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Chemically active systems such as living cells are maintained out of thermal equilibrium due to chemical
events which generate heat and lead to active fluctuations. A key question is to understand on which time and
length scales active fluctuations dominate thermal fluctuations. Here, we formulate a stochastic field theory
with Poisson white noise to describe the heat fluctuations which are generated by stochastic chemical events
and lead to active temperature fluctuations. We find that on large length- and timescales, active fluctuations
always dominate thermal fluctuations. However, at intermediate length- and timescales, multiple crossovers exist
which highlight the different characteristics of active and thermal fluctuations. Our work provides a framework
to characterize fluctuations in active systems and reveals that local equilibrium holds at certain length- and
timescales.
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I. INTRODUCTION

Active matter systems such as propelled particles [1],
molecular motors [2], active gels [3], or active droplets [4]
are driven out of thermal equilibrium by chemical processes
at molecular scales. In such chemically active systems, a
continuous flux of matter and energy drives chemical re-
actions, generates mechanical forces, or induces motion of
molecules and macromolecular compounds. The chemical re-
actions transduce chemical energy into work or movements,
and also release heat into the system. This continuous supply
of heat can prevent thermalization to a homogeneous temper-
ature reflecting the nonequilibrium character of active matter.

Living cells are paradigmatic examples of active systems
[5–7]. Estimating the temperature inside the cell has been
an active field of research over the past few years [8–11].
Active cellular processes such as cell division, cell locomo-
tion, the expression of genes or cellular signaling processes
rely on an flux of matter and energy and the availabil-
ity of chemical fuels such as adenosine triphosphate (ATP)
or guanosine triphosphate (GTP) which transduce chemical
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energy by hydrolysis to the diphosphate forms ADP and
GDP. Such processes produce entropy and maintain the cell
away from thermodynamic equilibrium. They also generate
and dissipate heat. Under such nonequilibrium conditions,
living cells also organize the formation and dissolution of
protein-rich condensates. Such condensates are membrane-
less compartments of distinct chemical composition that play
a key role for the spatial organize of cellular biochemistry
[12,13]. Recent work studying the formation and dissolution
of P granules in Caenorhabditis elegans embryos suggests
that the formation of these condensates is described by the
physics of phase separation [14], which is governed by local
thermodynamic equilibrium [15]. It was proposed that local
equilibrium conditions hold to a good approximation at length
scales of about 100 nm and at microsecond timescales de-
spite the nonequilibrium conditions inside a cell [14]. This
raises a fundamental question for chemically active systems
in general, namely whether there generally exist length- and
timescales for which local equilibrium applies and, if so, what
determines the crossover to systems that are lacking locally
well-defined thermodynamic fields.

To tackle this question, we consider active and passive
heat fluctuations in a chemically active system. The active
fluctuations are related to the heat input associated with
stochastic chemical reaction events and are described by a
stochastic field theory with white noise obeying Poissonian
statistics. Poisson white noise has been studied in terms of
path probabilities [16–21]. To explore spatiotemporal spec-
tra, we introduce here a generalization of this approach to a
field theory in space and time. Passive fluctuations are not
related to chemical events but to the stochasticity in the heat
transport at local equilibrium. These fluctuations are described
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by a stochastic field theory with Gaussian white noise [22].
Comparing the magnitudes and the statistical properties of
both types of fluctuations, in particular, the correlation func-
tion, we identify the temporal and spatial scales at which the
local equilibrium hypothesis prevails. Given a characteristic
timescale, we derive an analytical expression for the max-
imal length scale where the passive fluctuations dominate,
providing an upper bound for the volume at local equilibrium.
The active fluctuations stemming from the chemical reactions
could also lead to fluctuations in the concentration fields. In
particular, thermophoresis couples heat fluctuations to con-
centration fluctuations.

The properties of the stochastic field theory with Poisson
white noise developed to describe the active fluctuations are
investigated. The scaling behavior of the active correlation
functions and the characteristics of the noise spectrum are
of particular interest due to the Poissonian character of the
noise. Although living cells are used throughout this work for
illustrative purposes whenever a concrete example is needed,
the analysis is more general and applies to other systems
where activity is generated by chemical reactions.

This work is organized as follows: in Sec. II we formu-
late the equations describing the temperature profile inside
the active system in three spatial dimensions, define the ac-
tive and passive fluctuations, and derive their main statistical
properties. In Sec. III we discuss the power spectra and
higher cumulants of active temperature fluctuations consid-
ering systems of spatial dimensions d = 1, 2, 3. In Sec. IV,
we compare the active and passive temperature correlation
obtained in Sec. II and identify the dominant contribution
as a function of the time and length scales. We obtain an-
alytical expressions for the scales where active and passive
contributions are equal, providing bounds for the time and
length scales with active or passive domination. In Sec. V,
we estimate the enhancement of the diffusion coefficient due
to chemical activity. Our concluding remarks are presented
in Sec. VI. An Appendix with more details on derivations is
provided at the end of the document.

II. TEMPERATURE FLUCTUATIONS IN
CHEMICALLY ACTIVE SYSTEMS

A. Temperature dynamics and fluctuations

In a thermodynamic system, the temperature dynamics fol-
lows from the conservation of energy. Temperature dynamics
is governed by a balance equation for heat,

ρcP∂t T (x, t ) = −∇ · jq(x, t ) + Q(x, t ), (1)

where ρ is the mass density, cP denotes the specific heat, and
jq is the heat current density. Moreover, Q is the volumetric
heat source, namely the rate of heat released per unit volume
due to the conversion, for example, of chemical or mechanical
energy into heat q.

We are interested in heat fluctuations due to stochastic
chemical events. Individual chemical events give rise to a
change in reaction enthalpy h0, which is released as heat. With
many reactions of the same type taking place at positions xi

and at times ti, the heat source is given by

Q(x, t ) = h0

n(t,t0 )∑
i=1

δ(3)(x − xi )δ(t − ti ), (2)

where n(t, t0) is the number of events having occurred be-
tween the initial time t0 and t . We consider, for simplicity,
a Poisson distribution where chemical events occur inde-
pendently with a probability of a single event at time t
and position x given by λ(x, t )d3x dt , where λ is the rate
per unit volume. The average number of events in the
time interval [t0, t] can thus be expressed as 〈n(t, t0)〉 =∫

V d3x
∫ t

t0
dt ′λ(x, t ′), where V is the volume of the system

and the angular brackets denote an ensemble average. For a
heat release of a single chemical event h0, the average rate of
energy released per unit volume is 〈Q(x, t )〉 = h0λ(x, t ). The
source term Q can be further expressed as

Q(x, t ) = h0λ(x, t ) + ρcPηA(x, t ), (3)

which defines the space- and time-dependent temperature
noise ηA with average 〈ηA(x, t )〉 = 0, which we refer to as
active noise. The statistical properties of ηA are discussed in
Sec. II B.

