaginary
part of at .

which the edge waves occur depends on the the magnitude
of Cosserat elasticity. In particular, we note in Fig. 3(d) a
larger width of values of κo for which a finite imaginary part
of the decay length is observed for greater values of κc. We
consider this an important aspect of the Cosserat elasticity in
odd-Cosserat-elasticity materials.

VI. CONCLUSION

We have studied in this paper the effects of the presence
of odd elasticity in Cosserat solids. While studying the static
response we found that strain at mechanical equilibrium ac-
quires components that, generically, are dependent on both
odd and Cosserat elasticity. The dispersion relations of odd-
Cosserat-elasticity materials exhibit exceptional points where
the solutions change from diffusive to propagating waves.
However, unique to the Cosserat solids, we found there there
is always an eigenmode present that exhibits purely diffu-
sive behavior which disappears on removing the fluctuation
dynamics of the angle φ. Previous studies of odd-elasticity
solids also observed exceptional points, but again, unique to
odd-Cosserat-elasticity materials, the exceptional points that
we have shown in this paper arise due to a competition be-
tween odd elasticity and Cosserat elasticity. A signature of
these exceptional points appears in the surface waves by the
generation of waves which are mixtures of transverse and
longitudinal modes. The presence of Cosserat elasticity leads
to an increased range of values of odd elasticity for which we
have oscillatory transverse waves. We leave for future study
consideration of the effect of various boundary conditions of
the angle variable on the Rayleigh waves. We envision ex-
perimental verification of our results in robotic metamaterials,
disordered solids, and active gels. It would also be interesting
to see the effect of nonlinear terms [65] and hydrodynamic

064609-4



ODD COSSERAT ELASTICITY IN ACTIVE MATERIALS PHYSICAL REVIEW E 108, 064609 (2023)

interactions on the exceptional point in odd-Cosserat-
elasticity material.
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APPENDIX A: COSSERAT AND ANGULAR MOMENTUM
CONSERVATION (PASSIVE SOLIDS)

The underdamped equation of motion in two-dimensional
space (neglecting other terms such as viscosity) in the pres-
ence of Cosserat stress is given by

ρ∂2
t ui = ∂ jσi j, I∂2

t φ = α∇2φ − κc
(
φ − 1

2∇ × u
)
, (A1)

where

σi j = κc

2
εi j

(
φ − 1

2
∇ × u

)
. (A2)

These equations conserve angular momentum in spite of the
presence of an antisymmetric stress [shown in Eq. (A2)]
because of the term with coefficient κc in the equations of
motion for local angular momentum. If one considers a
closed-loop integral of the above stress, one can show that
the net torque injected due to this stress is given by σxy − σyx,
which is compensated by the κc term in the evolution equa-
tion for local angular momentum. This argument also works
for micropolar fluids where the φ is replaced by the rate of

change of φ (we can call it �) and the displacement vector is
replaced by the velocity vector.

In the overdamped case Eqs. (A1) and (A2) reach a state
where the local angle relaxes to the curl of the strain, i.e.,
2φ = ∇ × u, and one reaches a state where the antisymmetric
stress vanishes and the local angular momentum evolution is
entirely given by the evolution of the strain. For problems
relating to micropolar fluids, similar arguments can be made
and twice the local angular momentum relaxes to the vorticity
of the fluid in a finite time. Thus, we find that even for passive
solids the underdamped equation may have an important con-
tribution from antisymmetric stress in the equation of motion.

APPENDIX B: IS SYMMETRIZATION OF THE STRESS
TENSOR POSSIBLE IN PASSIVE COSSERAT SOLIDS?

In a passive fluid the antisymmetric part of the stress can
be eliminated by a certain transformation of variables. To
understand this, let us first write the conservation laws relevant
in a fluid,

∂t gi = −∂ jσi j, ∂t� = εi jσi j − ∂ jχ j, (B1)

where � is the spin angular momentum density, χ j is the flux
of spin angular momentum, the linear momentum due to the
strain rate is defined as gi = ρu̇i, and hence the conservation
law is given by ρüi = −∂ jσi j . For simplicity we consider a
system with only the stress given in Eq. (A2). Let us consider
the following transformations:

g′
i = gi + 1

2∂ jεi jIφ̇, φ′ = 0, σ ′
i j = 0. (B2)

In fluid systems this simply gives us the equations of motion
in the primed variables. However, in solids this argument may
not be simply used because the underdamped motion in solids
does not give relaxation dynamics and hence antisymmetric
modes remain intact and the overdamped equations are not
conservation laws. This aspect of symmetrization of the stress
tensor was reviewed for active fluids in Ref. [66] and discus-
sion of liquid-crystal hydrodynamics is available in Ref. [67].

