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Formation of liquid shells in active droplet systems
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We study a chemically active binary mixture undergoing phase separation and show that under nonequilibrium
conditions, stable liquid spherical shells can form via a spinodal instability in the droplet center. A single liquid
shell tends to grow until it undergoes a shape instability beyond a critical size. In an active emulsion, many stable
and stationary liquid shells can coexist. We discuss conditions under which liquid shells are stable and dominant
as compared to regimes where droplets undergo shape instabilities and divide.
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I. INTRODUCTION

Emulsions are heterogeneous liquids where phase sepa-
ration leads to the formation of droplets that coexist with
the surrounding fluid. They play an important role in many
fields, from physics and chemistry to biology and engineering,
for examples see [1–3]. In living cells, proteins and nucleic
acids often condense together into assemblies with proper-
ties of liquidlike droplets [4–11]. The cell interior, therefore,
resembles an emulsion. Because biochemical processes op-
erate away from thermodynamic equilibrium, this emulsion
is inherently active, driven by energy input at the molecular
scale. In this active environment, liquid condensates in cells
provide biochemical compartments that play a role in the
spatial organization of biological processes [12–17].

The role of liquid condensates in cells suggests that
phase separation can more generally play a role in the
organization of chemical reactions in many systems. Phase-
separated systems are not dilute, and therefore mass-action
laws for chemical kinetics have to operate in a nondilute
regime which leads to an interplay between phase separation
physics and reaction chemistry [18,19]. Here, we are inter-
ested in how phase separation can spatially organize chemical
processes and how chemical activity influences the morphol-
ogy of phase-separated droplets. Previous theoretical work
has shown interesting consequences of chemical activity on
phase-separated droplets. For example, Ostwald ripening can
be suppressed in an active emulsion because diffusion coeffi-
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cients and reaction rates introduce characteristic length scales
[20–23]. Ostwald ripening can also be accelerated if chemical
reactions act on the gradients between droplets [24]. Further-
more, it was shown that for sufficiently strong nonequilibrium
driving, spherical droplets can undergo a shape instability
that, in three dimensions, can give rise to spontaneous droplet
division and the emergence of growth and division cycles
[25–28].

In recent work, synthetic analogs of such chemically active
emulsions have been developed [29–32]. In such a synthetic
chemically active emulsion, it was recently shown that stable
liquid shells can form as nonequilibrium structures in systems
where two phases coexist [33]. In this case, a liquid shell
forms one phase that coexists both on the inside and the
outside with a second phase. In numerical studies, ringlike
patterns have been reported as stationary states in a ternary
mixture with active molecular transitions [34]. In passive
systems, spherical shells can emerge from three-phase coex-
istence [35–38]. This situation arises when a droplet of phase
I is located inside a droplet of phase II that itself is immersed
in phase III.

In this paper, we study a simple model of a binary fluid
composed of components A and B that undergoes phase sep-
aration in an A-rich and a B-rich phase, and which takes
into account chemical transition between A and B molecules.
Because we are interested in active systems that are driven out
of equilibrium by an energy input in the chemical reactions,
these transitions do not obey a detailed balance condition. We
use a two-phase system as a minimal model to investigate
conditions under which liquid shells emerge spontaneously.
We discuss the growth dynamics of individual shells and show
that they can be stable and stationary in an active emulsion,
where they can coexist with other shells and droplets, both in
two and three dimensions. We also discuss parameter regimes
where spherical shells emerge, and compare them to regimes
where droplets exist. Finally, we discuss shape instabilities of
growing shells and put them in relation to shape instabilities
of droplets.
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FIG. 1. (a) Minimal model of chemically active droplets
(dilute/dense phase in the outside/inside domain) and shells
(dilute/dense phase in the outside & core/inside domain). (b) Con-
centration dependence of the reaction flux r and the mobility �

(Appendix A). (c), (d) Cuts through temporal consecutive three-
dimensional contour surfaces of a droplet (c) and a shell (d) with b =
κ = 1, cp = 0, cr = 1, �p/r = 1, η = 0.003, ε = 0.19, kp/r = 0.0025
(c), kp/r = 0.01 (d). For details, see Appendix B.