The heat current jq in Eq. (1) is driven by temperature
gradients. In addition, there can be fluctuations that stem from
the stochasticity of heat transport, associated with thermal
conductivity. The heat current reads

jq(x, t ) = −κ∇T (x, t ) + ηq(x, t ), (4)

where κ is the thermal conductivity. At thermal equilibrium,
the noise ηq satisfies

〈ηq(x, t )〉 = 0, (5a)〈
ηα

q (x, t )ηβ
q (x′, t ′)

〉 = 2kBT 2κ δαβδ(3)(x − x′)δ(t − t ′), (5b)

where the indices α and β denote spatial coordinates and
the variance follows from a Green-Kubo relation. Here ηq
describes fluctuations of heat transport.

Fluctuations in heat lead to temperature fluctuations which
we define and study in the following. Combining Eqs. (3) and
(4) leads to an equation for the temperature fluctuations δT ≡
T − T̄ , where T̄ denotes the average temperature. To linear
order, temperature fluctuations evolve according to

∂tδT (x, t ) = ∇ · (α∇δT (x, t )) + ηA(x, t ) + ηP(x, t ), (6)

where α ≡ κ/ρcP is the thermal diffusivity and ηP ≡ −∇ ·
ηq/ρcP is the passive temperature noise. The average temper-
ature T̄ satisfies

∂t T̄ (x, t ) = ∇ · (α∇T̄ (x, t )) + h0

ρcP
λ(x, t ). (7)

In general, T̄ might be time- and space-dependent. For sim-
plicity, we consider here a constant T̄ .

The temperature fluctuation profile δT = δTA + δTP is the
superposition of the two contributions δTA and δTP, which
stem from the active noise ηA and passive noise ηP, respec-
tively. We consider here active noise that stems from different
physical processes than the passive fluctuations, therefore the
cross-correlation between active and passive noises vanishes.
Using constant α for simplicity, the equations governing the
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dynamics of the active or the passive fluctuations δTA/P can be
written as

∂tδTA/P(x, t ) = α∇2δTA/P(x, t ) + ηA/P(x, t ). (8)

In the remainder of this section, the active and passive
fluctuations are investigated separately by determining the
corresponding correlation functions 〈δTA(x, t )δTA(0, 0)〉 and
〈δTP(x, t )δTP(0, 0)〉.

B. Active fluctuations

The active fluctuations of temperature δTA(x, t ) are due to
active processes and the associated release of energy acting
as local sources of heat. Comparing Eq. (2) with Eq. (3), the
noise ηA is identified as

ηA(x, t ) = h0

ρcP

n(t,t0 )∑
i=1

δ(3)(x − xi )δ(t − ti ) − h0

ρcP
λ(x, t ), (9)

which corresponds to a white Poisson noise [16,17,19], char-
acterized by a zero mean and δ-correlated cumulants:

〈ηA(x1, t1)〉c = 0, (10a)

〈ηA(x1, t1) . . . ηA(xm, tm)〉c

=
(

h0

ρcP

)m

λ(x1, t1)
m−1∏
i=1

δ(3)(xi − xi+1)δ(ti − ti+1), (10b)

where the subscript “c” denotes a cumulant. Note that a
Poissonian-type noise with δ-correlated cumulants is ubiqui-
tous in physical chemistry and in biophysical systems [20,21].

For a single chemical event (n = 1) corresponding to a heat
source occurring at x′ and t ′, the heat kernel G(x, t |x′, t ′) is the
solution of

∂t G(x, t |x′, t ′) = α∇2G(x, t |x′, t ′) + δ(3)(x − x′)δ(t − t ′),

(11)

and is given by [23,24]

G(x, t |x′, t ′) = θ (t − t ′)

[4πα|t − t ′|] 3
2

exp

[
− (x − x′)2

4α|t − t ′|
]
. (12)

Recall that the heat kernel G(x, t |x′, t ′) is formally the Green’s
function of the heat equation and describes the propagation of
heat in the system. As the solution of an initial value problem,
it breaks time-reversal invariance.

The active temperature fluctuations δTA(x, t ) can be ex-
pressed using the heat kernel as

δTA(x, t ) =
n(t,t0 )∑

i=1

(
h0

ρcP
G(x, t |xi, ti )

)
− T̄ (x, t ) (13)

and formally corresponds to the field theory of a generalized
Poisson noise [18,19]. δTA describes the fluctuations of the
temperature field due to active Poisson-distributed chemi-
cal events. Each metabolic event leads to an input of heat,
changing the temperature locally, that propagates through the
system.

Since the number of chemically active events n(t, t0) is
a fluctuating variable, δTA(x, t ) is a stochastic field. In the
following, we study the statistical properties of the active

temperature fluctuations δTA(x, t ). From Eqs. (8) and (10a),
the averaged temperature fluctuation vanishes,

〈δTA(x, t )〉 = 0, (14)

as expected from a white Poisson noise. In Appendix A, we
calculate the moment and cumulant generating functionals for
δTA, which give the m-point cumulant (m > 1):

〈δTA(x1, t1)...δTA(xm, tm)〉c

=
∫ t

t0

dt ′
∫

V
d3x′

(
h0

ρcP

)m

λ(t ′, x′)
m∏

i=1

G(xi, ti|x′, t ′).

(15)

Since the heat kernel G(x, t |x′, t ′) can be interpreted as a
propagator between the points x′ at time t ′ and x at time t ,
the m-point cumulant in Eq. (15) is related to the probability
of having all fluctuations δTA(xi, ti ) originating from a single
event at position x′ and time t ′.

Considering for simplicity an infinite size system, a con-
stant rate per unit volume and the long-time limit with t1, t2 �
t0, we find that the second cumulant corresponding to the
two-point correlation function is given as

〈δTA(x1, t1)δTA(x2, t2)〉c

= λh2
0

8παρ2c2
P|x1 − x2|Erf

( |x1 − x2|√
4α|t1 − t2|

)
. (16)

In the limit |x1 − x2| 	 √
4α|t1 − t2|, the second cumulant

becomes

〈δTA(x1, t1)δTA(x2, t2)〉c 
 λh2
0

(4πα)3/2ρ2c2
P

1√
t1 − t2

, (17)

whereas for
√

4α|t1 − t2| 	 |x1 − x2|,

〈δTA(x1, t1)δTA(x2, t2)〉c 
 λh2
0

8παρ2c2
P

1

|x1 − x2| . (18)

Note that for equal times t1 = t2, the relation above is exact.
A key finding of this work is that the two-point correlation

function 〈δTA(x1, t1)δTA(x2, t2)〉c of the active fluctuations
arising from Poisson-distributed chemical events follows a
power-law scaling. This can be interpreted as a critical be-
havior as there are correlations on all length- and timescales.
At a critical point, the equal-time correlation function behaves
asymptotically as 1/|x1 − x2|d−2+η, where d is the dimension
of space and η is the critical exponent corresponding to the
field anomalous dimension [22]. In three spatial dimensions,
d = 3, Eq. (18) gives the anomalous dimension η = 0. These
critical fluctuations are a direct consequence of the white
Poisson noise and seem to be a characteristic feature of a field
theory with stochastic Poisson noise.