APPENDIX C: EQUILIBRIUM ELASTIC THEORY WITH AN ANGLE

In this Appendix we use the methods borrowed from the review in Ref. [66]. Let us begin by first deriving the Gibbs-Duhem
relations and equilibrium stress for a Cosserat viscoelastic material. The free energy can be written as

F =
∫

dx
[

1

2
ρu̇iu̇i + 1

2
Iρφ̇2 + f0(∂iu j, ∂iφ, φ)

]
, (C1)

where we have used I ≡ Iρ, with I a proportionality coefficient. This assumption states that the moment of inertia density is
proportional to mass density. We can also define force densities as

μφ ≡ ∂ f0

∂φ
− ∂i

∂ f0

∂ (∂iφ)
, μ j ≡ −∂i

∂ f0

∂ (∂iu j )
. (C2)

Under infinitesimal spatial translations the change in free energy is

δF =
∫

dx
(

ρu̇iδu̇i + u̇iu̇i

2
δρ + Iρφ̇δφ̇ + Iφ̇2

2
δρ + μφδφ + μiδui

)
+

∮
dS j

(
f δx j + ∂ f0

∂ (∂ jφ)
δφ + ∂ f0

∂ (∂ jui )
δui

)
, (C3)

where f ≡ 1
2ρu̇iu̇i + 1

2 Iρφ̇2 + f0(∂iu j, ∂iφ, φ) and dS j is the surface vector element, the integral of which encloses the volume.
Now we use the following relations for infinitesimal transformations:

δρ = −δx j∂ jρ, δu̇i = −δx j∂ j u̇i, δφ̇ = −δx j∂ j φ̇, δφ = −δx j∂ jφ, δui = −δx j∂ jui. (C4)
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Using these expressions and the divergence theorem, we obtain

δF =
∫

dx[(∂ jμφ )φ + (∂ jμi )ui]δx j +
∮

dS j

(
( f0 − φμφ − μkuk )δi jδxi − ∂ f0

∂ (∂ jφ)
(∂iφ)δxi − ∂ f0

∂ (∂ juk )
(∂iuk )δxi

)
. (C5)

From this expression for the free-energy change in an infinitesimal translation we obtain the equilibrium Ericksen-type stress as

σ e
i j = ( f0 − φμφ − μiui )δi j − ∂ f0

∂ (∂iφ)
(∂ jφ) − ∂ f0

∂ (∂iuk )
(∂ juk ) (C6)

and the Gibbs-Duhem relation

−∂ jσ
e
i j = (∂iμφ )φ + (∂iμk )uk . (C7)

It is important to note that the divergence of the stress defined here goes to zero in the limit of a constant displacement
(ui = const). This is understood as the term μi goes to zero in this limit.

Irreversible thermodynamics and Cosserat viscoelasticity

For a nonequilibrium system the entropy evolution is given by

∂t s + ∂αJs
α = θ, (C8)

where s is the entropy density, Js
α = svα + js

α is the entropy flux, js
α is the relative entropy flux in the c.m. frame, and θ > 0 is

the entropy production rate per unit volume due to irreversible processes. Similarly, the free-energy density follows,

∂t f + ∂αJ f
α = θ f , (C9)

where J f
α is the free-energy flux and θ f is the source of free energy. The free-energy density obeys the local thermodynamic

relation f = e − T s. The relative flux in the c.m. frame is j f
α and we have the relation J f

α = f vα + j f
α . The total energy flux is

the sum of free-energy transport and heat transport, i.e., Je
α = ( f + T s)vα + j f

α + jQ
α . We define jQ

α = T js
α . Thus the free-energy

flux j f
α = je

α − jQ
α is part of the relative energy flux that is not heat. In an isothermal system at temperature T the local reduction

of free energy is directly related to entropy production: T θ = −θ f .
Let us now derive the constitutive relations of Cosserat viscoelasticity from the principles of irreversible thermodynamics.

