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Abstract
Morphogen gradients are a central concept in developmental biology. Their formation often
involves the secretion of morphogens from a local source, that spread by diffusion in the cell field,
where molecules eventually get degraded. This implies limits to both the time and length scales
over which morphogen gradients can form which are set by diffusion coefficients and degradation
rates. Towards the goal of identifying plausible mechanisms capable of extending the gradient
range, we here use theory to explore properties of a cell-to-cell signaling relay. Inspired by the
millimeter-scale wnt-expression and signaling gradients in flatworms, we consider
morphogen-mediated morphogen production in the cell field. We show that such a relay can
generate stable morphogen and signaling gradients that are oriented by a local,
morphogen-independent source of morphogen at a boundary. This gradient formation can be
related to an effective diffusion and an effective degradation that result from morphogen
production due to signaling relay. If the secretion of morphogen produced in response to the relay
is polarized, it further gives rise to an effective drift. We find that signaling relay can generate
long-range gradients in relevant times without relying on extreme choices of diffusion coefficients
or degradation rates, thus exceeding the limits set by physiological diffusion coefficients and
degradation rates. A signaling relay is hence an attractive principle to conceptualize long-range
gradient formation by slowly diffusing morphogens that are relevant for patterning in adult
contexts such as regeneration and tissue turn-over.

1. Introduction

Morphogens and morphogen gradients are key
concepts in developmental biology. Morphogens
are defined as secreted signaling molecules that
spread through the tissue and specify cell fate in a
concentration-dependent manner [1]. The decrease
in morphogen concentrations as a function of dis-
tance from the site of secretion (the source) is referred
to as morphogen gradient. The existence of mor-
phogens has been predicted [2–4] and studied the-
oretically [3, 5, 6], decades before they were first
observed experimentally [7, 8]. The current concept
combines the ideas of ‘form producers’ introduced
by Turing [3], and the idea of positional informa-

tion introduced by Wolpert [4] with a large body of
experimental observations [7–18]. The emergence of
the morphogen concept highlights the importance
of theory in the elucidation and understanding of
morphogenesis.

Morphogen gradients can form when morpho
gens are secreted in a local source and spread by
diffusion through a target tissue where they are
also degraded [5, 12, 14]. This model can account
for observations of morphogen gradients in differ-
ent model organisms including the fruit fly embryo
[12–14, 19] and the zebrafish embryo [15, 16]. In
these systems, morphogen gradients typically reach
length scales in the range of tens to a few hundreds
of micrometers [7, 12–16, 20, 21]. Salient biophysical
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parameters, i.e. diffusion coefficient and morphogen
degradation rate, have been estimated in quantitative
experiments [12–16, 21]. These measured parame-
ter values can explain the formation of morphogen
gradients spanning the observed tissue dimensions
within the relevant developmental time interval. Tis-
sue patterning by morphogen gradients does not
only occur during development on the micrometer
dimensions of early embryos, but can also occur at
larger spatial dimensions of adult tissues. Examples
for patterning of adult tissues by soluble signaling
molecules include the organization of mammalian
liver lobules [22, 23], axolotl regeneration [24], as
well as regeneration and steady-state turn-over of
planarian flatworms [25–31]. These examples show
that signaling gradients are relevant to pattern tissues
on millimeter length scales and possibly even up to
centimeter length scales and thus require mechanisms
capable of gradient formation over post-embryonic
length scales.

In principle, morphogen gradients formed by dif-
fusion and degradation can achieve arbitrary decay
lengths, either by increasing the diffusion coefficient
or by increasing the morphogen life time. However,
constraints on parameter values (e.g., the diffusion
coefficient of proteins in aqueous solution [21]) or
the typical time scales of biological processes (e.g.,
observed growth or regeneration times) impose lim-
its on the system’s dimensions in which gradient
formation by diffusion and degradation is feasible.
For instance, it has been suggested that extracellular
diffusion of Fgf8 (D = 53 ± 8 μm2 s−1 [15]) together
with the estimated degradation rate (k = D/λ2 =

(1.3 ± 0.3) × 10−3 s−1 [15]) gives rise to an Fgf8
gradient with a decay length of λ = 197 ± 7 μm [15]
during embryonic development of the zebrafish on
a time scale of around 13 min, thus matching the
dimension of the embryonic structure to be patterned
and the time scale relevant for development. How-
ever, many morphogens are lipid-modified [32–34]
and therefore poorly soluble in the aqueous tissue
environment, which results in slow diffusion [35–37].
This is in particular the case for Wnt [34] and it
has been debated how far Wnt can spread by dif-
fusion [35, 36, 38–42]. Already when assuming a
diffusion coefficient one order of magnitude smaller
than the above cited value for Fgf8, molecular life
times of the order of months would be required for
the generation of the millimeter-scale Wnt signaling
gradient that organizes the main body axis in planari-
ans [25–27, 30, 31]. It has recently been suggested
that morphogens could be lost by moving out of
the tissue, challenging long-range gradient formation
[20]. This has been shown in an engineered system
to be reduced by receptor binding [20]. Thus, both
the slow diffusivity of morphogens and their potential
loss out of the tissue during diffusive spreading pose
the fundamental question of what other means of

gradient formation could be suited to generate such
long-rage gradients.

Directed molecular transport is one concept to
increase the decay length of gradients that has been
examined [43]. A directed motion of molecules
through the system (drift) can result in faster and
more long-ranged gradient formation as compared
to diffusive spreading, see appendix A. Drift could
be caused by active intracellular transport processes,
or by extracellular fluid flows, generated for example
by coordinated cilia beating or by coordinated con-
tractions [43]. An alternative mechanism for signal
spreading is represented by cytonemes [44]. These
thin, actin-dependent membranous structures extend
from the plasma membrane of the signaling cell
and can contact a signal receiving-cell more than
40 μm away [41, 44]. Cytonemes have therefore been
suggested to contribute to signaling gradient forma-
tion on the micrometer range [41]. An alternative
mechanism for gradient formation has been intro-
duced in the ‘bucket brigade’ model by Kerszberg and
Wolpert in 1998 [45]. In this model, morphogens
move between transmembrane receptors along and
between cells. Receptors recently bound by signaling
molecules become refractory, preventing ‘backward’
spreading of the morphogen. Further, the morphogen
can be handed over from receptors on one cell to
those on another [45]. This leads to the formation of
gradients of receptor-bound morphogens. Kerszberg
and Wolpert briefly discuss whether the hand-over of
morphogens between cells could be replaced by the
idea of positive feedback in which new morphogens
are generated in response to a morphogen binding to
a receptor [45]. They conclude that this would prevent
the morphogen concentration from decaying away
from the local source and would thus not be a feasible
concept of gradient formation [45].

In this paper, we revisit the idea of positive feed-
back as a means of gradient formation. Inspired by
the evidence for Wnt-mediated wnt expression and
the ensuing wnt expression gradients in planarians
[27, 29, 31, 46] we explore how tissue-scale mor-
phogen gradients can form by signaling relays. We
develop a model in which the extracellular mor-
phogen gradient and resulting intracellular gradient
of signaling activity are connected by a positive feed-
back loop (i.e. Wnt-mediated wnt expression). This
describes morphogen-mediated morphogen produc-
tion and introduces a signaling relay by which
morphogens can propagate in the tissue. In fact,
the whole tissue effectively becomes a signaling-
dependent source due to the positive feedback. A
signaling-independent source of morphogen at the
boundary initiates the signaling relay (inspired by
the putative role of a tail-tip expressed Wnt ligand
in planarians [31, 46]). In contrast to the work by
Kerszberg and Wolpert [45], our results show that a
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signaling relay can induce stable morphogen and sig-
naling gradients. Moreover, we show that spreading
of the signal by a cell-to-cell relay leads to effective
diffusion of the morphogen through the system. That
is, individual molecules do not have to travel long
distances but are instead produced anew further down
the system in a feedback-dependent manner. Further-
more, the signaling relay leads to an effective degra-
dation rate smaller than the molecular degradation
rate. This way, a cell-to-cell signaling relay can effi-
ciently generate long-range morphogen and signaling
gradients for physiologically relevant molecular dif-
fusion coefficients and degradation rates on relevant
time scales. Moreover, when this feedback-dependent
production is combined with secretion polarity in the
plane of the cell field, the cell-to-cell relay additionally
leads to the emergence of an effective drift resem-
bling directed transport of morphogens through the
system in the absence of molecular transport. This
can further increase the decay length of the signal-
ing and morphogen gradients. Finally, the range of
the gradients can be set by regulating the feedback
strength, allowing the system to adjust gradient range
without the need to change diffusivity or molecular
life time of the morphogen. Altogether, this makes
cell-to-cell signaling relays an attractive concept to
explore in systems with millimeter-scale patterns as
observed during regeneration such as in planarians,
hydra, zebrafish, and salamanders.

2. Gradient formation by cell-to-cell
signaling relay

In this paper, we focus on morphogen gradient for-
mation by a cell-to-cell relay where individual cells
transmit the signaling information to their neigh-
bors. In particular, our approach takes the cou-
pling between intracellular levels of signaling activity
and the extracellular morphogen levels into account.
This differs from scenarios where intracellular sig-
naling gradients are strictly downstream of extra-
cellular morphogen levels. To capture the coupling,
we account for individual cells that react to the
morphogen concentration in the extracellular space
by increasing their intracellular signaling activity,
captured as the concentration of an intracellular
signaling molecule downstream of the morphogen.
This increased signaling activity eventually leads to
the production and secretion of more morphogen,
increasing the extracellular morphogen concentra-
tion. This way, the information is relayed from cell
to cell as the whole cell field becomes a signaling-
dependent source. The level of intracellular signal-
ing activity and concentration of extracellular mor-
phogen are thus interdependent. The gradient is
positioned and oriented by a localized, signaling-
independent source of morphogen at the proximal
boundary. From this signaling-independent source,

the morphogen profile propagates via the cell-to-cell
signaling relay towards the distal end. Note that the
feedback is present along the whole length of the
system. That is, the cells at the proximal boundary of
the system serve a dual function: they produce mor-
phogen firstly in a signaling-independent manner by
virtue of being the signaling independent source and
secondly in a signaling-dependent manner depending
on their intracellular signaling level like all the other
cells in the cell field.