C. Passive fluctuations

Even in the absence of active processes, there are fluctu-
ations around the equilibrium temperature [25]. In a system
of finite volume, for example, the relaxation toward equilib-
rium leads to an uncertainty on the actual value of T (x, t )
with respect to the equilibrium temperature of the system.
Similarly, in the case of local equilibrium, the temperature
is fixed in each volume element with a certain uncertainty.
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In addition, the stochasticity of heat transport lead to fluc-
tuations in temperature with an amplitude that depends on
the thermal conductivity. These fluctuations enter the heat
equation through the Gaussian white noise ηP. Using ηP =
−∇ · ηq/(ρcP ) and Eqs. (5), the passive noise satisfies

〈ηP(x, t )〉 = 0, (19a)

〈ηP(x, t )ηP(x′, t ′)〉 = −2kBT̄ 2α

ρcP
∇2

xδ
(3)(x − x′)δ(t − t ′).

(19b)

Now we study the statistics of the passive fluctuations of
the temperature δTP governed by Eq. (8). Due to the Gaussian
character of the noise, the only nonvanishing cumulant is
the two-point correlation which can be derived using Fourier
transformations. Due to the independence of active and pas-
sive noise, Eq. (8) in Fourier space becomes

−iωδT̃P(q, ω) = −αq2δT̃P(q, ω) + η̃P(q, ω), (20)

when using the definition of the Fourier transform

f̃ (q, ω) ≡
∫ t

t0

dt ′
∫

V
d3x f (x, t ′)e−i(q·x−ωt ′ ). (21)

The passive noise in Fourier space η̃P satisfies

〈η̃P(q, ω)〉 = 0, (22a)

〈η̃P(q, ω)η̃P(q′, ω′)〉

= 2kBT̄ 2α

ρcP
q2(2π )4δ(3)(q + q′)δ(ω + ω′). (22b)

The two-point correlation function for passive fluctuations
in Fourier space reads [26,27]:

〈δT̃P(q1, ω1)δT̃P(q2, ω2)〉c

= 2kBT̄ 2α

ρcP
q2

1
(2π )4δ(3)(q1 + q2)δ(ω1 + ω2)(

αq2
1 − iω1

)(
αq2

2 − iω2
) , (23)

and taking the inverse Fourier transforms gives

〈δTP(x1, t1)δTP(x2, t2)〉c

= kBT̄ 2

ρcP(4απ |t1 − t2|) 3
2

exp

(
− |x1 − x2|2

4α|t1 − t2|
)

. (24)

Contrary to the active fluctuations, the correlation function
for the fluctuations around equilibrium does not possess any
power-law scaling. In particular, if the time difference |t − t ′|
is fixed, then the two-point function decays exponentially with
the distance |x − x′|. In the limit |x1 − x2| 	 √

4α|t1 − t2|,
the two-point correlations follow

〈δTP(x1, t1)δTP(x2, t2)〉c 
 kBT̄ 2

ρcP

1

(4απ |t1 − t2|) 3
2

, (25)

whereas for the equal-time correlations, we obtain

〈δTP(x1, t )δTP(x2, t )〉c = kBT̄ 2

ρcP
δ(3)(x1 − x2). (26)
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III. POWER SPECTRA AND HIGHER CUMULANTS
OF ACTIVE TEMPERATURE FLUCTUATIONS

The formalism developed in Sec. II to describe the active
fluctuations is a free Poissonian stochastic field theory with
Poisson white noise ηA given by Eq. (9) which has vanishing
mean and cumulants given in Eqs. (10a) and (10b). In this
section, we discuss key features of the Poisson field theory
and highlight differences to a Gaussian stochastic field [22].
For the sake of generality, we consider in this section a d-
dimensional space.

The first and the second cumulants are identical to those
of Gaussian white noise, but higher-order cumulants, given in
Eq. (10b), are nonvanishing and δ-correlated. The latter lead
to nontrivial, higher-order cumulants of the field δTA, which
are known exactly in Fourier space as

〈δT̃A(q1, ω1)...δT̃A(qm, ωm)〉c

= λ

(
h0

ρcP

)m

(2π )(d+1) δ
(d )(q1+...+qm)δ(ω1+...+ωm)(
αq2

1 − iω1
)
. . .
(
αq2

m − iωm
) ,

(27)

with the Fourier transform defined in Eq. (21). The non-
vanishing higher-order cumulants in Eq. (27) demonstrates
the non-Gaussian character of the Poisson field theory. We
have shown in the previous section that the equal-time cor-
relation function of active temperature fluctuations exhibits
as a power-law scaling while for passive fluctuations it is a
δ function. To explore this power-law behavior further, we
investigate the power spectra of the active temperature fluctu-
ations for systems in 1, 2, and 3 spatial dimensions. We define
the spectral density SA(|x|, ω) as follows [28]:

〈δT̂A(x1, ω1) δT̂A(x2, ω2)〉c

= 2π SA(|x1 − x2|, ω1) δ(ω1 + ω2), (28)

where δT̂A(x, ω) is the Fourier transform of δTA(x, t ) in
frequency space. The explicit expressions of the spectral
densities are given in Eqs. (B3)–(B5). In the limit of small fre-
quencies, we find that the spectral density scales as ω

d
2 −2, see

Fig. 1 and Eq. (B6). Note that for d = 2, we have SA ∼ ω−1

which is a 1/ f -noise [29–31]. Such type of noise is typical
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in biophysical systems [32] and a common feature associated
with Poisson shot noise [33].

IV. ACTIVE VERSUS PASSIVE FLUCTUATIONS

We are interested in length- and timescales for which ei-
ther active or passive fluctuations dominate. To this end, we
consider temperature correlation functions which have contri-
butions from passive and active fluctuations. At length scales
for which passive fluctuations dominate, local thermodynam-
ics equilibrium is a valid approximation. On the contrary,
for length scales where active fluctuations dominate, local
equilibrium condition is not satisfied.