We begin with a free energy given by

F =
∫

dx
[

1

2
ρu̇iu̇i + 1

2
Iρφ̇2 + f0(∂iu j, ∂iφ, φ)

]
, f0 ≡ κc

2

(
φ − 1

2
εkl∂kul

)2

+ κi jkl ukl ui j + α

2
(∂iφ)(∂iφ). (C10)

Therefore, we have

∂ f0

∂φ
= κc

(
φ − 1

2
εkl∂kul

)
,−∂i

∂ f0

∂ (∂iφ)
= −α∂i∂iφ,−∂i

∂ f0

∂ (∂iu j )
= κc

2
εi j∂i

(
φ − 1

2
εkl∂kul

)
− ∂i

(
κi jkl

1

2
(∂kul + ∂l uk )

)
(C11)

and the conservation laws given by

∂t (ρu̇i ) = −∂ jσi j, ∂tρ = −∂ j (ρu̇ j ), ∂t (Iρφ̇) = εi jσi j − ∂ jχ j, (C12)

where χ j is the flux of angular momentum, which in our case can be simply a diffusive flux.
The free-energy evolution is given by

Ḟ =
∫

dx
[

u̇2
i

2
ρ̇ + u̇i∂t (ρu̇i ) + I

2
φ̇2ρ̇ + φ̇∂t (Iρφ̇) + φ̇

(
∂ f0

∂φ
− ∂i

∂ f0

∂ (∂iφ)

)
− u̇ j

(
∂i

∂ f0

∂ (∂iu j )

)]

=
∫

dx
{(

− u̇iu̇i

2
− Iφ̇2

2

)
∂ j (ρu̇ j ) − u̇i

[
∂ jσi j + κc

2
εi j∂ j

(
φ − 1

2
εkl∂kul

)
− ∂ j

(
κi jkl

1

2
(∂kul + ∂l uk )

)]

+ φ̇

[
εi jσi j − ∂ jχ j + κc

(
φ − 1

2
εkl∂kul

)
− α∂k∂kφ

]}
. (C13)

We now consider the integrand and look at it part by part. The first part is given by

− 1
2 (u̇iu̇i + Iφ̇φ̇)∂ j (ρu̇ j ) = − 1

2∂ j[u̇iu̇iρu̇ j + Iφ̇2ρu̇ j] + 1
2ρu̇ j∂ j (u̇iu̇i + Iφ̇2). (C14)

This gives us the integral ∫
dx(ρu̇iu̇ j∂ j u̇i + Iρφ̇u̇ j∂ j φ̇) + (surface terms). (C15)
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The second part is given by

− u̇i

[
∂ jσi j + κc

2
εi j∂ j

(
φ − 1

2
εkl∂kul

)
− ∂ j

(
κi jkl

1

2
(∂kul + ∂l uk )

)]

= −∂ j

{
u̇i

[
σi j + κc

2
εi j

(
φ − 1

2
εkl∂kul

)
−

(
κi jkl

1

2
(∂kul + ∂l uk )

)]}

+ ∂ j u̇i

[
σi j + κc

2
εi j

(
φ − 1

2
εkl∂kul

)
−

(
κi jkl

1

2
(∂kul + ∂l uk )

)]
, (C16)

which gives the integral∫
dx∂ j u̇i

[
σi j + κc

2
εi j

(
φ − 1

2
∂kl∂kul

)
−

(
κi jkl

1

2
(∂kul + ∂l uk )

)]
+ (surface terms). (C17)

Finally, the third part is

φ̇
[
εi jσi j − ∂ jχ j + κc

(
φ − 1

2εkl∂kul
) − α∂k∂kφ

]
,

φ̇
[
εi jσi j + κc

(
φ − 1

2εkl∂kul
)] − ∂k[φ̇(χk + α∂kφ)] + (χk + α∂kφ)∂kφ̇. (C18)

This gives the integral ∫
dxφ̇[εi jσi j + κc(φ − 1

2εkl∂kul )] + (χk + α∂kφ)∂kφ̇ + (surface terms). (C19)

Thus we get the final form of the integral excluding the surface terms,

Ḟ =
∫

dx ∂ j u̇i

[
ρu̇iu̇ j + σi j + κc

2
εi j

(
φ − 1

2
εkl∂kul

)
−

(
κi jkl

1

2
(∂kul + ∂l uk )