II. MINIMAL MODEL OF CHEMICALLY
ACTIVE DROPLETS

We consider an incompressible binary fluid described by
local thermodynamics governed by the chemical potential
μ(x) = δF/δc(x), where

F =
∫

dV
(

f (c) + κ

2
(∇c)2

)
, (1)

is the free energy. Here, c(x) denotes the concentration
field of the B component, x is a position in space, dV the
volume element in two or three dimensions, and κ a param-
eter describing the free energy contribution of concentration
gradients. We choose the free energy density [39] f (c) =
b(c − cp)2(c − cr )2/(2�c2), where �c = cr − cp, and cp and
cr are the equilibrium concentrations of the coexisting phases,
the B-poor and B-rich phases, respectively. The parameter b
describes the strength of segregation. The surface tension of
the interface is given by γ = �c2

√
κb/6 [40].

The time evolution of the concentration field is a Cahn-
Hilliard equation [41] complemented by reactions, which
reads

∂t c = −∇ · j + r(c), (2)

j = −�(c)∇μ(c), (3)

where j is a diffusive flux, driven by a gradient of the chemical
potential μ and proportional to the mobility �(c), which in
the dilute and the dense phase takes the values �p and �r,
respectively, with a smooth concentration dependence across
the interface, see Fig. 1(b). The reaction flux is described by
first-order reaction kinetics with different coefficients in the
two phases. The linear pieces are smoothly connected by a

third order polynomial p(c) [see Fig. 1(b)]:

r(c) =

⎧⎪⎨
⎪⎩

−kpc + sp, c � cp
B

p(c), cp
B < φ < cr

B

−krc + sr, c � cr
B

. (4)

This reaction flux defines two important parameters, the su-
persaturation in the dilute phase far from the droplet ε =
sp/kp − cp

0 and the turnover rate η = krcr − sr, which de-
scribes the reaction flux in the dense phase. Note that for
phase coexistence, linear reaction fluxes are not consistent
with thermodynamic equilibrium, and our choice corresponds
to an active reaction coupled to an external fuel reservoir [18].

For turnover rates η > 0 and supersaturations ε larger than
a critical value, spherical droplets of finite radius R exist as
steady-state solutions of Eqs. (2) and (3) [25]. If ε is increased
further, the spherical state becomes unstable, which in three
dimensions typically leads to droplet division, see Fig. 1(c).
If instead of increasing ε the reaction rate kden is increased,
a spherical stationary and stable shell can form, even for dif-
ferent random initial conditions. Shell formation is triggered
via a spinodal instability inside the droplet, see Fig. 1(d).
This instability occurs because, inside the droplet, the dense
phase concentration drops below the spinodal concentration.
This concentration drop results from a steeper concentration
profile inside the droplet for faster material turnover. After this
instability, a spherical shell of the dense phase emerges, which
can be characterized by the radii Ri/o, which both increase with
time.

III. QUANTITATIVE ANALYSIS IN A SHARP
INTERFACE LIMIT

We perform a detailed stability analysis of individual
droplets and shells in a sharp interface limit in spherical co-
ordinates with radial coordinate r and angular coordinates ϕ

and θ . In the vicinity of the equilibrium concentrations cp/r
0 that

coexist at a flat interface, we linearize the dynamic equations,
Eqs. (2) and (3), in the dense and dilute phase. For a droplet,
we write

∂t c
i = Di∇2ci − kici + si, (5)

where i = out, in describe the dilute phase in the outside do-
main and the dense phase in the inside domain of the droplet,
respectively. We find the diffusion coefficients Dout/in = �p/rb,
the reaction rates kout/in = kp/r, and the source rates sout/in =
sp/r. The droplet shape is described by the radial position
r = R(θ, ϕ) of the interface. A spherical shell is also de-
scribed using Eq. (5) but with three domains i = out, in, core:
a dilute phase outside domain, a dense phase inside the shell,
and a dilute phase in the core domain with Dcore = �pb,
kcore = kp, and score = sp. The three domains are separated
by two interfaces r = Ri/o(θ, ϕ), see Fig. 1(a). A spherical
shell is also described using Eq. (5) but with three domains
i = out, in, core: a dilute phase outside domain, a dense phase
inside the shell, and a dilute phase in the core domain with
Dcore = �pb, kcore = kp, and score = sp. The three domains are
separated by two interfaces r = Ri/o(θ, ϕ), see Fig. 1(a).