The schematic of the cell-based model is shown
in figure 1. We denote by bn the signaling activity in
cell n, where n = 0, . . . , N − 1, and N is the number
of cells along the length of the system. Thus, bn

denotes the concentration of an intracellular signal-
ing molecule that is downstream of the morphogen.
Similarly, we introduce the morphogen concentration
in the extracellular space an, where n refers to the
extracellular space between the cells n − 1 and n.
For simplicity we use a discrete description of the
extracellular space with concentrations an averaged
within a cell length. The dynamic equations for these
concentrations read

∂tan = D
an−1 − 2an + an+1

δ2
− kAan

+ sAθw−n + f(bn−1, bn), (1)

∂tbn = sB − kBg(an, an+1)bn. (2)

Here, D denotes the diffusion coefficient, δ the width
of a cell, and kA the rate of morphogen loss which
could be due to degradation, internalization or leak-
age. For simplicity, we refer to kA as the degradation
rate of the morphogen. The constant rate of pro-
duction in the signaling-independent source region
(shaded in red in figure 1), is denoted sA. The cells
that are part of this signaling-independent source
region at the proximal end (n = 0) of the system
are specified by the function θw−n, where θw−n = 1
inside the source for n < w, and θw−n = 0 outside the
source for n > w. At the source boundary, n = w, we
use θw−n = p where p describes a cellular asymmetry
of molecular secretion, see below. The distal end is
at n = N. In equation (1), the positive feedback gives
rise to an additional source f (bn−1, bn) in the whole
cell field that depends on the signaling activities in the
two adjacent cells, bn−1 and bn. We refer to this as the
signaling-dependent source. Equation (2) describes
the dynamics of the signaling activity. Here, sB denotes
the rate of production of the intracellular signaling
molecule, kB is a degradation rate and g(an, an+1)
describes the positive feedback regulating the degra-
dation of the intracellular signaling molecule by the
morphogen concentrations in the adjacent extracel-
lular spaces an and an+1. The boundary conditions
are discussed in appendix B. The signaling-dependent
source f , as well as the regulation of the degradation
of the intracellular signaling molecule g are given by
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Figure 1. Schematic representation of the model geometry in one dimension. The extracellular morphogen an (depicted as red
dots) is constantly produced in the signaling-independent source region shaded in red at the proximal end (n = 0). Moreover, it
is produced throughout the system, which becomes a signaling-dependent source due to the signaling relay. It spreads across the
extracellular spaces, where it is also degraded, towards the distal end (n = N). The intracellular signaling activity bn (depicted as
blue dots) is confined to the cell interior and the intracellular signaling molecules do not move between cells of size δ. The
dynamics of the system is given by equations (1) and (2).

f(bn−1, bn) = αp
bn−1

cB + bn−1
+ α(1 − p)

bn

cB + bn
,

(3)

g(an, an+1) =
cA

cA + an + an+1
, (4)

where we use the Hill activator function to model
the positive feedback of the intracellular signaling
molecule bn on morphogen production and cB is a Hill
activation threshold, i.e. the concentration of bn at
which half-maximal activation is reached. Similarly,
g is the Hill inhibitor function and cA is the Hill
inhibitor coefficient at which half-maximal inhibition
is reached. Here, we use Hill exponents of 1 because
we consider cells that respond linearly to weak stimuli
before the response saturates at high stimuli. The
maximal signaling-induced secretion rate is denoted
α. Equation (3) describes polarized morphogen secre-
tion. Such polarized secretion might for instance arise
from distinct activities of the two lateral sides of the
cell to secrete morphogen. This secretion polarity p is
associated with cell polarity in the tissue akin to planar
cell polarity. In the case of non-polar cells p = 1

2 .
Extreme secretion asymmetries correspond to p = 0
and p = 1, respectively.

Equations (1)–(4) describe a positive feedback
between morphogen concentrations and concentra-
tions of the intracellular signaling molecule, where
the parameter α sets the overall feedback strength.
This feedback consists of two elements: Equation (3)
contains a positive feedback element stimulating
morphogen secretion with increasing intracellular
signaling activity, the signaling-dependent source.
Equation (4) also is a positive feedback element,
increasing signaling activity for increased morphogen
levels. This feedback element acts on the degradation
of the intracellular signaling molecule and thus is
positive due to inhibition of inhibition, a principle
commonly observed in signaling pathways.

Our model is inspired by Wnt signaling. It is
known that high extracellular Wnt concentrations
prevent intracellular β-catenin degradation [47] as
captured by equation (2), corresponding to inhibition

Figure 2. Steady-state concentration profiles of the
morphogen (a) and the intracellular signaling activity
(b). The signaling-independent source region is shaded in
red. Circles denote the numerically obtained steady-state
solution to the non-linear equations, lines indicate the
analytical approximation to the steady state. The insets
show the same profiles on a log-y scale. Note that we
subtracted the plateau value reached at the distal end of the
system in order to visualize the exponential decay towards
this value. Parameters: table H1, set A in the appendix.

of inhibition. Equation (1) is motivated by obser-
vations in planarian flatworms suggesting that high
intracellular β-catenin levels lead to increased expres-
sion of several Wnt-signaling pathway components,
including several Wnt ligands [31].

The cell-to-cell relay involving positive feedback
is conceptually different from gradient formation by
diffusion and degradation. The relay turns the whole
system into a signaling-dependent source. Thus, indi-
vidual signaling molecules do not have to move a
distance spanning the entire gradient. They can form
a long-range gradient even if they only move between
neighboring cells. In the following, we analyze the

4
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impact of the positive feedback on the shape of the
gradient and the dynamics of gradient formation.

3. Regulation of the gradient range by
signaling feedback

3.1. Morphogen and signaling gradients at steady
state
We first consider steady-state concentration profiles
in order to discuss the range of the morphogen and
signaling gradients. We quantify the range of the
gradients as the decay length λ over which they decay.
Note that here we measure all lengths relative to the
cell size δ and λ is therefore the number of cells corre-
sponding to the gradient range. We can then analyze
the impact of the positive feedback on the gradient
range. The steady-state solutions to equations (1)
and (2) are denoted a∗n and b∗n and obey ∂ta∗n = 0,

∂tb∗n = 0. We can obtain these solutions numerically,
see figure 2 and appendix C. However, to discuss
the impact of the feedback, we use an approximation
which we can obtain analytically. Note that at steady-
state, equation (2) implies that the profile of the
intracellular signaling activity is linearly dependent
on the morphogen concentration profile:

b∗n =
sB

kBcA

(
cA + a∗n + a∗n+1

)
. (5)

Thus, at steady state, the signaling activity-gradient
can be obtained from the morphogen gradient using
equation (5).

We focus our discussion on the morphogen gradi-
ent a∗n in the following. We obtain an approximation
for the steady state by matching simplified solutions
inside the source region with n = 0, . . . ,w, and out-
side of the source region with n = w + 1, . . . , n

a∗n =

{
ain

c + Cin
1 exp(n/λin

1 ) + Cin
2 exp(−n/λin

2 ) for n = 0, . . . ,w,

aout
c + Cout

1 exp(n/λout
1 ) + Cout

2 exp(−n/λout
2 ) for n = (w + 1), . . . , N.

(6)

Here, the gradient amplitudes Cin
1 , Cin

2 , Cout
1 , and Cout

2

are determined by the boundary conditions, as well
as the matching condition at the source boundary,
see appendix D. The decay lengths λin, out

1, 2 can be
expressed explicitly, see appendix D. We focus on
the decay of the gradient outside the source, which
occurs over a range λout

2 . This term dominates for
large system sizes outside of the source (see insets in
figure 2) and therefore sets the gradient range

λ :=λout
2 . (7)

The decay length λ can be related to effective trans-
port coefficients which we discuss in the next section.
Based on these effective transport coefficients, we
then discuss the regulation of the gradient range by
the signaling-feedback strength in section 3.3. We
show in particular, that the decay length is increased
compared to gradient formation by diffusion and
degradation, see figure 3.

3.2. Effective coefficients of molecular transport
The model for gradient formation by cell-to-cell sig-
naling relay introduced in the last sections describes
the kinetics of molecular transport and signaling at
the scale of cells. In this model, a gradient with a
long range emerges revealing that the system gen-
erates concentration patterns at larger scales. In the
spirit of a hydrodynamic theory, molecular con-
centration profiles can be captured by an effective
continuum description at scales much larger than

cells. In this limit, it has the form of a convec-
tion–diffusion–degradation equation:

∂tC = Deff ∂
2
x C − ∂x(veff C) − keff C + sθ(S − x).

(8)
Here, Deff is an effective diffusion coefficient, keff is
an effective degradation rate, and the velocity veff

describes an effective drift. Production with rate s is
limited to a local source of width S, which corresponds
to the signaling-independent source in the cell-based
model. The spatial coordinate in the direction along
which the gradient forms is denoted x, and θ denotes
the Heaviside function, where θ(y) = 0 for y < 0
and θ(y) = 1 for y � 0. In equation (8), 0 < x � L
with a tissue of size L and the source at the proxi-
mal boundary. Positive values of v indicate drift in
positive x-direction. We can estimate effective trans-
port coefficients as well as the effective degradation
rate by comparing the large scale dynamics of our
cell-based model to the corresponding behavior of
the continuum model given by equation (8), see
appendix E. We obtain

Deff � φ

(
D

δ2
+

1

2
αzout

)
, (9)

keff � φ
(
kA − 2αzout

)
, (10)

veff � φ(2p − 1)αzout, (11)

where

5
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Figure 3. The decay length of the morphogen gradients
reaches a maximum close to the critical feedback strength
αcrit in the relay model. (a) Decay length λ in cells as a
function of the relative feedback strength α/αcrit. (b) Decay
length λ in cells as a function of the relative distance from
the critical feedback strength δα/αcrit, where
δα = αcrit − α. The log–log plot exposes the scaling
relationship stated in equation (15). Solid blue lines: decay
length according to the analytical approximation to the
steady-state solution (equation (13)), blue dots: decay
length based on the numerical steady-state solution
(appendix F), dashed blue line: decay length in the limit of
a linear feedback response, i.e. in the absence of feedback
saturation, purple line: decay length in the limit of α = 0,
i.e. a diffusion–degradation model, vertical black line:
α = αcrit. Parameters: table H1, set B in the appendix.

zout =
cAcBkB

sB

(
cA +

cAcBkB

sB
+ 2aout

c

)−2

. (12)