The two-point temperature correlation function

C(x, t ) = CA(x, t ) + CP(x, t ) (29)

is the sum of the corresponding correlation functions related
to active and passive fluctuations,

CA/P(x, t ) ≡ 〈δTA/P(x, t )δTA/P(0, 0)〉c. (30)

Note that the correlation function C is defined here in terms of
the cumulants which are identical to the second moments as
the mean fluctuations vanish. According to Eqs. (16) and (24),
the correlation functions CA/P(x, t ) depend on x ≡ |x|. From
the same equations, we find for the two-point temperature
correlation function

C(x, t ) = λh2
0

8παρ2c2
Px

Erf

(
x√
4αt

)

+ kBT̄ 2

ρcP(4απt )
3
2

exp

(
− x2

4αt

)
. (31)

The correlation functions CA(x, t ) and CP(x, t ) of pas-
sive and active fluctuations are shown in Figs. 2(a)–2(f).
Figures 2(a)–2(c) depict the active and passive temperature
correlations as a function of the length scale x for fixed
timescales t . On length scales larger than the diffusion length
of passive fluctuations, i.e., x � √

4αt , the passive correla-
tions CP(x, t ) are exponentially suppressed [Eq. (24)], whereas
the active CA(x, t ) correlations are independent of time t and
decrease as a power-law [Eq. (18)]. For x 	 √

4αt , the active
and passive two-point functions, given by Eqs. (17) and (25),
respectively, reach finite values. For the timescale

τ = kBT̄ 2ρcP

λh2
0

, (32)

these two values are equal, such that CA(0, τ ) = CP(0, τ ),
Fig. 2(b). For timescales larger than τ , the contribution to the
correlation function coming from the active fluctuations dom-
inates on all length scales, Fig. 2(c). For timescales smaller
than τ , there are length scales where the passive contribution
dominates, Fig. 2(a). The scale τ is thus interpreted as the
largest timescale for which passive fluctuations can dominate.
On timescales smaller than τ , the temperature correlation
function in Eq. (31) is dominated by passive fluctuations on
small length scales and by active fluctuations on large length
scales, Fig. 2(a). We obtain the crossover length, where both

10−4 10−1 102

Rescaled length x/
√

ατ

10−4

10−2

100

102

104

C
or

re
la

ti
on

fu
n
ct

io
n
C A

/P
/C

τ

CA

CP(a)
short time
t = 10−2τ

10−4 10−1 102

Rescaled time t/(�2α−1)

10−4

10−2

100

102

104

C
or

re
la

ti
on

fu
n
ct

io
n
C A

/P
/C

�

CA

CP(d)
small length
x = 10−1�

10−4 10−1 102

Rescaled length x/
√

ατ

10−4

10−2

100

102

104

C
or

re
la

ti
on

fu
n
ct

io
n
C A

/P
/C

τ

CA

CP

(b) t = τ

10−4 10−1 102

Rescaled time t/(�2α−1)

10−4

10−2

100

102

104

C
or

re
la

ti
on

fu
n
ct

io
n
C A

/P
/C

�

CA

CP

(e) x = �

10−4 10−1 102

Rescaled length x/
√

ατ

10−4

10−2

100

102

104

C
or

re
la

ti
on

fu
n
ct

io
n
C A

/P
/C

τ

CA

CP

(c)
long time
t = 102τ

10−4 10−1 102

Rescaled time t/(�2α−1)

10−4

10−2

100

102

104

C
or

re
la

ti
on

fu
n
ct

io
n
C A

/P
/C

�

CA

CP

(f)
large length
x = 10�

Active dominated Passive dominated

FIG. 2. Normalized two-point correlation functions CP(x, t )
(gray) and CA(x, t ) (red) for passive and active fluctuations. (a–
c) Temperature correlations CA/P normalized by Cτ where Cτ ≡
CA(0, τ ) = CP(0, τ ) with τ given in Eq. (32), as function of nor-
malized distance x/

√
ατ for t = 10−2τ (a), t = τ (b) and t = 102τ

(c). (d–f) Temperature correlation CA/P normalized by C� where C� ≡
CA(�, �2/6α) = CP(�, �2/6α) with � given in Eq. (34), as function of
normalized time t/(�2α−1) for x = 10−1� (d), x = � (e), and x = 10�

(f). The background shade indicates the dominant contribution to the
correlation function: active (red), passive (gray). For the vertical line
on panel (e), the contributions are equal.

contributions are equal,

Lco(t ) 

[

− 2αtW−1

(
− π

2
(t/τ )2

)] 1
2

, (33)

where W−1 is the −1 branch of the Lambert W function [34].
To obtain Lco, we have used that the active and passive cor-
relations are equal on a length scale that is larger than

√
4αt

and we used Eq. (18) as an approximation for the correlation
function CA defined in Eq. (30). Note that the length Lco(t )
exists in a range of timescales t that corresponds to the domain
of the Lambert function W−1. For a timescale t smaller than τ ,
passive fluctuations dominate on length scales smaller than
Lco(t ). Both active and passive correlations are equal for x =
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Lco(t ). Active fluctuations dominate the two-point function
C(x, t ) for length scales larger than Lco(t ).

Figures 2(d)–2(f) show the correlation functions CP(x, t )
and CA(x, t ) as function of the timescale t for fixed values
of x. On timescales t � x2/4α, the active and passive corre-
lations scale in time as CA ∼ t− 1

2 and CP ∼ t− 3
2 as shown in

Eqs. (17) and (25), respectively. The passive fluctuations have
a maximum at t = x2/(6α), whereas from Eq. (18) the active
fluctuations reach their maximal values at t = 0. The length
scale for which the maximum of CP(x, t ) equals CA(x, t ),
Fig. 2(e) (vertical line), is given by

� =

⎡
⎢⎣ 6

3
2 αρcP

π
1
2 e

3
2 Erf

(√
3
2

)
kB λ(h0/kBT̄ )2

⎤
⎥⎦

1/2

, (34)

such that CA(�, �2/6α) = CP(�, �2/6α). For length scales
larger than �, the contribution to the correlation function com-
ing from the active fluctuations dominates on all timescales,
Fig. 2(f). For length scales smaller than �, there exist a range
of timescales where the passive contribution is dominant,
Fig. 2(d). The scale � is interpreted as the largest length scale
for which passive fluctuations can dominate.

On length scales smaller than �, there is an intermediate
range of timescales where the dominant contribution to the
correlation function stems from passive fluctuations, Fig. 2(d).
The upper bound for this range is τ . The lower bound is given
by the crossover timescale

tco(x) 
 − x2

6αW−1
[− e−1

(
x
λ

) 4
3 Erf

(√
3
2

)− 2
3
] , (35)

where W−1 is the −1 branch of the Lambert W function. To
obtain tco, we have used that the active and passive corre-
lations are equal on a timescale that is smaller than x2/4α

and we used Eq. (18) as an approximation for the correlation
function CA defined in Eq. (30). Note that the time tco(x) exists
in a range of length scales x that corresponds to the domain of
the Lambert function W−1. For a given length scale x smaller
than �, the passive contribution dominates for timescales t in
the range tco < t < τ . Finally, we note that tco(x) is the inverse
function of Lco(t ) given in Eq. (33).