The boundary conditions at an interface follow from local
thermodynamic equilibrium [42]. Local equilibrium at the
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FIG. 2. (a), (b) Radial concentration profiles (blue lines) of sta-
tionary droplets (a) for ε = 0.13, 0.18; and a stationary shell (b) for
ε = 0.18 in a finite system with a no-flux boundary condition at
Rs/R0 = 80, the spinodal concentrations (red dashed lines), and in-
terface positions (gray lines). (c) Interface velocities for chemically
active droplets (blue, solid line: ε = 0.18, η = 0.04, dashed dotted:
ε = 0.18, η = 0), and spherical shells (red, ε = 0.18, η = 0.04), and
a passive droplet in a supersaturated environment (green, c∞ = 0.18,
η = 0, ε = 0, kp/r = 0) in an infinite system. (d) Chemical potential
profile for the shell shown in (b). If not mentioned otherwise, param-
eters are: cp = 0, cr = 1, Dp = 1, Dr = 5, kp/r = 0.0025; Units are:
R0 = 6βγ /�c, τ0 = R2

0/Dp, μ0 = 1/(β�c3).

interface is fulfilled if diffusion is the fastest process on the
length scale of the interface width. At an interface with local
mean curvature H , the coexisting concentrations are given by
the Gibbs-Thompson relation

cout/in = cp/r + βγ H, (6)

where β = 1/(b�c) describes the curvature dependence of
equilibrium concentrations [43]. Here, the curvature is defined
relative to a surface normal that points from the dense to
the dilute phase. In addition to these concentration boundary
conditions, material is conserved when diffusing across the
interface. This condition specifies the normal velocity

dR

dt
= ji(R) − j j (R)

ci(R) − c j (R)
· er (7)

of the interface separating the domains i and j [43]. Here, ji =
−Di∇ci is the diffusive flux at the interface in domain i.

Spherical droplets of finite size R are steady-state solutions
of Eqs. (5) and (7) [25]; two examples of radial concentration
profiles are shown in Fig. 2(a). For ε = 0.13, the concentra-
tions inside and outside remain in the stable regime above and
below the spinodal concentrations, respectively (red dashed
line). For ε = 0.18, the concentration inside drops below the
spinodal, indicating an instability of the droplet. As a conse-
quence, a dilute phase is nucleated inside the droplet, forming
the core domain, while the dense phase forms a spherical
shell, see Fig. 1(a). In a finite system, shells with stationary
radii Ri/o can exist. A concentration profile of such a shell is
shown in Fig. 2(b). This solution is locally stable, i.e., out-

FIG. 3. (a) Stationary interface positions for a droplets/shells in
blue/red as a function of system size Rs. Stable (solid) R/Ri/o and
critical (dotted) Rc/Ri/o

c droplet/shell interfaces exist. Droplet inter-
faces can undergo a spinodal instability (dotted). (b) Interface width
L for shells in (a) as a function of system size Rs. (c), (d) Stability
diagrams for two different ratio of diffusivities of droplets and shells
in a finite system (Rs/R0 = 80). Blue region: droplets are stable;
Green region: droplets are shape unstable; Red domain: shells are
stable. Red dashed lines indicate the spinodal in the dilute (vertical
line) and droplet center (curved line). If not mentioned otherwise,
parameters and units are the same as in Fig. 2.

side the spinodal regime (red dashed line). At the interfaces,
the concentration jumps between dilute and dense phase.
Equation (6) is obeyed at both radii Ri and Ro because H has
opposite signs at the two interfaces. Note that the chemical po-
tentials vary continuously across the interfaces, see Fig. 2(d).

To discuss time-dependent solutions for droplets and
shells, we consider the case of slow interface velocities, where
the concentration field is quasistationary. To this end, we
determine stationary solutions of Eq. (5) with given interface
positions (Appendix C) and calculate the corresponding in-
terface velocities dR/dt . For an active droplet with η > 0,
the interface velocity vanishes at a stationary radius R, see
Fig. 2(c) (solid blue line). If reactions inside the droplet are
suppressed (η = 0), the interface velocity approaches a con-
stant value for large R (dashed dotted blue line). A spherical
shell exhibits a growth velocity that decreases for increasing
radius dR/dt ∝ 1/R and does not reach a steady state in an
infinite system. This asymptotic behavior is the same as for a
passive droplet in a supersaturated environment (solid green
line).