Here aout
c is given in appendix D, see equation (D.3),

and the coefficient φ is given in appendix E, see
equation (E.24). Note that the effective diffusion coef-
ficient and degradation rate contain the molecular
diffusion coefficient D/(δ2) and the molecular degra-
dation rate kA, respectively. Both are modulated by the
additive contribution from the relay αzout, where α is
the feedback strength and zout, with units of inverse
concentration, characterizes the linear response of
the morphogen system at the homogeneous reference
state, see appendix D. They are further modulated
by the multiplicative coefficient φ. In contrast, the
effective drift is purely due to polarized secretion of
molecules with polarity p in the complete absence
of a molecular drift. This implies that molecules
appear to be transported through the system, when
actually they are produced and secreted with secretion
polarity p. Accordingly, the effective drift vanishes in
the absence of secretion polarity at p = 1

2 . The polar-
ized secretion 2p − 1 is again modulated by αzout

and φ.
Using these effective quantities, the decay length

of the morphogen gradient at steady-state is given
as:

Figure 4. Polarized secretion towards the distal end
(veff > 0) increases the decay length of the morphogen
gradients at steady state. Decay length λ in cells as a
function of the relative distance from the critical feedback
strength δα/αcrit , where δα= αcrit − α. Solid lines: decay
length according to the analytical approximation to the
steady-state solution (equation (13)), dots: decay length
based on the numerical steady-state solution (appendix F),
dashed lines: decay length in the limit of a linear feedback
response, i.e. in the absence of feedback saturation. Blue:
absence of secretion polarity, p = 0.5, green: preferred
secretion towards the distal end, p = 0.99, red: preferred
secretion towards the proximal end, p = 0.01. Parameters:
table H1, set C in the appendix.

λ � 2Deff(
v2

eff + 4Deffkeff

)1/2 − veff

. (13)

Based on this expression for the decay length, we
can discuss the impact of the signaling relay on the
gradient range, based on the effective quantities we
identified above. We begin this discussion by focusing
on the influence of the feedback strength α.

3.3. Regulation of gradient range by
signaling-feedback strength
The positive feedback strength α can regulate the
gradient range by modulating all effective quantities
introduced above. In the absence of positive feedback,
α = 0, the model becomes a diffusion–degradation
system and thus the decay length simplifies to the
well-known expression λ = δ−1(D/k)1/2 [14], see
appendix A, equation (A.5). In the presence of pos-
itive feedback, α > 0, the range of the gradient is
increased as compared to the case α = 0, see figure 3.
In particular, the decay length exhibits a maximum
near a feedback strength αcrit. Here, αcrit corresponds
to a critical point that occurs for a linear feedback
response when bn/(cB + bn) is replaced by bn/cB,
which is a linear function of bn. Such a linear regime
occurs in the limit when the Hill activation threshold
cB is much larger than the signaling activity bn. In
this case, the concentration grows without bounds for
α > αcrit with

αcrit =
cAcBkAkB

2sB
, (14)

and no steady state exists. In this linear response
regime, λ diverges at the critical feedback strength.
For p = 1

2 , λ increases near the critical point as

λ ∝ (δα)−1/2, (15)
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where δα = α− αcrit, see dashed line in figure 3(b).
Because the Hill function bn/(cB + bn) is non-linear,
λ remains finite. The maximal value reached nearαcrit

scales with cB as

λ � (cB)1/4

[
4D/δ2 + kA

8kA(sB/kB)1/2

]1/2

. (16)

In the presence of secretion polarity oriented towards
the distal end, p > 1

2 ,λ diverges near the critical point
as

λ ∝ (δα)−1. (17)

It is capped by the non-linearities at the maximal
value given by

λ � (cB)1/2 2p − 1

4(sB/kB)1/2
. (18)

The maximal λ corresponds to a minimal value of keff

which never reaches 0. Correspondingly, as a function
of α, λ passes through a maximum near αcrit, see
figure 3(a), equations (16) and (18). Note that the
increase of gradient range due to the signaling relay
is particularly strong close to αcrit, see figure 3(b).

Taken together, the positive feedback in the relay
increases the decay length of the steady-state signaling
gradient compared to diffusion and degradation, see
figure 3. Moreover, the range of the signaling gradient
can be regulated solely by changes in the feedback
strength α. This is different from gradient formation
by diffusion and degradation alone, where the decay
length of the gradient is regulated by changes of the
degradation rate or the diffusion coefficient. We next
focus on the impact of secretion polarity on gradient
range.

3.4. The influence of the emergent morphogen
drift on gradient range
In the signaling relay, an emergent drift with effective
velocity veff arises as a consequence of polarized secre-
tion of morphogen, with p �= 1

2 , see equation (11).
Thus, the emergent morphogen drift veff occurs in the
absence of an actual directed transport of molecules
through the system. In particular, the emergent drift
has positive values for secretion polarity oriented
towards the distal end i.e. for p > 1

2 . We observe that
in this case the emergent drift increases the decay
length of the steady-state signaling gradient reached
at the critical feedback strength αcrit, see figure 4,
compare equations (16) and (18). This dependence of
decay length on effective drift is also captured by the
continuum description, see equation (8).

The emergent morphogen drift also influences
the sensitivity of the system to changes in the feed-
back strength as the feedback approaches its critical
strength, compare equations (15) and (17). Thus, for
preferred secretion towards the distal end, the decay
length increases more rapidly as the feedback strength
approaches its critical value as compared to the case
without effective drift p = 1

2 , see figure 4.

Figure 5. The relaxation time of the signaling-relay
mechanism reaches a finite value at the critical feedback
strength. Relaxation time τmax as a function of the relative
distance from the critical feedback strength δα/αcrit , where
δα= αcrit − α. Dots: relaxation time obtained by
linearizing the dynamics around the numerically obtained
steady-state solution, solid lines: relaxation time obtained
by linearizing the dynamics around the analytical
approximation to the steady-state solution, dashed lines:
the relaxation time in the limit of a linear feedback
response, i.e. in the absence of feedback saturation. Blue:
absence of secretion polarity, p = 0.5, green: preferred
secretion towards the distal end, p = 0.99. δα = α − αcrit.
Parameters: table H1, set C in the appendix.

Taken together, polarized secretion can increase
the decay length of the steady-state gradients and can
make the decay length more responsive to changes
in the feedback strength. We next investigate how
the feedback strength influences the dynamics of the
system, in particular the time needed to build the
gradient.

4. Dynamics of gradient formation
with cell-to-cell signaling relay

In order to exert a patterning function, a morphogen
gradient has to form. Therefore, apart from the decay
length of the steady-state profile, the time it takes to
form a profile is an important property of gradient
formation. We use the slowest relaxation time of the
system to reach steady state as a measure of the time
it takes to form a gradient. We define the slowest
relaxation time as the slowest exponential relaxation
of concentrations close to steady state

an(t) = a∗n + δan(t), (19)

bn(t) = b∗n + δbn(t), (20)

where an(t) and bn(t) denote the concentration pro-
files of the morphogen and the intracellular signaling
molecule at time t, a∗n and b∗n denote the respective
steady-state concentration profiles and δan(t) and
δbn(t) the respective time-dependent deviations from
it. Using the numerically determined steady-state
profiles, we can then obtain the relaxation modes
numerically, for details see appendix G, see figure 5
circles. We observe that the relaxation time increases
asα increases and that the dependence onα is steepest
close to αcrit, see figure 6. Compared to the case
p = 1

2 , the relaxation time close to αcrit becomes
shorter when secretion polarity is oriented towards
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Figure 6. The relaxation time of the relay mechanism
reaches a local maximum close to the critical feedback
strength. (a) The relaxation time as a function of the relative
feedback strength. (b) Blow-up of the boxed region in
(a). Dots: relaxation time obtained by linearizing the
dynamics around the numerically obtained steady-state
solution, solid lines: relaxation time obtained by linearizing
the dynamics around the analytical approximation to the
steady-state solution, dotted lines: relaxation time in the
limit of a linear feedback response, i.e. in the absence of
feedback saturation, vertical black lines: critical feedback
strength. Blue: absence of secretion polarity, p = 0.5, green:
preferred secretion towards the distal end, p = 0.99.
Parameters: table H1, set C in the appendix.

the distal end, p > 1
2 , see figures 5 and 6. We com-

pare these results to the relaxation modes obtained
based on the approximation of the steady-state profile
discussed in section 3.1, equation (6). This approx-
imation works well away from the critical feedback
strength but underestimates the relaxation time near
αcrit, figure 5 solid lines. Using a linear feedback,
bn/cB, provides a good approximation for the relax-
ation time away from the critical feedback strength,
but leads to a divergence of the relaxation time at αcrit,
see figures 5 and 6 dashed lines.

Taken together, the relaxation time slows down
with increasing feedback strength α and reaches a
local maximum near αcrit where it stays finite due
to the non-linearities in the feedback, see figure 5.
However, different from the decay length, the relax-
ation time is very asymmetrical around αcrit, reaching
higher levels for α > αcrit as compared to α < αcrit.
Secretion polarity towards the distal end can speed up
the relaxation times close to αcrit, see figures 5 and 6.

5. Scaling of decay length and relaxation
time in gradient formation

Patterning of tissues requires a range of gradient decay
lengths from tens of micrometers up to of the order
of millimeters and potentially even centimeters. In
order to exert a patterning function, those gradients

Figure 7. The trade-off between the decay length and the
relaxation time of the relay model for changing feedback
strength. Dots: relaxation time based on dynamics
linearized around the numerical steady-state solution and
the decay length based on the numerical steady-state
solution. Solid lines: relaxation time based on the dynamics
linearized around the analytical approximation to the
steady-state solution and the decay length according to the
analytical approximation to the steady-state solution
(equation (13)). Dashed lines: relaxation time and the
decay length in the limit of a linear feedback response, i.e.
in the absence of feedback saturation. Blue: absence of
secretion polarity, p = 0.5, green: preferred secretion
towards the distal end, p = 0.99. Black lines above and
below the curves: scaling behavior of τmax ∝ λ2 and
τmax ∝ λ, respectively. τmax ∝ λ2 is the scaling behavior of
gradient formation by diffusion and degradation alone.
The region shaded in red corresponds to gradient decay
lengths and time scales relevant for planarian regeneration,
i.e. 0.125 mm to 0.5 cm and 1 h to 14 days, respectively.
Parameters: table H1, set C in the appendix.

have to be formed on time scales compatible with
the respective patterning process, for instance days
to weeks in case of planarian regeneration. In this
section, we discuss the scaling of relaxation time
with decay length as the decay length is increased by
changing the feedback strength.