)]
+ ∂ j φ̇(Iρφ̇u̇ j + χ j + α∂ jφ)

+ φ̇

[
εi jσi j + κc

(
φ − 1

2
εkl∂kul

)]
, (C20)

flux ↔ force, ρu̇iu̇ j + σi j + κc

2
εi j

(
φ − 1

2
εkl∂kul

)
−

(
κi jkl

1

2
(∂kul + ∂l uk )

)
↔ ∂ j u̇i,

Iρφ̇u̇ j + χ j + α∂ jφ ↔ ∂ j φ̇, εi jσi j + κc

(
φ − 1

2
εkl∂kul

)
↔ φ̇. (C21)

Therefore, we obtain the phenomenological equations

ρu̇iu̇ j + σi j + κc

2
εi j

(
φ − 1

2
εkl∂kul

)
−

(
κi jkl

1

2
(∂kul + ∂l uk )

)
= η∂ j u̇i + λ1∂i∂ j φ̇,

Iρφ̇u̇ j + χ j + α∂ jφ = λ2∂i∂ j u̇i + λ3∂ j φ̇,

εi jσi j + κc

(
φ − 1

2
εkl∂kul

)
= λ4φ̇ + λ5∂ j∂ j φ̇ + λ6∂i∂ j∂ j u̇i. (C22)

If we now consider the part of force and flux that is even under time-reversal symmetry we get

ρu̇iu̇ j + σ reactive
i j + κc

2
εi j

(
φ − 1

2
εkl∂kul

)
−

(
κi jkl

1

2
(∂kul + ∂l uk )

)
= 0,

Iρφ̇u̇ j + χ reactive
j + α∂ jφ = 0,

εi jσ
reactive
i j + κc

(
φ − 1

2
εkl∂kul

)
= 0. (C23)

Similarly, if we consider the part of flux and force that is odd under time-reversal symmetry we get

σ
dissipative
i j = η∂ j u̇i + λ1∂i∂ j φ̇, χ

dissipative
j = λ2∂i∂ j u̇i + λ3∂ j φ̇, εi jσ

dissipative
i j = λ4φ̇ + λ5∂ j∂ j φ̇ + λ6∂i∂ j∂ j u̇i. (C24)

In the equilibrium limit of a solid, all explicit time derivatives are zero and we obtain the equilibrium limit

σi j + κc

2
εi j

(
φ − 1

2
εkl∂kul

)
−

(
κi jkl

1

2
(∂kul + ∂l uk )

)
= 0, χ j + α∂ jφ = 0, εi jσi j + κc

(
φ − 1

2
εkl∂kul

)
= 0. (C25)

Thus, we obtain the equilibrium theory of Cosserat elastic solids. We have assumed that all the coefficients are even under time
reversal in the above discussion and we find a Kelvin-Voigt-type theory of viscoelastic solids.
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APPENDIX D: ELASTOSTATICS CALCULATION

The linear problem of elastostatics can be defined by⎛
⎜⎜⎜⎜⎜⎝

B + μ B κo κo 0
B B + μ −κo −κo 0

−κo κo μ

2 − κc

4
μ

2 + κc

4
κc

2

−κo κo μ

2 + κc

4
μ

2 − κc

4 − κc

2

0 0 κc

2 − κc

2 −κc − ε

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∂xux

∂yuy

∂xuy

∂yux

φ

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

p1

p2

v1

v2

θ

⎞
⎟⎟⎟⎟⎟⎠. (D1)

The general forms of the solutions are

∂xux = 2κo2(p1 + p2) − κo(v1 + v2)(μ + 2B) + μ[μp1 + B(p1 − p2)]

(4κo2 + μ2)(μ + 2B)
,

∂yuy = 2κo2(p1 + p2) + κo(v1 + v2)(μ + 2B) + μ[μp2 + B(p2 − p1)]

(4κo2 + μ2)(μ + 2B)
,

∂xuy = κo(p1 − p2)

4κo2 + μ2
− φ + v2 − v1

κc
+ μ(v1 + v2)

2(4κo2 + μ2)
,

∂yux = κo(p1 − p2)

4κo2 + μ2
+ φ + v1 − v2

κc
+ μ(v1 + v2)

2(4κo2 + μ2)
, (D2)

where we have used

φ = −θ + v1 − v2

ε
. (D3)