We next discuss steady states with spherical symmetry in a
finite system with radius Rs. Figure 3(a) shows the stationary
interface radii of droplets and shells as a function of system
size. Beyond a minimal system radius Rs, stationary droplets
with radii R and Rc exist. The radius R can be stable (solid
blue line), and the radius Rc is the unstable critical radius
(dotted blue line). For larger Rs, stationary shells exist with
inner and outer radii Ri/o and their critical counterparts Ri/o

c
(solid and dotted red lines). Stable droplets (shells) exist in
the blue (red) shaded region. In the region shaded both in
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blue and red, stable solutions for droplets and shells coexist.
The stable droplets undergo a spinodal instability at the end
of the blue-shaded region. Beyond this point, only shells are
stable (solid red line), while droplets are unstable (dashed blue
line). Note that stationary droplets reach a finite radius for
large systems, while stationary shell radii grow proportional
to system size. Furthermore, the width L = Ro − Ri of shells
reaches in the large system limit the finite value

L∞ = 2

√
Dr

kr
arctanh

(√
Dpkp

Drkr

krε

η

)
, (8)

which is indicated in Fig. 3(b). This value equals the width
of a stationary droplet size in a one-dimensional system, see
Appendix E.

We now discuss the shape instability of droplets and shells
by perturbing the interface radii as R = R̂ + δR(θ, ϕ) and
denoting the perturbed concentration profiles ci(r, θ, ϕ) =
ĉi(r) + δci(r, θ, ϕ), in each domain i. The dynamics of these
perturbations can be decomposed to linear order in spherical
harmonic Eigenmodes

δR = εlYlm(θ, ϕ)exp(λl t ), (9)

δci = bi
l (r)Ylm(θ, ϕ)exp(λl t ), (10)

where λl is the relaxation rate of mode l = 0, 1, 2, . . . , εl its
amplitude, Ylm(θ, ϕ) denote spherical harmonics, and bi

l (r)
are combinations of modified spherical Bessel functions sat-
isfying the appropriate boundary conditions of each domain,
see Appendix D. The boundary condition (6) becomes

δci(R̂) = (βγ δH (R̂)/δR − ∂r ĉi(R̂))δR, (11)

where δH/δR = [l (l + 1) − 2]/R2 for a perturbed droplet.
The linearized interface dynamics reads

dδR

dt
= δjin(R̂ + δR) − δjout(R̂ + δR)

cin(R̂) − cout(R̂)
er, (12)

where δji(R̂ + δR)er = −Di(∂2
r ĉi(R̂)δR + ∂rδci(R̂)). For a

stationary spherical droplet, the mode l = 2 can become
unstable with λl > 0. The stability diagram is shown in
Figs. 3(c) and 3(d) for two values of the ratio Dr/Dp of
diffusion coefficients as a function of supersaturation ε and
turnover η. Stable stationary droplets exist in the blue region.
As the supersaturation is increased, an l = 2 instability oc-
curs on the boundary to the green region. Inside the green
region, spherical droplets are unstable, elongate their shape,
and typically divide in three dimensions [25]. Stable shells
occur in regions shaded red. For parameter values used in
Fig. 3(c), spherical shells only occur when spherical droplets
have already become unstable (region shaded both green and
red). Therefore, in this region, vacuole solutions are only
found if initial conditions are carefully chosen. In contrast, for
the parameters used in Fig. 3(d), shell solutions are robustly
found within a parameter region (red). In the region that is
shaded in both red and blue or green, stable shells exist, but
their formation depends on initial conditions. The vertical
red dashed lines indicate the spinodal concentration in the
dilute phase. Supersaturation values beyond this line lead to
a spinodal instability in the outside domain, and the single
droplet or shell state no longer exists.

FIG. 4. (a), (b) Relaxation time scales λl of the first three pertur-
bation modes (l = 0, 1, 2) of a spherical symmetric stationary shells
in a finite system with Rs/R0 = 60 (a) and a constantly growing
shell, together with its interface velocity dR̂/dt , in an infinite system
(b) with ε = 0.12. If not mentioned otherwise, parameters and units
are other parameters and units are the same as in Fig. 3(a). (c) Cuts
through temporal consecutive three-dimensional contour surfaces of
a growing shell, same parameters as in Fig. 1(d).