As discussed above, the decay length of the gra-
dients at steady state is largest for feedback strengths
close to the critical one at which it reaches a max-
imum, see figure 3(a). In contrast, the relaxation
time reaches a local maximum close to αcrit and
stays high at values α > αcrit, see figure 6. Therefore,
generating gradients is fastest at feedback strengths
below and up to the critical feedback strength, see
figure 7. Figure 7 shows the scaling of relaxation time
τmax with decay length λ. We observe that for p = 1

2 ,
i.e. vanishing effective drift veff , the relaxation time
scales as τmax ∝ λν for α < αcrit, with ν � 2, see
figure 7. In other words, doubling the decay length
increases the relaxation time by a factor of four. This
is the same scaling relationship observed for gradient
formation by diffusion and degradation, see appendix
A, equation (A.8). Note that for gradient formation by
diffusion and degradation, the decay length and the
relaxation time are regulated by changes in the degra-
dation rate, whereas in the signaling relay discussed
here, they are regulated by changes in the feedback
strength α.

For secretion polarity oriented distally, p > 1
2 , the

scaling relationship is altered, with ν < 2, see figure 7.
As λ reaches a maximum, deviations from these
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scaling relations occur. These are most pronounced
when estimated using our approximations, see solid
lines in figure 7. Taken together, the signaling relay
combined with secretion polarity outperforms the
scaling of relaxation time with the decay length that
is reached by diffusion and degradation alone. Thus,
the decay length of the steady-state profiles can be
increased up to the millimeter range while staying
within a biologically relevant relaxation times of days,
see figure 7.

6. Discussion

6.1. Formation of long-range morphogen
gradients by a signaling relay
In this paper, we explore the consequences of incor-
porating morphogen-mediated morphogen produc-
tion into morphogen gradient formation. Previous
models of morphogen gradient formation assume
the release of morphogen from a spatially restricted
source region and morphogen gradient formation
by diffusion and degradation within the adjacent
cell field [5, 12–16]. Motivated by recent obser-
vations in planarian flatworms (discussed in more
detail below), our model incorporates a signaling
relay in form of positive feedback of the morphogen
on its own production across the entire cell field
into the gradient formation process. This positive
feedback loop consists of two elements that jointly
mediate morphogen-mediated morphogen produc-
tion. Morphogen production is positively regulated
by intracellular morphogen-induced signaling activ-
ity, which in turn depends on the extracellular mor-
phogen concentration, see figure 1 and equations (1)
and (2). Within the cell field, morphogen-mediated
morphogen production facilitates signal propagation
between neighboring cells. Gradient initiation and
orientation are set by a local morphogen source at
the proximal boundary of the cell field. The source
cells constitutively release morphogen in a signaling-
independent manner, analogous to the role of the
source cells in previous models [5, 12–16]. However,
in our model the source cells additionally produce
morphogen in a morphogen signaling-dependent
manner, similar to all the cells in the cell field. While
the signaling-independent morphogen production
primes gradient formation analogous to the role of
the source in previous gradient formation models,
morphogen-mediated morphogen production in our
model effectively extends the source region across the
entire cell field. A further important distinction to
gradient formation by diffusion and degradation is
that in our model, the morphogen does not neces-
sarily need to travel the entire length of the gradient,
as the cell-to-cell signaling relay can provide an addi-
tional signal propagation route even in the absence of
diffusion. As further elaborated below, signaling relay

mechanisms may thus extend the lengths and time
scales over which patterns can be formed under phys-
iological diffusion coefficients, while also providing
potentially new mechanisms for pattern scaling.

6.2. The role of the feedback strength
The strength α of the morphogen-dependent mor-
phogen production feedback loop is a key parameter
in our model. It is assumed to be spatially homoge-
neous across the entire cell field. Note that despite
this spatially homogeneous feedback strength, mor-
phogen production may still be spatially modulated
due to spatial differences in extracellular morphogen
concentrations, see equations (1) and (2). Mor-
phogen production controlled by a positive feedback
loop thus forms a self-organized system that can gen-
erate signaling gradients and morphogen gradients.

The key element to achieve steady-state concen-
tration gradients in the presence of a positive feed-
back loop is feedback saturation. In the absence of
feedback saturation, there exists a critical point in
the feedback strength at which the production due to
the positive feedback would exceed the degradation
and no steady-state would be reached. In the presence
of feedback saturation, the system reaches a steady
state at this critical feedback strength αcrit with several
interesting consequences on the system’s properties.
Firstly, close to the critical feedback strength, the
decay length of the gradient profile becomes maximal,
see figure 3. Secondly, for feedback strengths above
the critical one, gradient formation is inefficient,
as the relaxation time stays high for α > αcrit, see
figure 6, while the decay length decreases, see figures 3
and 7. Note that the effect of the signaling relay on
both decay length and relaxation time is particularly
pronounced close to the critical feedback strength, see
figures 3 and 6. Thirdly, above the critical feedback
strength, steady-state concentration profiles become
rather flat with a high base level of morphogen due to
the positive feedback and a shallow spatial profile, see
figures D1–D4 in the appendix. We speculate that in
the regime α > αcrit, the signaling relay may lead to
traveling fronts, similar to those reported in reference
[48].

Given that the focus of this study is on the effi-
cient formation of long-range morphogen and sig-
naling gradients, we focus our discussion on feedback
strengths α � αcrit. In this regime, the signaling relay
affords long decay lengths, see figures 3 and 4 and gra-
dient formation on biologically relevant time scales of
hours to days, see figures 6 and 7.

In summary, our results demonstrate that the
formation of steady-state gradients is indeed possible
in systems incorporating morphogen-mediated mor-
phogen production. The strength of the feedback has
important consequences on the decay length of the
morphogen gradients formed, as well as on the time
scale of their formation.
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6.3. Signaling relay increases the decay length of
morphogen and signaling gradients
An interesting feature of our signaling relay model
is that it affords the extension of gradient decay
lengths beyond the decay length set by diffusion and
degradation alone. We make a conservative choice of
the molecular diffusion coefficient of the morphogen
of 1 μm2 s−1 to take into account the slow diffusivity
of lipid-modified molecules, and use a degradation
rate of the morphogen of 10−3 s−1, like the one mea-
sured for Wg [14] or Fgf8 [15]. With these numbers,
gradients formed by diffusion and degradation alone
would reach a decay length of 31 μm. In contrast,
we show that with these same numbers, the signaling
relay can generate gradients with decay lengths of
up to about 950 μm, see figure 4. Note that, in
order to achieve such decay lengths by diffusion and
degradation alone, molecular life times of days would
be required. In contrast, the signaling relay described
here can build such long-range gradients using
short-lived molecules with life times of minutes to
hours.

This remarkable decay length-extension effect
is due to the fact that morphogen-mediated mor-
phogen production throughout the tissue uncouples
the decay length of the gradient from the diffusion
distance of individual morphogen molecules. The
morphogen profile still follows a transport equation
(equation (8)) which is characterized by effective
transport coefficients (equations (9) and (11)) and
an effective degradation rate (equation (10)). We
can understand the increased gradient decay length
in terms of these effective transport coefficients and
degradation rate: the effective diffusion of the mor-
phogen is increased compared to its molecular dif-
fusion coefficient (equation (9)), and the effective
degradation rate of the morphogen (equation (10))
is smaller than the molecular degradation rate. Both
effects are due to the production of morphogen across
the whole cell field in response to the signaling relay
and lead to an increase in the decay length of the
gradients. Importantly, the resulting signaling pattern
can extend beyond the limits set by the molecular
diffusion coefficient and degradation rate of the mor-
phogen. Taken to its extreme, this means that with
the signaling relay, morphogen gradients can form
even in the limit of no molecular diffusion (e.g., the
morphogen remaining associated with the surface of
the producing cell), exclusively due to the positive
feedback and the cell-to-cell relay.

In addition to effective diffusion and effective
degradation, the production of morphogen across
the whole cell field can lead to an effective drift of
morphogen through the system (equation (11)) if
the morphogen is preferentially secreted towards the
distal end of the system, p > 1

2 . This drift emerges
due to the secretion polarity even though individual
molecules do not exhibit drift. Biological mechanisms

that could achieve such polarized secretion include
planar cell polarity [49]. The effective drift further
increases the decay length of the gradients formed,
see figure 4. For a diffusion coefficient of 1 μm2 s−1

and a degradation rate of the morphogen of 10−3 s−1,
the signaling relay reaches decay lengths of up to
1770 μm in the presence of secretion polarity, see
figure 4. Thus, secretion polarity generates an addi-
tional lever to increase the range of gradients formed
by a signaling relay.

Taken together, a signaling relay allows to reach
decay lengths of the order of millimeters even for
slowly diffusing molecules. This is one to two orders
of magnitude larger than what is achieved by diffusion
and degradation alone, see figures 3 and 4.

6.4. Efficient formation of long-range
morphogen gradients
Apart from the decay length of a morphogen gradient,
the time it takes to form the profile is an important
characteristic of any patterning mechanism, since the
profile has to form on time scales relevant for the
pattering process in question. The relaxation time
of a morphogen gradient, defined as the slowest
exponential relaxation time close to the steady state,
is a good measure of the dynamics of the gradient.
In general, increasing the decay length of gradients
requires longer times compared to the formation of
more short-range profiles. Accordingly, we find that
for a cell-to-cell signaling relay the relaxation time
slows down with increasing feedback strength α, see
figures 5 and 6 as the decay length increases, for
α < αcrit, see figures 3 and 4. To quantify this trade-
off between the decay length and the relaxation time,
we analyzed the scaling between the decay length and
the relaxation time, τmax ∝ λν for α < αcrit. In the
signaling relay-model, the relaxation time scales with
the decay length with an exponent of ν � 2 in the
absence of secretion polarity, see figure 7. This is
the same scaling relationship observed for gradient
formation by diffusion and degradation. However, in
the signaling relay-model in the presence of secretion
polarity towards the distal end, p > 1

2 this scaling
exponent is smaller than 2, see figure 7. We note that
in order to generate long-range gradients on efficient
time scales, the degradation rate of the intracellular
signaling molecule kB must be larger than the degra-
dation rate of the morphogen kA.