The analysis of the active and passive two-point correla-
tions allows us identifying the regions in the temporal and
spatial scales in the (t, x) plane which are dominated by either
active or passive fluctuations, respectively; see Fig. 3(a). The
solid line corresponds to values of x and t for which both
contributions are equal. The region dominated by passive
fluctuations is bounded by τ of Eq. (32) in the direction of
increasing timescale t and by Lco of Eq. (33) in the direction of
increasing length scale (see dotted line). The largest possible
length scale with dominant passive fluctuations is given by �

of Eq. (34) and is the maximum of the solid line depicting the
boundary between active and passive dominated regions.

On large length or timescales, larger than � and τ , respec-
tively, the system is dominated by active fluctuations. On the
contrary, inside the region bounded by Lco in the x direction
and τ in the t direction, passive fluctuations dominate and
equilibrium is a good approximation. To quantify the relative
importance of the passive versus the active contribution, we
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FIG. 3. (a) Active (red) or passive (gray) dominant contribution
to the two-point correlation function C, Eq. (31), in the (t, x) plane as
function of the renormalized time and length scales t/τ and x/� with
τ given in Eq. (33) and � given in Eq. (34). The solid line depicts
the boundary where CA = CP between the active and passive dom-
inated regions. The white dots on the solid boundary line indicate
the crossover length Lco(t ) given in Eq. (33). The intensity of the
colors describes the ratio CA/CP. (b) Regions (shaded, overlaying)
where passive fluctuations dominate in the (t, x) plane as a function
of timescale t and length scale x. The solid line is the limit between
active and passive regions for the parameters values h0 = 10kBT̄ with
T̄ = 289 K and λ = 2.5 × 104/s(µm)3. This can be compared to the
corresponding regions when the strength of the noise characterized
by λh2

0 is varied by a factor 10−2 (dashed), 102 (dot-dashed), or 104

(dotted). Note that darker regions partially cover lighter ones. Other
parameters are α = 1.4 × 10−7 m2/s, ρ = 103 kg/m3 and cP = 4 ×
103 J/(kg K).

consider the ratio CA/CP. In the active region, for timescales
smaller than τ and for length scales larger than Lco, the pas-
sive correlation vanishes exponentially with increasing x and
becomes much smaller than the active contribution already
for length scales of one order of magnitude larger than Lco,
as seen in Fig. 3(a). In the passive dominated region, CP is at
least 2, 4, and 6 orders of magnitude larger than CA for length
scales smaller than Lco and values of t equal to τ/102, τ/104,
and τ/106, respectively. This observation allows identifying
the region where the local-equilibrium hypothesis holds, i.e.,
where the passive correlation function strongly dominates
over the active contribution.

For a given chemically active system, our analysis allows
us identifying the length- and timescales where local ther-
modynamic equilibrium is an appropriate description. In the
following, we consider the example of biological cells. For the
biophysics of P granule assembly and disassembly, it has been
suggested that local thermodynamics holds on length scales of
100nm and timescales of tens of nanoseconds [14]. Taking the
hydrolysis of ATP as a prototypical chemical event in the cell,
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we estimate a reaction enthalpy h0 = 10kBT̄ . Furthermore, we
use T̄ = 289K and estimate the rate of events per unit volume
as λ 
 2.5 × 104/s(µm)3, such that the heat production per
by unit volume and time is 〈Q〉 = 103 W/m3, consistent with
estimates for the heat production of living tissues [35,36].
Considering a thermal diffusivity for the cell similar to water
α = 1.4 × 10−7 m2/s [37] and using the mass density ρ =
103 kg/m3 and the specific heat cP = 4 × 103 J/(kg K) of
water, the spatiotemporal scales dominated by passive fluctu-
ations are inside a region, see Fig. 3(b) (gray region bounded
by solid line). In particular, the passive region exists for
times shorter than τ = 1.2 × 105 s and lengths smaller than
� = 0.18 m, respectively. In Ref. [14], it has been observed
that 10−8 s after a local metabolic event releasing heat h0,
this heat has spread in a volume of linear dimension of about
10−7 m. The corresponding temperature change due to the
event is about 10−5K and, thus small. Our analysis shows
that for timescales of 10−8 s, passive fluctuations dominate up
to length scales given by the crossover length Lco(10−8 s) =
4.2 × 10−7 m. This demonstrates that our analysis shown
in Figs. 3(a) and 3(b) is consistent with estimates given in
Ref. [14].

In Fig. 3(a), the ratio between the active and passive cor-
relation functions, CA/CP, has been defined as a measure of
the chemical activity. The ratio depends linearly on the rate of
events per unit volume λ and quadratically on the amount of
heat released by individuals events h0. Figure 3(b) shows the
region of the (t, x) plane dominated by passive fluctuations for
different values of h2

0λ. Taking the values h0 and λ estimated
above for the living cell as reference (solid line), we observe
that increasing (decreasing) λh2

0 decreases (increases) the area
of the passive region. The decrease is mostly due to a decrease
of the rightmost boundary along the t direction which can also
be seen in Eq. (32) showing that τ is inversely proportional to
λh2

0. However, the boundary in the x direction does not change
significantly when increasing λh2

0, as depicted in the inset of
Fig. 3(b). The reason for this behavior is that for timescales
smaller than τ , passive fluctuations always dominate on the
diagonal x = √

4αt , corresponding to the diffusion length of
the passive temperature fluctuations, independently of λ and
h0. The trend of a decreasing area where passive fluctuations
dominate confirms our expectation that the higher the rate and
energy released by chemical events, the greater the activity of
the system.

V. MOLECULAR DIFFUSION ENHANCED
BY ACTIVE FLUCTUATIONS

Considering the diffusion of tracer particles, we discuss
how chemical activity could influence the diffusion coeffi-
cient. The stochastic motion of a tracer particle with trajectory
X (t ) obeys a Langevin equation [38],

dX (t )

dt
= DT ∇T (X , t ) + ηX (t ). (36)

The noise variance is〈
ηα

X (t )ηβ

X (t ′)
〉 = 2D0δ

αβδ(t − t ′), (37)

where the indices α and β denote spatial coordinates. Here
D0 = μkBT is the passive diffusion coefficient, where μ is the

mobility, and DT is the thermodiffusion coefficient capturing
the Soret effect, with Soret coefficient ST ≡ DT /D0.