In a finite system, stable spherical shells do not un-
dergo a shape instability because the relaxation rates λl are
always negative. Figure 4(a) shows the relaxation rates of
modes l = 0, 1, 2 for a stationary shell. In an infinite sys-
tem, shells grow in size. Such growing shells can, beyond
a critical size, undergo a shape instability with λ2 > 0, see
Fig. 4(b). This is similar to the Mullins-Sekerka instability of
constantly growing passive droplets in a supersaturated envi-
ronment [44]. The temporal evolution of a growing shell is
shown in Fig. 4(c). After an initial growth phase, the spherical
shell becomes unstable and folds into a shell with a complex
morphology. This shell further grows and subsequently splits,
generating elongated droplets inside the shell.

IV. EMULSIONS OF SHELLS AND DROPLETS

When we initialize a large box with a random set of
droplets and shells, the system relaxes to a steady state. Two
examples of time courses are shown in Figs. 5(a) and 5(b).
For parameters where droplets but not shells exist as stable
stationary solutions, shells shrink and turn into droplets, while
droplets reach a stationary size, see Fig. 5(a). For parameters
where droplets and shells can coexist, the system reaches
a steady state of an emulsion of droplets of specific size
and shells of variable size, see Fig. 5(b). Note that in both
Figs. 5(a) and 5(b), Ostwald ripening is suppressed [22].

FIG. 5. Time courses of emulsion after randomized initialization
(Appendix B) of droplets and spherical shells in a two-dimensional
system for ε = 0.098 (a) and ε = 0.104 (b) with η = 0.001; all other
parameters identical as in Fig. 1(c).

043246-4



FORMATION OF LIQUID SHELLS IN ACTIVE DROPLET … PHYSICAL REVIEW RESEARCH 5, 043246 (2023)

V. CONCLUSION

We have shown that spherical shells can generically exist in
a minimal model of a chemically active mixture. These shell
states are stable in a broad range of values of supersaturation
ε and turnover η. While active droplets reach a characteristic
size set by kinetic parameters, spherical shells grow until they
fill the available space. Strikingly, both droplets and shells
can undergo shape instabilities. Stationary droplets typically
elongate and divide (in three dimensions), while shells only
become unstable when they grow, giving rise to stable liquid
shells.

The mechanism of shell formation relies on a spinodal
instability inside the droplet resulting in a shell with a di-
lute phase inside and outside. In passive binary mixtures,
a shell is not thermodynamically stable because the Gibbs-
Thomson relation Eq. (6) cannot be satisfied at both interfaces
at constant chemical potential. However, in multicomponent
systems, three-phase coexistence can occur, which allows for
shells to coexist with two other phases [35–37]. The active
shells described here are nonequilibrium structures that main-
tain chemical and diffusion fluxes at steady state.

Our theoretical work suggests that the formation of shells
is facilitated if the dilute diffusion coefficient is bigger than
the diffusion coefficient in the dense phase. Recently, liquid
shells were observed in synthetic active emulsions, where
Dp ≈ 50 Dr [33], providing support for this result. Moreover,
in such experiments, coexistence of active droplets and active
shells was observed.

Our work reveals that a minimal model of chemically
active droplets has a rich phenomenology giving rise to emul-
sions that can suppress ripening and exhibit droplet division
together with stable and unstable liquid shells. Furthermore,
we show the rich dynamical behavior of active emulsions
exhibiting the coexistence of active droplets and shells, and
generating complex morphologies and topologies of liquid
phases. Thus, this work opens a new avenue to discover
and classify the rich topological features in chemically active
emulsions.
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APPENDIX A: CONCENTRATION DEPENDENCE
OF KINETIC PARAMETERS

We define the concentration dependence of the mobility
�(c) and of the reaction rate r(c), introduced in Eq. (2) and
Eq. (3) in the main text. For the mobility, we choose

�(c) = �p + �r − �p

2

[
1 + tanh

(
c − (cp + cr )/2

ωc

)]
,

(A1)

where the parameter ωc describes the concentration range
over which the mobility changes. This function controls the

diffusion coefficients D(c) = �(c)∂ f 2(c)/∂c2. We use ωc �
�c, such that the diffusion coefficients in the two phases are
different, but are approximately constant within each phase
Dp/r = b�p/r.