Taken together, positive feedback combined with
polarized secretion outperforms the scaling relation-
ship of the relaxation time with the decay length
reached by diffusion and degradation alone. This
way, the decay lengths of the steady-state morphogen
and signaling gradients can be increased into the
millimeter range while staying within a biologically
relevant relaxation time of hours to days, see figure 7,
for a physiologically relevant choice of parameters.
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6.5. Scaling and robustness of gradients formed
by a signaling relay
The signaling relay does not only lead to an increased
decay length compared to a gradient formed by diffu-
sion and degradation alone, it additionally provides a
new way of regulating the decay length of the gradient:
the signaling relay modulates the effective transport
coefficients and the effective degradation rate that
together determine the decay length of the gradient.
Thus, the decay length can be tuned by exclusively
changing the feedback strength.

The presence of a critical point in the signal-
ing relay provides a sensitive response to the feed-
back strength: small relative changes in the feedback
strength α in the vicinity of the critical point can
generate changes in the decay length of more than
one order of magnitude in our signaling relay-model,
see figures 3 and 4. In contrast, in order to scale the
decay length of a profile generated by diffusion and
degradation across one order of magnitude, either the
diffusion coefficient or the degradation rate would
have to change by two orders of magnitude. The
sensitive feedback in our model could be relevant for
scaling, i.e. the increase of the decay length propor-
tional to system size in a growing tissue [19, 50]. In
particular, when scaling is achieved through a control
of the feedback strength linked to the size of the
system [50–52] a sensitive feedback could facilitate
robust and reliable scaling. Indeed, a sensitive feed-
back implies an efficient response in adjusting the
gradient to small changes in system size.

However, a sensitive feedback may also raise ques-
tions of the robustness of the system to small per-
turbations. Those questions are based on the fact
that biological processes are inherently noisy. It has
been suggested that robustness then implies an insen-
sitivity to changes in parameters [53, 54]. Interest-
ingly, careful experimental observations of the bicoid
gradient in Drosophila embryos show that gradient
formation is very precise and in fact quantitatively
reproducible between embryos, despite being sensi-
tive to the mRNA levels of the morphogen, i.e. to
the production rate [55]. This suggests that gradient
formation is precisely controlled to ensure robustness
at every step of gradient formation [55]. In the context
of our model of gradient formation by a signaling
relay, robustness could be achieved through an effi-
cient control of a sensitive feedback.

6.6. Conclusion and outlook
The concept of pattering by morphogen gradients has
mostly been established in few molecularly tractable
developmental model systems, e.g. Drosophila [7, 8,
12, 14, 19, 55] or zebrafish embryos [15, 16]. In these
systems, as in other embryonic systems, patterning
occurs on small length scales and is well explained
by diffusion and degradation [14, 15]. However,
patterning processes are not restricted to embry-
onic development and the associated small length

scales; patterning processes are also required in adult
animals, with regeneration as one notable example.
Limb regeneration in adult salamanders [56] or whole
body regeneration inclusive of the brain in planarian
flatworms [25–31, 57, 58] not only entail spectacu-
lar examples of complex tissue patterning processes,
but also involve length scales up to the centimeter
range. As we show in figure 3 the decay length based
on diffusion and degradation is much shorter than
in the presence of a signaling relay, suggesting that
the biological utility of morphogen gradients formed
by diffusion and degradation is strongly diminished
at large scales. Our signaling relay mechanism via
morphogen-mediated morphogen expression thus
provides an attractive concept for bridging scales, see
figures 4 and 7.

Our model is inspired by the posterior-to-anterior
Wnt signaling gradient in planarian flatworms that
patterns the planarian anteroposterior axis and that
is established via Wnt-ligand expression gradients
[25–31, 46]. Moreover, the expression gradient-
forming Wnt ligands [27–29, 31, 46] are themselves
expressed in a Wnt-signaling dependent manner
[28, 29, 31] within the sheet-like body wall muscu-
lature [59–61]. Gradient formation is likely initiated
by Wnt1, which is expressed at the very tail tip
[27, 46] in an at least partially Wnt-independent
manner [28, 31]. Jointly, these data motivate signal
propagation across cell fields (sheet-like body wall
musculature) from a partially signaling-independent
source at the boundary (wnt1 expression at the tail
tip) via morphogen-dependent-morphogen expres-
sion (Wnt-dependent wnt expression of multiple
Wnt-ligands). Though many mechanistic aspects
of the signaling relay remain to be experimentally
demonstrated, the uncoupling of pattern decay length
from the diffusion distance of individual molecules
provides an attractive proposition for generating the
up to centimeter-scale wnt expression and signaling
gradients that are observed in planarians.

Interestingly, morphogen expression gradients,
that are a general hallmark of our signaling relay
model, are also observed in other systems. Wnt
expression gradients of different lengths emanate
from the hypostome in adult Hydra [62]. They are
further present during bud formation and reform in
a sequential manner during head regeneration [62].
The hypostome-restricted expression of other wnt
genes might be related to the signaling-independent
source [62, 63]. Moreover, wnt expression gradients
are observed in overlapping domains during embry-
onic development of the sea anemone Nematostella
vectensis [64]. Furthermore, a signaling relay might
also be involved in TGF-β signaling-dependent meso-
derm induction during early embryonic development
of Xenopus, as evidenced by mRNA injection exper-
iments: the signal is only propagated if the clone of
the signal-injected blastomer touches the one of the
ligand-injected blastomer [65]. We predict that other
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examples of signaling relays may be discovered in
biological contexts that require pattering over large
length scales, such as adult body part regeneration
or in continuously growing organisms. Moreover, it
will be interesting to revisit cases in which morphogen
gradients formed by diffusion and degradation are
believed to organize patterning. For instance, it could
be investigated whether the shape of the Wg (the
main Drosophila Wnt) gradient in the Drosophila
wing imaginal disk changes in the absence of the
Drosophila β-catenin homologue Amardillo. wg actu-
ally has a TCF binding site in its regulatory region
[66] and could thus be regulated by intracellular
signaling (Amardillo) levels. In fact, evidence for
positive feedback of Wg on its own expression exists
in intersegmental patterning during Drosophila devel-
opment [67]. Beyond long-range pattern formation,
pattern formation via poorly diffusible morphogens
provides a further conceptual utility of signaling
relays/morphogen-mediated morphogen expression
in biological systems. Interestingly, both Wnt [34]
and Hh [32, 33] as two of the most prominent
morphogens are modified by lipid modifications that
render them poorly diffusible [35–37]. In our model
of a signaling relay, pattern formation can occur
even in the limit of non-diffusible signals, i.e., the
signal remaining associated with the producing cell,
see equation (9). One observation that might be
particularly interesting to revisit in this context is the
finding that membrane-tethered Wg can still mediate
pattering of the developing Drosophila wing imaginal
disk [38]. This raises the question whether a Wg-
induced Wg signaling relay could operate at low
concentration levels.

Finally, the facile scalability of signaling relay pat-
terns via modulation of the feedback strength α, see
figure 3, constitutes an intriguing property of our
model. Pattern scaling remains an unsolved problem
in biology, as on the one hand side the concomitance
of patterning with growth necessitates scalable pat-
terns, yet it is still debated how morphogen diffu-
sion and degradation parameters could be modified
dynamically, particularly in a self-organized manner
[21, 50, 68]. Here, the adjustment of pattern length
scales via the tuning of intracellular feedback loops
as common element of signal transduction pathways
constitutes a new concept that warrants experimental
testing.
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Appendix A. Continuum theory of
signaling gradient formation

In this section, we recapitulate the continuum the-
ory of gradient formation including drift. The diffu-
sion–degradation model for gradient formation that
has successfully been applied to explain the Dpp
gradient in the wing imaginal disc [14] is contained in
this model as the special case of no-drift. In particular,
the dynamics of morphogen concentration C are
given by secretion in a local source of width S with
rate s, diffusion with diffusion coefficient D, degra-
dation with rate k, and drift or advective transport of
molecule concentration with drift speed v,

∂tC = D∂2
x C − ∂x(vC) − kC + sθ(S − x), (A.1)

where x denotes the spatial coordinate in the dimen-
sion along which the gradient is formed, and θ

denotes the Heaviside function, where θ(y) = 0 for
y < 0 and θ(y) = 1 for y � 0. In equation (A.1),
0 < x � L with a tissue of size L and the source at
the proximal boundary. Positive values of v indicate
transport in positive x-direction. Thus, for a profile
decreasing in positive x-direction, ∂xC < 0, the drift
term leads to drift down the concentration gradient.

This dynamics leads to steady-state concentration
profiles of the form

C∗ =

⎧⎨
⎩

Cin
1 exp(x/λ1) + Cin

2 exp(−x/λ2) 0 � x � S

Cout
1 exp(x/λ1) + Cout

2 exp(−x/λ2) S < x � L
,

(A.2)

where the decay lengths are given by

λ1 =
2D

(v2 + 4Dk)1/2 + v
, (A.3)

λ2 =
2D

(v2 + 4Dk)1/2 − v
. (A.4)

Note that in the absence of drift, v = 0, this expres-
sion simplifies to the well-known decay length of a
diffusion–degradation system that we denote by the
index v = 0:

λv=0 =

√
D

k
. (A.5)

For no-flux boundary conditions, −D∂xC(0) +
vC(0) = −D∂xC(L) + vC(L) = 0, and differentia-
bility, i.e. matching value and flux at point S, where
the source and the non-source regions meet, Cout

1

is very small and goes to zero as the system size L
increases. Therefore, the profile outside of the source
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Figure A1. Comparison of the continuous diffusion–degradation model with and without drift. Comparison of steady-state
profile decay lengths of the diffusion degradation model with drift (λ) to the one without drift (λv=0) (a), of the respective
relaxation times (b), and the trade-off between decay length and relaxation time (λ/τ and λv=0/τv=0, respectively) (c). All plots
as a function of a dimensionless parameter relating the influence of drift with speed v that is varied to the one of diffusion with
diffusion coefficient D and degradation with degradation rate k, that are set to values measured in the fly wing disc (D = 0.1 μm2,
k = 10−3 s−1 [14]). The dashed lines indicate the absence of drift, v = 0.

region is given by an exponentially decreasing profile
with the decay length λ :=λ2.