Temperature fluctuations introduced by chemical activity
lead to additional noise on particle motion. This leads to an
effective diffusion coefficient D ≡ D0 + Dact, which obeys

〈[X (t ) − X (0)]2〉 = 6Dt . (38)

The effective diffusion coefficient can be obtained from the
integral of the velocity auto-correlation function

D = 1

3

∫ ∞

0
dt

〈
dX (t )

dt
· dX (0)

dt

〉
. (39)

Using Eqs. (36) and (37), we thus obtain the approximate
expression (see Ref. [39] and Appendix C)

Dact 
 D2
T

3V

∫ ∞

0
dt
∫

d3q
(2π )3

q2e−Dq2t

× 〈δTA(q, t )δTA(−q, 0)〉. (40)

Using Eq. (16) for the active temperature correlation function,
the active contribution to the diffusion coefficient satisfies

Dact = λD2
T

6παa

(
h0

ρcP

)2 1

(D0 + Dact + α)
. (41)

To estimate the importance of the active fluctuations to
diffusion, we consider the ratio Dact/D0. As shown in Ap-
pendix C, we find for this ratio

(
Dact

D0

)
= −1

2

(
1 + α

D0

)
+ 1

2

√(
1 + α

D0

)2

+ 4C. (42)

Here we have defined the dimensionless coefficient

C ≡ λS2
T

6παa

(
h0

ρcP

)2

, (43)

which depends on the diameter a of the tracer particle and
on the Soret coefficient. At equilibrium where the chemical
activity h0 = 0, C = 0, and D = D0. Active fluctuations be-
come important when Dact > D0. The crossover at Dact = D0

corresponds to C = Cco with

Cco ≡ α

D0
+ 2. (44)

For C > Cco, the diffusion coefficient is dominated by the
active contribution that enhances diffusion.

Using the parameter values discussed above and motivated
by the nonequilibrium conditions in a living cell, we find
that the enhanced diffusion of small tracer particles due to
chemical activity can be neglected. For example, using the
viscosity of water (η = 1.11 mPa s), small particles size a of
order 10−9 m, and a Soret coefficient ST ∼ 102 K−1 [40], we
have Dact/D0 ∼ O(10−14). This estimate supports our find-
ings that local equilibrium can be preserved in the presence of
active chemical fluctuations for certain spatiotemporal scales,
as discussed above.

VI. DISCUSSION

Our analysis has been motivated by quantitative stud-
ies of phase separation in living cells [14]. These raise the
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question under what conditions local thermodynamic equi-
librium approximations provide an appropriate description
of biophysical processes in living cells, even though cells
are operating far from thermodynamic equilibrium. Cells
host numerous active processes, the paradigmatic example
is the activity of many enzymes driven by the hydrolysis
of ATP such as the action of molecular motors in the cell.
Such activity involves chemical events that release heat and
trigger chemical changes of involved biomolecules. Stan-
dard approaches to describe such biophysical processes are
based on the idea that locally temperature, pressure and
other thermodynamic variables are well defined and that the
nonequilibrium physics arises at larger scales by a smaller
number of degrees of freedom that are maintained away from
equilibrium and exhibit nonequilibrium dynamic behaviors.
However this raises the question of whether and at which
length- and timescales such local equilibrium assumptions
hold. Our work shows that even in active systems driven by
stochastic active events that release heat, there typically exist
length- and timescale regimes where fluctuations are domi-
nated by thermal fluctuations which are consistent with local
thermodynamic conditions at a local equilibrium. Therefore
in these regimes local equilibrium is an accurate framework to
describe the nonequilibrium dynamics that emerges at larger
scales. Our analysis is consistent with and completes earlier
work where it has been shown that active fluctuations domi-
nate on large spatial or temporal scales [41,42].

To describe nonequilibrium conditions at small scales,
we focus our work on fluctuations of heat, which can be
either active, i.e., when a chemical event takes place far
from equilibrium or passive when they are related to local
equilibrium. To characterize active heat fluctuations we have
introduced a stochastic Poisson field theory. Because of the
Poissonian fluctuations, higher cumulants do not vanish and
can be calculated explicitly. Furthermore, we find that cor-
relation functions exhibit power-law behaviors in space and
time which correspond to out-of-equilibrium critical behav-
iors without the need to tune parameters to a critical point.
In frequency space, the noise spectrum decreases as a power-
law. Notably, in two spatial dimensions, we find 1/ f -noise.
Poisson white noise is usually studied for discrete variables.
Here we present a continuum theory in space and time with
Poisson statistics.

The approach presented in this work also used some ap-
proximations. First, we have considered chemical reactions
that are all the same type, and second, we have neglected
nonlinearities in the heat equation. While it is straightforward
to extend our analysis to include several types of reactions,
the problem of nonlinear heat transfer is more challenging
and arises already in the absence of activity [24]. For sim-
plicity, we have considered a constant average temperature
T̄ . In general, the average temperature depends on space and
time, for example, when coupled to a thermostat at the bound-
ary, the system reaches a nonequilibrium steady-state, with
position-dependent average temperature. A constant average

temperature is a good approximation when studying active
fluctuations in a biological cell [14]. All these limitations open
new directions for future works. Note that the effect of fluc-
tuations on the diffusion of tracer particles is quite generally
weak, also emphasizing that local equilibrium can hold in a
broad range of parameters. Our approach can be applied to
the diffusion of particles in an active environment, which is
different from but related to the problem of the diffusion of
active enzymes [43–45].

Our analysis and the results presented here can also be ap-
plied to other active systems. Examples are particles propelled
by chemical fuel, transport processes that generate heat via
stochastic molecular events. The description of fluctuations in
such systems in general requires accounting for the coupling
to mass or momentum transfer suggesting more complex be-
haviors of the corresponding correlation functions [1].

We have shown that a field theory with a stochastic Poisson
noise provides a framework that is well-suited to describe
out-of-equilibrium fluctuations. Moreover, with the inclusion
of sinks, such a theory provides a new description for birth
and death processes and could potentially be extended to
more general reaction-diffusion problems. Another direction
to investigate is going beyond the free theory by consider-
ing correlations between the metabolic events that generate
heat. For the white Poisson noise considered in this work,
the Poisson-distributed chemical events have been treated as
independent and uncorrelated. Interactions between the events
lead to a correlated active noise, corresponding to a colored
Poisson noise.
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APPENDIX A: STATISTICS OF
ACTIVE FLUCTUATIONS

In this Appendix, we review the statistical properties of
the temperature fluctuations δTA due to the Poisson white
noise. For the sake of generality, a system of d spatial dimen-
sions is considered. The temperature fluctuation δTA given in
Eq. (13) is a stochastic field, as it depends on the number
of events n(t, t0) obeying Poisson statistics and the time and
location of each metabolic event, whose probability distribu-
tion is given by λ(x, t )dxdt/� where � is the normalization,
defined as

� ≡
∫ t

t0

dt ′
∫

V
dd x λ(x, t ′), (A1)
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which corresponds to the average number of events 〈n(t, t0)〉. The moment generating functional for δTA is defined as

�t,V [u] ≡
〈
exp

[
i
∫ t

t0

dt ′
∫

V
dd x u(x, t ′)δTA(x, t ′)

]〉

= exp

[
−i
∫ t

t0

dt ′
∫

V
dd x u(x, t ′)T̄ (x)

]〈n(t,t0 )∏
i=1

exp

[
i

h0

ρcP

∫ t

t0

dt ′
∫

V
dd x u(x, t ′)G(x, t ′|xi, ti )

]〉
.