The reaction flux r(c) in the range cp
B < c < cr

B is given by
r(c) = p(c), where we choose

p(c) = p0 + p1c + p2c2 + p3c3. (A2)

The coefficients p0, ..., p3 are determined such that p(c)
smoothly interpolates between the linear functions for c < cp

B
and c > cp

B. This fixes the values and the slopes of p(c) at
c = cp/r

B . In all shown examples, we use numerical values
cp/r

B = cp/r + �c/4. For cp = 0 and cp = 1, the corresponding
bounds, i.e., cp

B = 0.25 and cr
B = 0.75, are within the spin-

odal regime, since the spinodal concentration in the dilute
and dense phase read cp

s = 0.211, . . . and cr
s = 0.789, . . . ,

respectively.

APPENDIX B: NUMERICAL METHODS

We solve the continuous equations via a spectral method
using discrete Fourier transforms. All space derivatives are
calculated by using Fourier transforms, and all nonlinear
terms are computed explicitly. In the special case, �p =
�r, the terms involving fourth-order derivative in the Cahn-
Hilliard equation are linear and are computed implicitly. We
use a standard Runge-Kutta scheme of third order.

Simulations are done either in three-dimensional cubical
boxes with N = 256 grid points in each dimension or in two-
dimensional square boxes with N = 512 grid points in each
dimension. We choose the system dimensions as L = 150R0

for the three-dimensional systems and L = 300R0 for the two-
dimensional system. The length scale R0 is defined in the
main text as R0 = 6βγ /�c and related to the interface width.
Thus, there are always three to four grid points that capture
the interface profile.

The initial conditions for the shells and droplets shown in
Fig. 5 are twenty droplets at randomly selected positions with
radii drawn from a uniform distribution with R/R0 ∈ [6, 9]
and three spherical shells with random position and radii from
uniform distributions such that Ri/o/R0 ∈ [7, 14] and L/R0 ∈
[2, 7]. Droplets and shells are added one by one only if the
new droplet or shell has a larger distance than four times its
radius from the preexisting droplets and shells. We initialize
the outside and core domain at the dilute concentration cp,
while we set the initial concentration in the inside domain of
droplets and shells to be cr.

APPENDIX C: STATIONARY SOLUTIONS OF THE
CONCENTRATION FIELDS OF SPHERICAL DROPLETS

The stationary solutions of Eq. (5) with the boundary con-
ditions in the corresponding domains for the droplet state read

φin(r) =
(

η

kr
+ 2βγ

R

)
i0(�rr)

i0(�rR)
+ sr

kr
, (C1)

φout(r) =
(

2βγ

R
− ε

) k0(�pr) + k1(�pRs )
i1(�pRs ) i0(�pr)

k0(�pR) + k1(�pRs )
i1(�pRs ) i0(�pR)

+ ε + φ
p
0 , (C2)
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where �p/r =
√

kp/r/Dp/r, i0(x) = sinh(x)/x and k0(x) =
exp(−x)/x are the modified spherical Bessel functions of
the first and second kind of zeroth order, while i1(x) =
(x cosh(x) − sinh(x))/x2 and k1(x) = exp(−x)(x + 1)/x2 are
the modified spherical Bessel functions of the first and sec-
ond kind of first order. Here, we have considered a finite
system with radius Rs, and assumed no-flux boundary con-
ditions at the boundary of the the outside domain, i.e., r =
Rs. In the limit of infinite systems Rs → ∞, the fraction
k1(�pRs)/i1(�pRs) → 0. Thus, only the term with the mod-
ified spherical Bessel functions of the second kind k0(x) in
Eq. (C2) remains relevant in this limit. For the state of the
spherical shell, we find

φcore(r) = −
(

ε + 2βγ

Ri

)
i0(�pr)

i0(�pRi )
+ ε + φ

p
0 , (C3)

φin(r) = sr

kr
+

(
i0(�rRi )

k0(�rRi )
− i0(�rRo)

k0(�rRo)

)−1

×
(

η

kr − 2βγ

Ri

k0(�rRi )
−

η

kr + 2βγ

Ro

k0(�rRo)

)
i0(�rr)

+
(

k0(�rRi )

i0(�rRi )
− k0(�rRo)

i0(�rRo)

)−1

×
(

η

kr − 2βγ

Ri

i0(�rRi )
−

η

kr + 2βγ

Ro

i0(�rRo)

)
k0(�rr). (C4)

The solution of the outside domain, φout(r), is identical to
Eq. (C2) when R is replaced with Ro.