From the above description we can extract the Young modulus E , Poisson ratio ν, and odd ratio νo by setting p1 = v1 = v2 =
θ = 0 and p2 = p (uniaxial stress in the y direction). We note that writing the tensorial equations of Cosserat elasticity in the
matrix form renders the matrix of the coefficients noninvertible and results form an nonphysical splitting of the angle φ and the
asymmetric part of the strain tensor 1

2εkl∂kul . Therefore, in order to invert the matrix, we introduce a regulator ε. It will disappear
from the final result once we reintroduce the combination φ − 1

2εkl∂kul . We obtain

E ≡ p

∂yuy
= (4κo2 + μ2)(μ + 2B)

2κo2 + μ2 + μB
, ν ≡ −∂xux

∂yuy
= −2κo2 + μB

2κo2 + μ2 + μB
, νo ≡ − ∂yux

2∂yuy
= κo(μ/2 + B)

2κo2 + μ2 + μB
. (D4)

This expression is in agreement with the inversion of tensorial equations in Cosserat elasticity [68], upon setting the coefficient
of odd elasticity to zero. For p1 = p2 = 0 we get

∂xux = −κo(v1 + v2)

(4κo2 + μ2)
, ∂yuy = κo(v1 + v2)

(4κo2 + μ2)
, ∂xuy = −φ − v1 − v2

κc
+ μ(v1 + v2)

2(4κo2 + μ2)
,

∂yux = φ + v1 − v2

κc
+ μ(v1 + v2)

2(4κo2 + μ2)
. (D5)

The odd ratio is then given by

νo ≡ − ∂yux

2∂yuy
= −1

2

(
(4κo2 + μ2)

κo(v1 + v2)

)(
φ + v1 − v2

κc
+ μ(v1 + v2)

2(4κo2 + μ2)

)
. (D6)

Alternatively, for a Cosserat solid one can define the odd ratio in a different way to avoid the appearance of the angle on the
right-hand side as

νo ≡ −∂yux − φ

2∂yuy
= −1

2

(
(4κo2 + μ2)

κo(v1 + v2)

)(
v1 − v2

κc
+ μ(v1 + v2)

2(4κo2 + μ2)

)
. (D7)

This modified definition removes the φ dependence on the right-hand side of νo for stresses given above but introduces angular
dependence when stresses are along the diagonal components of the stress tensor.

APPENDIX E: DISPERSION RELATION FROM THE CUBIC EQUATION

The dispersion relation (note that frequency ω = i�) of an odd-Cosserat-elasticity solid can be obtained as a solution to the
cubic equation

�3 + b�2 + c � + d = 0, (E1)
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where

b = 4κc + κck2 + 8μk2 + 4Bk2,

c = 32μκck2 + 16Bκck2 + 4(4μ2 + μκc + Bκc + 4Bμ + 4κo2)k4,

d = 64κc(κo2 + μ2 + Bμ)k4. (E2)

The general solutions of the equation is given by

� = −b

3
− 21/3(−b2 + 3c)

3�
+ �

3 × 21/3
− b

3
+ (1 + i

√
3)(−b2 + 3c)

3 × 22/3�
− (1 − i

√
3)�

6 × 21/3

− b

3
+ (1 − i

√
3)(−b2 + 3c)

3 × 22/3�
− (1 + i

√
3)�

6 × 21/3
, (E3)

where

� = (−2b3 + 9bc − 27d + 3
√

3
√

−b2c2 + 4c3 + 4b2d − 18bcd + 27d2)1/3. (E4)

In the case of κo = 0, the above relations greatly simplify and we obtain

� = −k2(B + μ) = 1
8 {−4κc − κck2 − 4μk2 ±

√
−64k2κcμ + [(4 + k2)κc + 4k2μ]2}. (E5)

APPENDIX F: RAYLEIGH EDGE MODES

Similar to the bulk waves discussed above, one can derive surface waves in the above system of equations. We consider the
equation

u̇ = μ∇2u + B∇(∇ · u) + κo∇2u∗ − κc

4
∇∗(∇ × u) (F1)

and an ansatz u = Uei(kx−ωt )eay in a plane semi-infinite in the y direction with y < 0. This gives a dispersion relation

ω = i

8
(a2 − k2){8μ + κc + 4B ± [(4B − κc)2 − 64κo2]1/2}. (F2)