Comparing the decay lengths in the presence and
absence of drift, we note that the decay length is
increased in a system with drift for positive drift
speeds, see figure A1(a). The relaxation time of gra-
dient formation, defined as the relaxation time of
the most slowly relaxing eigenmode, that is a good
measure of how long the system takes to reach steady
state, is given by

τ =

(
v2

4D
+ D

(πn

L

)2
+ k

)−1

. (A.6)

Again, the time-scale of the diffusion–degradation
model is contained as the case v = 0:

τv=0 =

(
D
(πn

L

)2
+ k

)−1

. (A.7)

We can thus appreciate, that the system relaxes faster
in the presence of drift, see figure A1(b) for a compar-
ison in the limit of an infinitely large system (L →∞).

There is a trade-off between the decay length of the
steady-state profile and the relaxation time of gradient
formation. That is, the formation of long-range steady
state profiles takes increasingly long. In particular, in
the absence of drift, the relaxation time scales as

τv=0 ∝ λ2
v=0. (A.8)

As we discussed above, in the presence of drift, the
steady-state decay length in a system with positive
drift speeds is increased compared to a system without
drift (figure A1(a)), and the relaxation time of gradi-
ent formation is decreased (figure A1(b)). Thus, the
trade-off between the decay length of the steady state
profile and the relaxation time, that can be quantified
as the ratio of the decay length and the relaxation
time λ/τ is markedly improved, see figure A1(c). This
trade-off is a measure of how long it takes to form a
gradient of a given decay length. Thus, a gradient with
an equal decay length is reached faster in the presence
of drift or a gradient with a longer decay length is
reached in the same time.

While drift of morphogen concentration through
the system may very well explain the formation of

signaling gradients on decay lengths in the millimeter
range on biologically relevant time scales of hours
to days, it leaves open the question of the origin of
drift. Drift may arise due to concerted cilia beating or
muscle contraction [43], but neither can explain the
formation of long-range gradients in the context of
regeneration in which the respective structures would
have to be built first.

Appendix B. Boundary conditions

We consider the case in which the system ends with
an extracellular space 0 at the proximal end and an
extracellular space N at the distal end, see figure 1. We
thus need to specify the boundary conditions ∂ta0 and
∂taN. We assume no diffusive flux at these boundaries.
Moreover, we choose the volumes of the extracellular
spaces at the system boundaries to be smaller than
those in the bulk, in particular

V0 = (1 − p)V , (B.1)

VN = pV , (B.2)

where V denotes the volume of the extracellular spaces
in the bulk, i.e. Vn = V for n = 1, . . . , N − 1. This
leads to the following dynamics at the system bound-
aries:

∂ta0 =
D

(1 − p)

−a0 + a1

δ2
− kAa0 + sA + α

b0

cB + b0
,

(B.3)

∂taN =
D

p

aN−1 − aN

δ2
− kAaN + α

bN−1

cB + bN−1
.

(B.4)

Note that with this choice of volumes at the bound-
aries, the secretion polarity in the production terms
is balanced at the boundaries. To see this, consider
that the cells produce individual molecules rather
than concentrations and that thus the production
rates measured in concentration per time depend on
the volume of the extracellular spaces into which the
produced molecules are secreted.
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Note further that this choice of boundary con-
ditions gives rise to flat profiles at the boundaries
of the system, i.e. vanishing spatial derivative at the
boundaries, see figure 2. Finally, note that in the
presence of secretion polarity, p �= 1

2 , this choice
of boundary conditions is not the same as no-flux
boundary conditions.

Appendix C. Numerical steady-state
solution

We can obtain the steady-state solution to the sig-
naling relay model given by equations (1) and (2)
numerically by starting from an initial condition and
computing the time evolution for long times. We
choose the average of the first (a0 and b0, respec-
tively) and the last value (aN and bN−1, respectively)
of the analytical approximation to the steady-state
solution as initial conditions. In order to obtain the
concentration profiles of the morphogen and the
intracellular signaling molecule at time t, at, and bt,
respectively:

at =

⎡
⎢⎣

at
0
...

at
N

⎤
⎥⎦, bt =

⎡
⎢⎣

bt
0
...

bt
N−1

⎤
⎥⎦, (C.1)

where the upper index refers to the time step and bold
italic fond indicates vector notation, we need their
concentration profiles at time t − 1, at−1, and bt−1. We
use a forward (explicit) Euler method to compute the
(non-linear) dynamics of the concentration profile
of the intracellular signaling molecule. Specifically,
we add the change in concentration during one
time-step of length Δt to the current concentration
profile bt−1:

bt = bt−1 +ΔtG(at−1, bt−1), (C.2)

where the differential equation for the signaling activ-
ity G(at−1, bt−1) is defined according to equation (2):

[G(at−1, bt−1)]n = sB − kB
cA

cA + at−1
n + at−1

n+1

bt−1
n .

(C.3)
To compute the dynamics of the morphogen, we use
an implicit-explicit Euler method [69]. In particular,
we evaluate the linear parts (diffusion and degrada-
tion, described by the matrix N) implicitly and the
non-linear parts (i.e. the local, signaling-independent
source, as well as the feedback, i.e. the signaling-
dependent source, F(bt−1)) explicitly (see reference
[69] for details on the method). This results in the
following dynamics:

at = (𝟙−ΔtN)−1 ·
[
at−1 +Δt F(bt−1)

]
. (C.4)

The linear part is given by diffusion and degradation:

Nn =

(
0 . . . 0

D

δ2
− 2

D

δ2
− kA

D

δ2
0 . . . 0

)
.

(C.5)

The non-linear part of the dynamics of the signaling
molecule, F(bt−1), is given by the constant production
in the local, signaling-independent source with rate sA

and the positive feedback according to equation (3).
This results in:

[F(bt−1)]n=1,...,w−1 = sA + pα
bt−1

n−1

cB + bt−1
n−1

+ (1 − p)α
bt−1

n

cB + bt−1
n

, (C.6)

[F(bt−1)]w = psA + pα
bt−1
w−1

cB + bt−1
w−1

+ (1 − p)α
bt−1
w

cB + bt−1
w

, (C.7)

[F(bt−1)]n=w+1,...,N−1 = pα
bt−1

n−1

cB + bt−1
n−1

+ (1 − p)α
bt−1

n

cB + bt−1
n

.

(C.8)

The boundary conditions are specified in the same
way according to equations (B.3) and (B.4). This way,
we can compute the dynamic solution to our model
and in particular, for long times, the steady-state
solution. We verify that the steady-state is reached
by observing that the profiles no longer change with
time.

Appendix D. Analytical approximation
to the steady state

In short, we find an analytical approximation to the
solution of the steady-state equation of the mor-
phogen (equation (1) using equation (5)) by lin-
earizing it around the piece-wise constant steady-state
solution given by ain

c and aout
c inside (n = 0, . . . ,w)

and outside (n = w + 1, . . . , N) of the source region,
respectively. This piece-wise constant solution is
defined by the constants solving the steady-state
equations of the bulk of the source and the non-source
region, respectively. We describe this procedure in
more detail in this section:

We analyze the steady-state of the morphogen
concentration in order to determine the piece-wise
constant steady-state solution. Consider that at steady
state, b∗n is linearly dependent on a∗n (equation (5)).
Inserting this relationship (equation (5)) into the
steady state equation for a∗n (equation (1)), we obtain

0 = D
an−1 − 2an + an+1

δ2
− kAan + sAθw−n

+ αp
sB

kB

(
1 +

a∗n−1 + a∗n
cA

)

×
[

cB +
sB

kB

(
1 +

a∗n−1 + a∗n
cA

)]−1
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+ α(1 − p)
sB

kB

(
1 +

a∗n + a∗n+1

cA

)

×
[

cB +
sB

kB

(
1 +

a∗n + a∗n+1

cA

)]−1

. (D.1)

Based on this equation, we define ain
c and aout

c as
the constants solving equation (D.1) for n = 1, . . . ,
w − 1 and n = w + 1, . . . , N − 1, respectively. We
obtain

ain
c =

1

2

[
sA

kA
+

α

kA
− cA

2

(
cBkB

sB
+ 1

)]
+

√
1

4

[
sA

kA
+

α

kA
− cA

2

(
cBkB

sB
+ 1

)]2

+
cA

2kA

[
sA

(
cBkB

sB
+ 1

)
+ α

]
,

(D.2)

aout
c =

1

2

[
α

kA
− cA

2

(
cBkB

sB
+ 1

)]
+

√
1

4

[
α

kA
− cA

2

(
cBkB

sB
+ 1

)]2

+
αcA

2kA
. (D.3)

We then obtain the approximation to the steady-
state solution by linearizing equation (D.1) around
ain

c inside the source region for n = 0, . . . ,w, and
around aout

c outside of the source region for n = w +
1, . . . , N, respectively. To this end, we express an as a
deviation from these constants:

an = ain
c + δan for: n = 0, . . . ,w, (D.4)

an = aout
c + δan for: n = w + 1, . . . , N, (D.5)

and linearize for small δan. We thus obtain a set of
linear equations:

∂ta
∗
0 = 0 =

D

(1 − p)

−δa∗0 + δa∗1
δ2

− kAδa∗0

+ αzin(δa∗0 + δa∗1), (D.6)

for n ∈ [1, . . . , (w − 1)]:

∂ta
∗
n = 0 = D

δa∗n−1 − 2δa∗n + δa∗n+1

δ2
− kAδa∗n

+ pαzin(δa∗n−1 + δa∗n)

+ (1 − p)αzin(δa∗n + δa∗n+1), (D.7)

∂ta
∗
w = 0 = D

−ain
c + aout

c

δ2
− kAain

c + psA

+ pα(cA + 2ain
c )

×
[

cA +
cAcBkB

sB
+ 2ain

c

]−1

+ (1 − p)α(cA + ain
c + aout

c )

×
[

cA +
cAcBkB

sB
+ ain

c + aout
c

]−1

+D
δa∗w−1 − 2δa∗w + δa∗w+1

δ2
− kAδa∗w

+ pαzin(δa∗w−1 + δa∗w)

+ (1 − p)α(δa∗w + δa∗w+1)
cAcBkB

sB

×
[

cA +
cAcBkB

sB
+ ain

c + aout
c

]−2

,

(D.8)