To evaluate the ensemble average we generalize the method of Ref. [16] to include the spatial dependence of the stochastic
variable. An integration over the probability density of the individual events and an average over the Poisson distribution
P(n(t, t0) = n) = 1

n! e
−��n are performed. We obtain〈

n(t,t0 )∏
i=1

exp

[
i

h0

ρcP

∫ t

t0

dt ′
∫

V
dd x u(x, t ′)G(x, t ′|xi, ti )

]〉

=
∞∑

n=0

1

n!
e−��n

n∏
i=1

1

�

∫ t

t0

dti

∫
V

dd xi λ(xi, ti ) exp

[
i

h0

ρcP

∫ t

t0

dt ′
∫

V
dd x u(x, t ′)G(x, t ′|xi, ti )

]

=
∞∑

n=0

1

n!
e−�

{∫ t

t0

dt ′′
∫

V
dd x′λ(x′, t ′′) exp

[
i

h0

ρcP

∫ t

t0

dt ′
∫

V
dd x u(x, t ′)G(x, t ′|x′, t ′′)

]}n

= exp

(
−
∫ t

t0

dt ′′
∫

V
dd x′λ(x′, t ′′)

{
1 − exp

[
i

h0

ρcP

∫ t

t0

dt ′
∫

V
dd x u(x, t ′)G(x, t ′|x′, t ′′)

]})
. (A2)

The moment generating functional is therefore

�t,V [u] = exp

(
−
∫ t

t0

dt ′′
∫

V
dd x′ iu(x′, t ′′)T̄ (x′) + λ(x′, t ′′)

{
1 − exp

[
i

h0

ρcP

∫ t

t0

dt ′
∫

V
dd x u(x, t ′)G(x, t ′|x′, t ′′)

]})
. (A3)

The cumulant generating functional �t,V [u] ≡ ln �t,V [u] reads

�t,V [u] =
∫ t

t0

dt ′′
∫

V
dd x′ λ(x′, t ′′)

{
exp

[
i

h0

ρcP

∫ t

t0

dt ′
∫

V
dd x u(x, t ′)G(x, t ′|x′, t ′′)

]
− 1

}
− iu(x′, t ′′)T̄ (x′). (A4)

The mean value vanishes and the m-point cumulant, for m > 1, is

〈δTA(x1, t1)...δTA(xm, tm)〉c = (−i)m δm

δu(x1, t1)...δu(xm, tm)
�t,V [u]

∣∣∣∣
u=0

=
(

h0

ρcP

)m ∫ t

t0

dt ′
∫

V
dd x λ(x, t ′)G(x1, t1|x, t ′)...G(xm, tm|x, t ′), (A5)

where in d spatial dimension, the heat kernel G reads

G(x, t |x′, t ′) = θ (t − t ′)

[4πα|t − t ′|] d
2

exp

[
− (x − x′)2

4α|t − t ′|
]
. (A6)

Let us also highlight the derivation of the 2-point cumulant for a constant rate per unit volume λ(x, t ) = λ and sending the limit
of spatial integration to infinity. We have

〈δTA(x1, t1)δTA(x2, t2)〉c = λ

(
h0

ρcP

)2 ∫ t

t0

dt ′
∫

Rd

dd x G(x1, t1|x, t ′)G(x2, t2|x, t ′)

= λh2
0

(4πα)dρ2c2
P

∫ t

t0

dt ′ θ (t1 − t ′)θ (t2 − t ′)

[(t1 − t ′)(t2 − t ′)]
d
2

exp

[
− (x1 − x2)2

4α(t1 + t2 − 2t ′)

]

×
∫

Rd

dd x exp

{
− (t1 + t2 − 2t ′)

4α(t1 − t ′)(t2 − t ′)

[
x − (t2 − t ′)x1 + (t1 − t ′)x2

t1 + t2 − 2t ′

]2
}

, (A7)

assuming that x1 
= x2 and t1 
= t2 and using that

(x1 − x)2

t1 − t ′ + (x2 − x)2

t2 − t ′ = (t1 + t2 − 2t ′)
(t1 − t ′)(t2 − t ′)

(
x − (t2 − t ′)x1 + (t1 − t ′)x2

t1 + t2 − 2t ′

)2

+ (x1 − x2)2

(t1 + t2 − 2t ′)
. (A8)
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The integral over dd x is a d-dimensional Gaussian integral, we obtain

〈δTA(x1, t1)δTA(x2, t2)〉c = λh2
0

(4πα)
d
2 ρ2c2

P

∫ min(t1,t2 )

t0

dt ′ exp
[− (x1−x2 )2

4α(t1+t2−2t ′ )

]
(t1 + t2 − 2t ′)

d
2

, (A9)

the change of variable s ≡ (x1 − x2)2/4α(t1 + t2 − 2t ′) gives

〈δTA(x1, t1)δTA(x2, t2)〉c = λh2
0

2(4πα)
d
2 ρ2c2

P

[
(x1 − x2)2

4α

]1− d
2
∫ (x1−x2 )2

4α|t1−t2 |

(x1−x2 )2

4α(t1+t2−2t0 )

ds s
d
2 −2e−s

= λh2
0

2(4πα)
d
2 ρ2c2

P

[
(x1 − x2)2

4α

]1− d
2
[
γ

(
d

2
− 1,

(x1 − x2)2

4α|t1 − t2|
)

− γ

(
d

2
− 1,

(x1 − x2)2

4α(t1 − t0 + t2 − t0)

)]
,

(A10)

where γ (s, x) is the lower incomplete gamma function. In three spatial dimensions, we obtain

〈δTA(x1, t1)δTA(x2, t2)〉c = λh2
0

8παρ2c2
P|x1 − x2|

[
Erf

( |x1 − x2|
2
√

α|t1 − t2|
)

− Erf

( |x1 − x2|
2
√

α(t1 + t2 − 2t0)

)]
, (A11)

using that γ (1/2, x) = √
πErf(

√
x).