Let us now consider zero normal stress boundary conditions (σyy = 0 and σxy = 0). We obtain the following boundary
conditions at y = 0:

σyy = 0 = B∂xux + (μ + B)∂yuy − κo∂xuy − κo∂yux,

σxy = 0 = κo∂yuy − κo∂xux + κc

2
φ +

(
μ

2
− κc

2

)
∂xuy +

(
μ

2
+ κc

2

)
∂yux. (F3)

For our purpose, here we will set φ = 0 as a boundary condition on φ at y = 0. Now the field u will have a transverse and a
longitudinal component such that ∇ · ut = 0 and ∇ × ul = 0, where the superscripts l and t denote longitudinal and transverse,
respectively. We will also use al and at to denote the decay length of the longitudinal and transverse waves, respectively, and Ul

and Ut for amplitudes of the longitudinal and transverse waves. Therefore, we obtain

ut
x = atUt exp(ikx + at y − iωt ),

ut
y = −ikUt exp(ikx + at y − iωt ),

ul
x = kUl exp(ikx + aly − iωt ),

ul
y = −ialUl exp(ikx + aly − iωt ). (F4)

Now we can write the x and y components in terms of the longitudinal and transverse components. Therefore, we get

ux = (atUt e
at y + kUl e

al y) exp[i(kx − ωt )],

uy = −i(kUt e
at y + alUle

al y) exp[i(kx − ωt )]. (F5)

Using the above forms, we can compute the spatial derivatives of u:

∂xux = ik(atUt e
at y + kUl e

al y) exp[i(kx − ωt )],

∂xuy = k(kUt e
at y + alUle

al y) exp[i(kx − ωt )],

∂yux = (a2
t Ut e

at y + kalUle
al y) exp[i(kx − ωt )],

∂xuy = −i(kakUt e
at y + a2

l Ule
al y) exp[i(kx − ωt )]. (F6)
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At y = 0 we get

∂xux = ik(atUt + kUl ) exp[i(kx − ωt )],

∂xuy = k(kUt + alUl ) exp[i(kx − ωt )],

∂yux = (a2
t Ut + kalUl ) exp[i(kx − ωt )],

∂xuy = −i(kakUt + a2
l Ul ) exp[i(kx − ωt )]. (F7)

Returning to the condition on normal stress, we obtain

Ut

(
−i2kκoat + μ

2

(
k2 + a2

t

) − κc

4

(
k2 − a2

t

)) + Ul
[ − iκo

(
k2 + a2

l

) + μkal
] = 0,

Ut
[ − iμkat − κo

(
k2 + a2

t

)] + Ul
[
iB

(
k2 − a2

l

) − iμa2
l − 2κokal

] = 0. (F8)

Now we divide the expressions by Ul and μ and obtain

ξ

(
−i2kκoat + 1

2

(
k2 + a2

t

) − κc

4

(
k2 − a2

t

)) + [ − iκo
(
k2 + a2

l

) + kal
] = 0,

ξ
[
kat − iκo

(
k2 + a2

t

)] + [ − B
(
k2 − a2

l

) + a2
l − i2κokal

] = 0, (F9)

where the elastic coefficients are all scaled by μ (i.e., B is B/μ, κc is κc/μ, and κ0 is κo/μ). In the limit of κo → 0 we get the
expressions for al and at ,

al = 1

2ξ + κcξ
(−2k ±

√
4k2 − 4k2ξ 2 + k2κc2ξ 2) (F10)

and

at = 1

2ξ 2 + κcξ 2
{2kξ − kκcξ + 4kBξ − 8k/(2ξ + κcξ ) − 8kB/(2ξ + κcξ )

± [4
√

k2(4 − 4ξ 2 + κc2ξ 2)]/(2ξ + κcξ ) ± [4B
√

k2(4 − 4ξ 2 + κc2ξ 2)]/(2ξ + κcξ )}. (F11)

The above equations allow the presence of real solutions of al and at for real ξ and ξ < 1. However, for κo not equal to zero
we obtain polarized light and complex solutions of al and at . While Cosserat elasticity has the effect of rescaling parameters in
the Rayleigh waves, the presence of odd elasticity introduces an additional phase in the amplitudes, indicating that the Rayleigh
surface waves are circularly polarized and the sense of polarization given by the sign of odd elasticity.
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