∂ta
∗
w+1 = 0 = D

ain
c − aout

c

δ2
− kAaout

c

+ pα(cA + ain
c + aout

c )

×
[

cA +
cAcBkB

sB
+ ain

c + aout
c

]−1

+ (1 − p)α(cA + 2aout
c )

×
[

cA +
cAcBkB

sB
+ 2aout

c

]−1

+D
δa∗w − 2δa∗w+1 + δa∗w+2

δ2

− kAδa∗w+1 + pα(δa∗w + δa∗w+1)

× cAcBkB

sB

×
[

cA +
cAcBkB

sB
+ ain

c + aout
c

]−2

+ (1 − p)αzout(δa∗w+1 + δa∗w+2),
(D.9)

for n ∈ [(w + 2), . . . , (N − 1)]:

∂ta
∗
n = 0 = D

δa∗n−1 − 2δa∗n + δa∗n+1

δ2
− kAδa∗n

+ pαzout(δa∗n−1 + δa∗n) + (1 − p)

× αzout(δa∗n + δa∗n+1), (D.10)

∂ta
∗
N = 0 =

D

p

δa∗N−1 − δa∗N
δ2

− kAδa∗N + αzout

× (δa∗N−1 + δa∗N ) (D.11)

where

zin =
cAcBkB

sB

(
cA +

cAcBkB

sB
+ 2ain

c

)−2

, (D.12)

zout =
cAcBkB

sB

(
cA +

cAcBkB

sB
+ 2aout

c

)−2

. (D.13)

Note that this linearization (equation (D.10)) defines
zout (equation (12)), repeated here (equation (D.13))
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Figure D1. Steady-state concentration profiles of the morphogen (a) and the signaling activity (b) for indicated values of the
feedback strength α. The signaling-independent source region is shaded in red. Circles denote the numerically obtained
steady-state solution to the non-linear equations, lines indicate the analytical approximation to the steady state. Parameters:
table H1, set B in the appendix.
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for convenience. Note further that the term for
the signaling relay-dependent morphogen produc-
tion by cell w at steady-state is given by b∗w/(cB +

b∗w). When re-writing this using equation (5), it
contains a∗w and a∗w+1. Therefore, it needs to be
linearized around the sum of ain

c and aout
c . Thus, for

a∗w and a∗w+1, the constant term does not vanish (see
equations (D.8) and (D.9)) as it contains both ain

c

and aout
c .

We can solve these linearized steady-state
equations using an exponential ansatz and obtain
the solution given in equation (6). The constants
in equation (6) are defined by the boundary
conditions at n = 0 and n = N, as well as by the
source/non-source interface at n = w and n = w + 1,
equations (D.6), (D.8), (D.9), and (D.11). Plugging
the exponential ansatz (6) into equations (D.6),
(D.8), (D.9), and (D.11), we obtain:

⎛
⎜⎜⎝

∂ta
∗
0

∂ta
∗
w

∂ta
∗
w+1

∂ta
∗
N

⎞
⎟⎟⎠ = 0 =

⎛
⎜⎜⎝

M11 M12 0 0
M21 M22 M23 M24

M31 M32 M33 M34

0 0 M43 M44

⎞
⎟⎟⎠

·

⎛
⎜⎜⎝

Cin
1

Cin
1

Cout
1

Cout
2

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

s1

s2

s3

s4

⎞
⎟⎟⎠ (D.14)

= M · c + s. (D.15)

Thus, the constants in c are given as:

⇔ c = M−1 · (−s). (D.16)

We obtain the decay lengths by expanding the expo-
nentials in 1/λ. This expansion is valid for decay
lengths much larger than one cell, i.e.λ 
 1, and thus
the long decay lengths we are interested in. We find

λin
1 �

2D
δ2 + αzin√[

(2p − 1)αzin
]2

+ 2
[

2D
δ2 + αzin

][
kA − 2αzin

]
+ (2p − 1)αzin

, (D.17)

λin
2 �

2D
δ2 + αzin√[

(2p − 1)αzin
]2

+ 2
[

2D
δ2 + αzin

][
kA − 2αzin

]
− (2p − 1)αzin

, (D.18)

λout
1 �

2D
δ2 + αzout√[

(2p − 1)αzout
]2

+ 2
[

2D
δ2 + αzout

]
[kA − 2αzout] + (2p − 1)αzout

, (D.19)

λout
2 �

2D
δ2 + αzout√

[(2p − 1)αzout]2 + 2[ 2D
δ2 + αzout][kA − 2αzout] − (2p − 1)αzout

. (D.20)

We can compare this approximation to
the steady-state profiles obtained numerically,
see figures D1–D4. Note that the analytical
approximation to the steady state is particularly good
for feedback levels away from the critical feedback
strength. Note further that close to the critical
feedback strength, the approximation is better for
bn/cB � 1, compare figure D1 (cB = 1.66 × 108 nM)

and figure D3 (cB = 1.66 × 103 nM). Finally, note
that for α 
 αcrit, the positive feedback on the
production f (bn−1, bn) (equation (3)) essentially
reduces to an additional constant production with
strength α since in this case, bn 
 cB. Therefore, the
concentrations are elevated throughout the system
and we need to look at a baseline-corrected profile
in order to see the decay length of the profile, see
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Figure D2. Baseline-corrected steady-state concentration profiles of the morphogen (a) and the signaling activity (b) for
indicated values of the feedback strength α. In order to better visualize the gradient shape of the profiles depicted in figure D1, we
subtracted the contractions aN (a) and bN−1 (b), respectively from the entire profile. The signaling-independent source region is
shaded in red. Circles denote the numerically obtained steady-state solution to the non-linear equations, lines indicate the
analytical approximation to the steady state. Parameters: table H1, set B in the appendix.
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Figure D3. Steady-state concentration profiles of the morphogen (a) and the signaling activity (b) for indicated values of the
feedback strength α. The signaling-independent source region is shaded in red. Circles denote the numerically obtained
steady-state solution to the non-linear equations, lines indicate the analytical approximation to the steady state. Parameters:
table H1, set C in the appendix, p = 0.50.
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Figure D4. Baseline-corrected steady-state concentration profiles of the morphogen (a) and the signaling activity (b) for
indicated values of the feedback strength α. In order to better visualize the gradient shape of the profiles depicted in figure D3, we
subtracted the contractions aN (a) and bN−1 (b), respectively from the entire profile. The signaling-independent source region is
shaded in red. Circles denote the numerically obtained steady-state solution to the non-linear equations, lines indicate the
analytical approximation to the steady state. Parameters: table H1, set C in the appendix, p = 0.50.
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figures D2 and D4. In this case, the decay length
of the profile is dependent on the diffusion and
the degradation, whereas the feedback contributes
to overall high levels of morphogen and signaling
molecule.

Appendix E. Linearized dynamic
equations

In order to calculate the effective transport coeffi-
cients and loss rate, defined by equation (8), we first
determine eigenmodes of the dynamics linearized
around the homogeneous steady-state solution given
by ain

c , aout
c , bin

c , bout
c , see appendix D. The bin/out

c are
obtained from the ain/out

c using equation (5). This
results in:

bin
c =

sB

cAkB

(
cA + 2ain

c

)
(E.1)

bout
c =

sB

cAkB

(
cA + 2aout

c

)
. (E.2)

We discuss the dynamics outside of the source
region. The dynamics inside of the source region can
be obtained in the same way using the respective
constants ain

c and bin
c . Outside of the source region, the

dynamics linearized around the homogeneous steady
state solution is given by

∂tδan � D
δan−1 − 2δan + δan+1

δ2
− kAδan + pα

× cBδbn−1(
cB + bout

c

)2 + (1 − p)α
cBδbn(

cB + bout
c

)2 ,

(E.3)

∂tδbn � sB − kB
cA

cA + 2aout
c

bout
c − kB

cA

cA + 2aout
c

δbn

+ kB
cA(

cA + 2aout
c

)2 bout
c (δan + δan+1)

=
1

cA + 2aout
c

[
sB(δan + δan+1) − cAkBδbn

]
,

(E.4)

where we used equation (E.2) in the last step.
We use the ansatz

δan(t) = A exp(iqδn) exp(−iωt), (E.5)

δbn(t) = B exp(iqδn) exp(−iωt) (E.6)

for the eigenmodes of the system, where q specifies
an inverse wavelength, δ denotes the cell width, ω
denotes a relaxation rate, t specifies the time, n the
spatial index of the cell or extracellular space, and
A, B ∈ C denote the amplitudes of the eigenmodes
that can be q-dependent. With this ansatz, the dynam-
ics simplify to the eigenvalue problem

− iω

(
A
B

)
= L

(
A
B

)
, (E.7)

where

L =

⎛
⎜⎜⎝

D

δ2

[
exp(−iqδ) − 2 + exp(iqδ)

]
− kA

αcB(
cB + bout

c

)2

[
p exp(−iqδ) + 1 − p

]
sB

cA + 2aout
c

[
1 + exp(iqδ)

]
− cAkB

cA + 2aout
c

⎞
⎟⎟⎠. (E.8)

From the resulting characteristic polynomial, we
obtain two relaxation rates ω1 and ω2 which depend
on the wave number, i.e. the inverse wavelength q:

ω1,2 =
1

2
iγ ± 1

2

√
i2γ2 + η, (E.9)

γ =
D

δ2

[
exp(−iqδ) − 2 + exp(iqδ)

]
− kA

− cAkB

cA + 2aout
c

, (E.10)

η = −4C

{
exp(iqδ)

[
D

δ2
+ αzout(1 − p)

]

+ exp(−iqδ)

[
D

δ2
+ αzoutp

]
− 2D

δ2
− kA

+αzout

}
, (E.11)

where zout is defined by equation (12) and C =
(cAkB)/(cA + 2aout

c ). We aim to analyze the dynamics
in the vicinity of the steady state. The steady state of
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the system is contained in these dynamics as the limit
of ω = 0. We see that ω2 =

1
2 iγ − 1

2

√
i2γ2 + η = 0 if

η = 0. Thus, the steady-state and therefore the slow
dynamics are contained in the relaxation rate ω2. We
hence focus our further analysis on this relaxation
rate. We identify the two roots of ω2 determined
by η = 0. We start by expanding the exponential

functions for small values of iqδ, i.e. long wavelengths,
using

exp(iqδ) � 1 + iqδ +
(iqδ)2

2
. (E.12)