APPENDIX B: POWER SPECTRA OF ACTIVE FLUCTUATIONS

In d-spatial dimensions, the two-point cumulant 〈δT̂A(x1, ω1)δT̂A(x2, ω2)〉c is obtained by taking the Fourier transform of
Eq. (27) into real space, which gives

〈δT̂A(x1, ω1)δT̂A(x2, ω2)〉c = λ

(
h0

αρcP

)2

(2π )δ(ω1 + ω2)
∫

dd q

(2π )d

eiq.|x1−x2|

q4 + (
ω1
α

)2 . (B1)

The spectral density is then defined as

SA(|x|, ω) ≡ λ

(
h0

αρcP

)2 ∫ dd q

(2π )d

eiq.|x|

q4 + (
ω
α

)2 . (B2)

For spatial dimension d = 3, 2, 1 we obtain for spectral densities

SA(|x|, ω)|d=3 = λ

(
h0

αρcP

)2(
ω

α

)− 1
2 1

4
√

2π

sin
√

ω|x|2
2α√

ω|x|2
2α

e−
√

ω|x|2
2α , (B3)

SA(|x|, ω)|d=2 = −λ

(
h0

αρcP

)2(
ω

α

)−1 1

2π
kei

√
ω|x|2

α
, (B4)

SA(|x|, ω)|d=1 = λ

(
h0

αρcP

)2(
ω

α

)− 3
2 1

2
√

2
e−

√
ω|x|2

2α

[
sin

√
ω|x|2

2α
+ cos

√
ω|x|2

2α

]
, (B5)

where kei is the Kelvin function. In the limit of small frequencies ω 	 2α/|x|2, the spectral density has the scaling behavior

SA(x, ω) = Cdλ

(
h0

αρcP

)2(
ω

α

) d
2 −2

, (B6)

where the constant Cd equals (4
√

2π )−1, −kei(0)(2π )−1 or (2
√

2)−1 for d = 3, 2, 1, respectively.

APPENDIX C: ACTIVE PART OF THE EFFECTIVE DIFFUSION COEFFICIENT

The effective diffusion coefficient in Eq. (39) is expressed using Eq. (36) as

D = 1

3

∫ ∞

0
dt

〈
dX (t )

dt
· dX (0)

dt

〉

= 1

3

∫ ∞

0
dt〈[DT ∇T (X , t ) + ηX (t )] · [DT ∇T (X , 0) + ηX (0)]〉

= D2
T

3

∫ ∞

0
dt〈∇T (X , t ) · ∇T (X , 0)〉 + 1

3

∫ ∞

0
dt〈ηX (t ) · ηX (0)〉
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= D2
T

3

∫ ∞

0
dt〈∇T (X , t ) · ∇T (X , 0)〉 + D0, (C1)

using that the noise ηX and the temperature fluctuations are uncorrelated, which follows from Eq. (36). We have also used the
variance of the noise in Eq. (37) to recover D0 in the last step. The active part of the effective diffusion coefficient is given by

Dact = D − D0

= D2
T

3

∫ ∞

0
dt〈∇T (X , t ) · ∇T (X , 0)〉

= D2
T

3V

∫ ∞

0
dt

〈∫
d3q

(2π )3
q2e−iq·[X (t )−X (0)]δTA(q, t )δTA(−q, 0)

〉


 D2
T

3V

∫ ∞

0
dt
∫

d3q
(2π )3

q2〈e−iq·[X (t )−X (0)]〉〈δTA(q, t )δTA(−q, 0)〉


 D2
T

3V

∫ ∞

0
dt
∫

d3q
(2π )3

q2e−Dq2t 〈δTA(q, t )δTA(−q, 0)〉, (C2)

where we have performed a Fourier transform into momentum space in the second step, neglected the correlation between the
temperature and the motion in the third step, and finally used the Gaussian approximation

〈e−iq·[X (t )−X (0)]〉 = e−Dq2t . (C3)

The correlation function of the active temperature fluctuation in momentum space is given by

〈δTA(q1, t1)δTA(q2, t2)〉 = λ

2α

(
h0

ρcP

)2 e−αq2
1 |t1−t2|

q2
1

(2π )3δ3(q1 + q2), (C4)

which is the Fourier transform of

〈δTA(q1, ω1)δTA(q2, ω2)〉 = λ

(
h0

ρcP

)2

(2π )4 δ3(q1 + q2)δ(ω1 + ω2)

(αq2
1 − iω1)(αq2

2 − iω2)
, (C5)

with respect to ω1 and ω2. Substituting Eq. (C4) into Eq. (C2) and using that (2π )3δ3(q = 0) = V , we obtain

Dact = λD2
T

6α

(
h0

ρcP

)2 ∫ ∞

0
dt
∫

d3q
(2π )3

e−(D+α)q2t

= λD2
T

6α

(
h0

ρcP

)2 1

D + α

∫
d3q

(2π )3

1

q2

= λD2
T

6α

(
h0

ρcP

)2 1

D + α

1

2π2

∫ 2π/a

0
dq

= λD2
T

6παa

(
h0

ρcP

)2 1

(D + α)
, (C6)

where we have introduced a cut-off for large q, namely 2π/a where a is the size of the tracer particle.
From Eq. (C6) and using that DT = ST D0 and D = D0 + Dact, the ratio Dact/D0 is given by the quadratic polynomial(

Dact

D0

)2

+
(

Dact

D0

)(
1 + α

D0

)
− C = 0, (C7)

where the dimensionless coefficient C is defined in Eq. (43). The solution of Eq. (C7) is

(
Dact

D0

)
= −1

2

(
1 + α

D0

)
± 1

2

√(
1 + α

D0

)2

+ 4C. (C8)

In absence of activity, corresponding to λ = 0 and therefore C = 0, Dact vanishes. Considering the two solutions of Eq. (C8) in
the limit of vanishing C allows the identification of the solution with a positive sign as the physical one.

The Soret coefficient for which Dact = D0 is obtained from Eqs. (43) and (44) as

ST,co(a) =
(

ρcP

h0

)√
6παa

λ

[
6πηαa

kBT
+ 2

]
, (C9)
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having expressed the passive diffusion coefficient as D0 =
kBT/(6πηa), where η is the viscosity. The crossover coef-
ficient ST,co is a monotonically increasing function of the
particle size a. For values of the Soret coefficient smaller
than ST,co, the fluctuations of the concentration are well
described by local-equilibrium thermodynamics. For the pa-
rameters associated with the living cells, the viscosity water,

and tracer particle size a of the order 10−9 m, we have
ST,co ∼ 109 K−1, which is larger than typical values reported
in the literature (ST ∼ 10−5 − 10−3 K−1 in Ref. [46] and
ST ∼ 10−2 − 102 K−1 in Ref. [40]) supporting the result that
the concentration fluctuations do not break the local equi-
librium hypothesis for the spatiotemporal scales identified
previously.
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