APPENDIX D: EXPRESSIONS OF THE PERTURBED
CONCENTRATION FIELDS

For the shape perturbations of spherical droplets, we use
combinations of modified spherical Bessel functions in the
Ansatz for the perturbed concentration fields in Eq. (10).
These combinations, which solve Eq. (5) with the correspond-
ing boundary conditions stated in Eq. (11), read

bin
l (r) = ε

(
βγ [l (l + 1) − 2]

R̂2
− ∂r φ̂

in(R̂)

)
il
(
�in

l r
)

il
(
�in

l R̂
) ,

(D1)

bout
l (r) = ε

(
βγ [l (l + 1) − 2]

R̂2
− ∂rφ̂

out(R̂)

)

×
kl

(
�out

l r
) − k′

l (�
out
l Rs )

i′l (�out
l Rs ) il

(
�out

l r
)

kl
(
�out

l R̂
) − k′

l (�
out
l Rs )

k′
l (�

out
l Rs ) kl

(
�out

l R̂
) , (D2)

where il (x) and kl (x) are the modified spherical Bessel func-
tions of the first and second kind of lth order. Furthermore,
we have used i′l (x) = ∂xil (x) and k′

l (x) = ∂xkl (x), and we

defined the inverse length-scales �i
l =

√
(ki − �l )/Di.

Again, we have assumed no-flux boundary conditions at Rs

and in the outside domain. Similarly, to Eq. (C2), the modified
spherical Bessel functions vanish in Eq. (D2) for Rs → ∞.
For the shell state, we find

bcore
l (r) = εi

l

(
−βγ [l (l + 1) − 2]

(R̂i )2
− ∂rφ̂

cor(R̂i )

)

× il (�cor
l r)

il (�cor
l R̂i )

, (D3)

bin
l (r) =

[
kl

(
�in

l Ri
)
Co − kl

(
�in

l Ro
)
Ci

]
il
(
�r

l

)
il
(
�in

l Ro
)
kl

(
�in

l Ri
) − il

(
�in

l Ri
)
kl

(
�in

l Ro
)

+
[
il
(
�in

l Ro
)
Ci − il

(
�in

l Ri
)
Co

]
kl

(
�in

l r
)

il
(
�in

l Ro
)
kl

(
�in

l Ri
) − il

(
�in

l Ri
)
kl

(
�in

l Ro
) , (D4)

Ci = εi
l

(−βγ [l (l + 1) − 2]

(R̂i )2
− ∂rφ

in(R̂i )

)
, (D5)

Co = εo
l

(
βγ [l (l + 1) − 2]

(R̂o)2
− ∂rφ

in(R̂o)

)
. (D6)

The outside domain for the shell state is identical to Eq. (D2)
when R̂ is replaced by R̂o, and εl with εo

l .
For the perturbation of a droplet, the strength of the per-

turbation εl appears in every term in Eq. (12). Thus, this
equation directly determines the relaxation rate τl . However,
for the perturbation of the spherical shell, εi

l and εo
l cannot be

chosen independently, because Eq. (12) has to be fulfilled on
both interfaces Ri/o. These two constraints determine the ratio
εi

l/ε
o
l and τl .

APPENDIX E: SHELL WIDTH IN THE LARGE SYSTEM
LIMIT

In the large system limit Rs → ∞, both interfaces move
toward infinity. Thus, the curvature of both interfaces van-
ishes, and the system becomes effectively one dimensional.
Therefore, we can estimate the shell width L∞ by the size of
a one-dimensional droplet in an infinite system. Assuming the
droplet center at x = 0, the stationary solutions of Eq. (5) read

φin(x) = η

kr

cosh(�rx)

cosh(�rR)
+ sr

kr
, for |x| < R, (E1)

φout(x) = −ε
exp(±�px)

exp(±�rR)
+ ε + φ

p
0 , for |x| > R. (E2)

The two interfaces at ±R are stationary if Dr∂xφ
in(R) =

Dp∂xφ
out(R), thus the interface velocity Eq. (7) vanishes. Due

to the absence of any Laplace pressure in 1D, there is no
nucleation barrier, and the only solution of R fulfilling the last
condition reads

R =
√

Dr

kr
arctanh

(√
Dpkp

Drkr

krε

η

)
, (E3)

leading to the expression stated in Eq. (8).
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