We obtain the approximations

γ � D

δ2
(iqδ)2 − kA − C, (E.13)

η � −4C

[
(iqδ)2

(
D

δ2
+

αzout

2

)
+ (iqδ)

(
(1 − 2p)αzout

)
− kA + 2αzout

]
. (E.14)

Based on these, we can then calculate the inverse steady-state decay length iq1,2δ defined by the steady-state
condition η = 0. We obtain

iq1,2δ �
(2p − 1)αzout ±

√[
(2p − 1)αzout

]2 − 4
(

D
δ2 + αzout

2

)
(−kA + 2αzout)

2
(

D
δ2 + αzout

2

) . (E.15)

Note that q1,2 are equivalent to the steady-state
decay lengths obtained in appendix D, equations
(D.19) and (D.20):

λ1
out =

1

iq1δ
, (E.16)

λ2
out = − 1

iq2δ
, (E.17)

where the difference in sign is due to the definition of
signs in equation (6). We can then expand ω2 around
its roots, i.e. the inverse steady-state decay lengths q1,2.
To this end, we define

x1 = iqδ − iq1δ, (E.18)

x2 = iqδ − iq2δ. (E.19)

We can then express η as

η � −4C

[
D

δ2
+

αzout

2

]
x1x2, (E.20)

and γ as

γ � D

δ2
x1x2 +

D

δ2

[
(iq1δ + iq2δ)

]
(iqδ)

− D(iq1δ)(iq2δ) − kA − C. (E.21)

Note that the steady state now corresponds to x1 =

0 or x2 = 0. We aim to expand w for wavenumbers
in the vicinity of the steady-state, i.e. small x1x2.
The hydrodynamic limit can be further approximated
considering x2 small such that iqδ � iq2δ. With these
simplifications, γ can be approximated as

γ � D

δ2
x1x2 +

D

δ2

[
(iq1δ + iq2δ)

]
(iq2δ)

− D(iq1δ)(iq2δ) − kA − C. (E.22)

Using equations (E.18)–(E.22), we can then
expand ω2 to lowest order in x1x2 as

w2 � iφ

(
D

δ2
+

αzout

2

)
x1x2, (E.23)

where

φ =
C
(

D
δ2 + αzout

2

)2

D
δ2 αzout(2p − 1)ψ +

(
D
δ2 + αzout

2

)[
D
δ2 (4αzout + C) + αzout(kA + C)

] , (E.24)

where

ψ = −αzout(2p − 1) +

√[
(2p − 1)αzout

]2 − 4

(
D

δ2
+

αzout

2

)
(−kA + 2αzout). (E.25)
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With

x1x2 = (iqδ)2 − (iqδ1 + iq2δ)(iqδ) + (iq1δ)(iq2δ),
(E.26)

iw2 � φ

{[
−
(

D

δ2
+

αzout

2

)]
(iqδ)2

+
[
(2p − 1)αzout

]
(iqδ) + (kA − 2αzout)

}

(E.27)

equation (E.27) can be compared to the dispersion-
relation of a convection–diffusion–degradation
equation (equation (8)) which reads

iω = Deffq
2 + iveffq + keff. (E.28)

By comparing equations (E.27) and (E.28), we can
identify the effective transport coefficients and loss
rate as the coefficients of powers of q. They are given
in equations (9)–(11).

Appendix F. Decay length based on
numerical steady-state solution

In order to compute the decay length based on
the numerical steady-state solution, we assume that
the profile outside of the source region follows an
exponential decay added on to a constant plateau
or baseline. To reveal its decay length, we numeri-
cally compute the second derivative of the numerical
steady-state profile. We obtain a baseline-corrected
numerical steady-state profile by subtracting the base-
line or plateau value (given by the value at the distal
end of the numerical steady-state profile) from all
points of the profile. Subsequently, we point-wise
divide this baseline-corrected profile by the second
derivative of the profile. We take the square root of
these values and use their median of in the non-source
region as the decay length based on the numerical
steady-state profile.

Appendix G. Relaxation times

In order to obtain the relaxation modes of the sig-
naling relay, we analyze the dynamics of the system
close to the steady state, see equations (19) and (20).
We approximate the dynamics of the system close to
the steady state by linearizing the dynamic equations
of the morphogen (equation (1)) and the intracellu-
lar signaling molecule concentration (equation (2))
around the steady-state solution of the system given
by a∗n and b∗n. We obtain:

∂tδan � D
δan−1 − 2δan + δan+1

δ2
− kAδan

+ pαcB
δbn−1

(cB + b∗n−1)2

+ (1 − p)αcB
δbn

(cB + b∗n)2
, (G.1)

∂tδbn � 1

cA + a∗n + a∗n+1

×
[
sB(δan + δan+1) − cAkBδbn

]
(G.2)

in the bulk of the system. The linearized dynamic
equations at the boundaries can be obtained in the
same way.

We can obtain the steady-state profiles a∗n and
b∗n numerically, see appendix C. Alternatively, we
can use the approximation to the steady-state pro-
files discussed in section 3.1, equation (6), using
equations (5) and (6) as b∗n and a∗n, respectively.
The approach for analyzing the dynamics stays the
same, the only difference is which profiles are used to
linearize the dynamics.

Either way, the resulting system of linear equations
can be expressed in matrix form as:

∂tδx = M · δx, where δx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δa0

δb0

...
δaN−1

δbN−1

δaN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (G.3)

and M describes the dynamics of the system accord-
ing to equations (G.1) and (G.2) and the respective
linearized equations at the boundaries. The dynamic
solution to this system is given by the sum of all
eigenmodes:

δx(t) =
2N+1∑

i=0

Kie
−t/τi vr

i , (G.4)

where vr
i denotes a right eigenvector of M with

eigenvalue − 1
τi

, and the τ i’s denote the relaxation
times of the system. We need to distinguish between
the left and the right eigenvectors, since M is not
symmetric and hence the right eigenvectors are not
necessarily orthogonal to their transpose. Note that
the system is comprised of both the cells and the extra-
cellular spaces, gathered in δx, and thus has one set
of 2N + 1 relaxation times and corresponding eigen-
vectors. We obtain the eigenvectors and eigenvalues
by numerically diagonalizing M. The coefficients Ki

are determined by the initial conditions, i.e. the initial
concentration of morphogen (a(0)) and the initial
concentration of the intracellular signaling molecule
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Table H1. Parameters used to generate plots. Parameter set A is used in figure 2. Parameter set B is used in figures 3, D1, and D2.
Parameter set C is used in figures 4–7, D3, and D4.

Parameters Parameter set A Parameter set B Parameter set C

α (# molecules V−1 s−1) 0.998 33 × αcrit Varying Varying
cA (nM) 1.66 × 102 1.66 × 102 1.66 × 102

cB (nM) 1.66 × 108 1.66 × 108 1.66 × 103

D (μm2 s−1) 1.0 1.0 1.0
δ (μm) 10.0 10.0 10.0
kA (s−1) 10–3 10–3 10–3

kB (s−1) 10–3 10–3 100
N 600 600 600
sA (# molecules V−1 s−1) 20 20 1000
sB (# molecules W−1 s−1) 4 4 4
p 0.5 0.5 See legend
V (μm3) 102 102 102

W (μm3) 103 103 103

w 60 60 60

(b(0)). Gathering these initial conditions, as well as
the steady-state solution in respective vectors similar
to what we did for δx:

x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0(0)
b0(0)

...
aN−1(0)
bN−1(0)
aN (0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, x∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a∗0
b∗0
...

a∗N−1

b∗N−1

a∗N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (G.5)

we obtain the Ki according to:

Ki =
1

r

[
vl
i · (x(0) − x∗)

]
.

That is, we compute the Ki by projecting the initial
condition onto the corresponding elements of the
left eigenvector vl

i and normalizing to vl
i · vr

i = r.
Note that we use the left eigenvectors to compute
the Ki as we used the right ones to obtain the
eigenmodes.

Based on this approximation to the dynamic
solution of the system close to the steady state, we
can define the characteristic time scale of the relay
mechanism. For a linear system like the one presented
in equation (G.3), the dynamics of the system are
governed by the slowest relaxation time τmax for long
times. In particular, this slowest relaxation time is a
good estimate of how long it takes the linear system
to reach its steady state. We thus define the slowest
relaxation time

τmax := max{τi} (G.6)

as the time scale of the relay mechanism.

Appendix H. Parameter sets

Table H1 summarizes the three parameter sets used to
generate the plots in this paper.
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Jülicher F and Gonzalez-Gaitan M 2022 Morphogen
gradient scaling by recycling of intracellular Dpp Nature 602
287–93

[22] Halpern K B et al 2017 Single-cell spatial reconstruction
reveals global division of labour in the mammalian liver
Nature 542 352–6

[23] Halpern K B et al 2018 Paired-cell sequencing enables
spatial gene expression mapping of liver endothelial cells
Nat. Biotechnol. 36 962

[24] Nacu E, Gromberg E, Oliveira C R, Drechsel D and Tanaka
E M 2016 Fgf8 and SHH substitute for anterior–posterior
tissue interactions to induce limb regeneration Nature 533
407–10

[25] Gurley K A, Rink J C and Alvarado A S 2008 β-catenin
defines head versus tail identity during planarian
regeneration and homeostasis Science 319 323–7

[26] Iglesias M, Gomez-Skarmeta J L, Saló E and Adell T 2008
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R, Liu S-Y, Friedrich B, Jülicher F and Rink J C 2017
Antagonistic self-organizing patterning systems control
maintenance and regeneration of the anteroposterior axis in
planarians Dev. Cell 40 248–63

[32] Porter J A, Young K E and Beachy P A 1996 Cholesterol
modification of hedgehog signaling proteins in animal
development Science 274 255–9

[33] Pepinsky R B et al 1998 Identification of a palmitic
acid-modified form of human sonic hedgehog J. Biol. Chem.
273 14037–45

[34] Willert K, Brown J D, Danenberg E, Duncan A W,
Weissman I L, Reya T, Yates J R and Nusse R 2003 Wnt
proteins are lipid-modified and can act as stem cell growth
factors Nature 423 448–52

[35] Greco V, Hannus M and Eaton S 2001 Argosomes: a
potential vehicle for the spread of morphogens through
epithelia Cell 106 633–45
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