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Stochastic dynamics of single molecules across phase boundaries
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We discuss the stochastic trajectories of single molecules in a phase-separated liquid, when a dense and a
dilute phase coexist. Starting from a continuum theory of macroscopic phase separation we derive a stochastic
Langevin equation for molecular trajectories that takes into account thermal fluctuations. We find that molecular
trajectories can be described as diffusion with drift in an effective potential, which has a steep gradient at phase
boundaries. We discuss how the physics of phase coexistence affects the statistics of molecular trajectories and in
particular the statistics of displacements of molecules crossing a phase boundary. At thermodynamic equilibrium
detailed balance imposes that the distributions of displacements crossing the phase boundary from the dense or
from the dilute phase are the same. Our theory can be used to infer key phase separation parameters from
the statistics of single-molecule trajectories. For simple Brownian motion, there is no drift in the presence of a
concentration gradient. We show that interactions in the fluid give rise to an average drift velocity in concentration
gradients. Interestingly, under non-equilibrium conditions, single molecules tend to drift uphill the concentration
gradient. Thus, our work bridges between single-molecule dynamics and collective dynamics at macroscopic
scales and provides a framework to study single-molecule dynamics in phase-separating systems.
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I. INTRODUCTION

Liquid phase separation is characterized by the coexistence
of dense and dilute phases, separated by phase boundaries, a
phenomenon encountered in many fields ranging from physics
and chemistry to biology and engineering. Phase separation
has been proposed as a key concept to describe the physical
nature of membraneless biochemical compartments that are
found in living cells. Such compartments are dense assemblies
of proteins and nucleic acids, which are called biological con-
densates. It has been proposed that such condensates consist
of a dense phase that coexists with the surrounding cytoplasm
as a phase separation phenomenon [1,2].

Biological condensates are involved in key biological pro-
cesses such as the response of cells to environmental changes
[3], gene expression [4], or the specification of germ lines
[5–8]. For such biological functions, it is often important that
these condensates have liquid-like properties and are very
dynamic such that molecules can diffuse inside a condensate
and diffuse in and out across the phase boundary [1,9,10].

A breakthrough in cell biology was achieved by the fluo-
rescent labeling of individual molecules that enables tracking
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molecules and revealing the spatio-temporal organization of
cellular compartments and cellular processes. Such tracking
of molecules permits, for example, to determine single-
molecule diffusion coefficients [11,12]. These techniques also
allow quantifying how compartments influence the dynam-
ics of molecules that are involved in key cellular processes.
Recent experiments have analyzed the motion of single
molecules across condensate boundaries [13–18]. It was sug-
gested that the statistics of single-molecule dynamics can be
used to characterize the physical properties of condensates
[10,18–20]. Single-molecule data provides information about
fluctuations and the statistics of molecular trajectories. Relat-
ing such statistics to large-scale phase-separation requires a
theoretical foundation that relates the dynamics and statistics
of individual molecules to the phase-separation behavior at
larger scales.

For molecules diffusing freely, the mesoscopic theory of
single-molecule dynamics under the influence of thermal
noise was derived by Einstein, Smoluchowski, and Langevin
[21]. However, these approaches do not include interactions
that give rise to phase separation. Phase-separating systems
can be described by Flory-Huggins free energies and Cahn-
Hilliard-type equations. This coarse-grained level, however,
does not capture the motion of individual molecules.

Here starting from the coarse-grained theory of phase sep-
aration we derive Smoluchowski and Langevin equations that
describe the statistics of individual molecular trajectories.
We find that these trajectories are governed by an effective
potential and a drift velocity that arise from heterogeneous
concentration fields such as the phase boundary. We use this
theory to investigate the statistics of single molecules crossing
a phase boundary. We calculate displacement histograms and
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FIG. 1. Single-molecule dynamics at phase boundaries. (a) Top: Numerical simulations of the 1-dimensional Langevin equation (8)
describing the stochastic motion of single molecules across a flat phase boundary. Bottom: Profile of φeq(x) = [1 − tanh (x/w) · (� − 1)/
(� + 1)]/2, underlying the single-molecule simulations and presented in the text for � = 5.8 and w = 0.027 μm. For this profile, the volume
fraction in the dense and dilute phase are φ− = �/(1 + �) and φ+ = 1/(1 + �). The grey-dashed line indicates the phase boundary at x = 0.
(b) Drift velocity profile vd induced by the volume fraction profile shown in (a) at equilibrium [see Eq. (9)] for space-dependent D = D0(1 − φ)
(solid line) or for constant D = D0 (dashed line). D0 = 1 μm2/s. (c) Propagators for a molecule starting in the dense phase at x = −1 μm
at time t1 = 0.1 s (blue), t2 = 1 s (orange), and t3 = 9.9 s (green). (d) Propagators for a molecule starting in the dilute phase at x = 1 μm at
time t1 = 0.1 s (blue), t2 = 1 s (orange), and t3 = 9.9 s (green). For both panels the phase boundary is at the origin (dashed vertical line) and
D = D0(1 − φ). The solid-colored lines refer to numerical solutions of the Fokker-Planck equation, the dotted lines to the sharp interface limit
solution following (10) and the histograms are sampled from stochastic simulations of the Langevin dynamics.

first-passage times and study the effects of non-equilibrium
conditions. We discuss how single-molecule trajectories can
be used to characterize the physical properties of condensates.

II. DYNAMICS OF A BINARY MIXTURE

To obtain the dynamic equation governing the stochas-
tic motion of single molecules at phase boundaries, we
start by recalling the derivation of the dynamic equation
for the concentration fields (volume fractions) of the phase-
separating component [22]. We consider an incompressible
binary mixture composed of condensate-forming molecules
characterized by a volume fraction φ and a solvent with vol-
ume fraction 1 − φ [Fig. 1(a), bottom]. Both components are
conserved, ∂tφ = −∇ · j and the flux j = −mφ(1 − φ)∇μ

is driven by gradients in chemical potential μ = νδF [ f ]/δφ.
Here, m denotes the mobility coefficient and the factor
φ(1 − φ) ensures the correct scaling in both the dilute and
dense limit (see Appendix A). Note that in general m itself
depends on the volume fraction φ. The free energy is given as

F [ f ] =
∫

ddx

(
f + κ

2νs
(∇φ)2

)
, (1)

which depends on the free-energy density

f = kBT

νs

[
φ

n
ln φ + (1 − φ) ln(1 − φ) + χ (1 − φ)φ

]
, (2)

where ν and νs are the molecular volumes of condensate com-
ponent and solvent and n = ν/νs; χ denotes the interaction
parameter, κ characterizes the contributions of gradients to the
free energy, which are related to surface tension, and kB is the
Boltzmann constant. The flux in the binary mixture reads

j = −Dcol∇φ + nmφ(1 − φ)κ∇∇2φ (3a)

Dcol = kBT m[1 − 2nφ(1 − φ)χ + φ(n − 1)] (3b)

where Dcol is the collective diffusion coefficient. When the
system phase-separates, φ describes a spatially heterogeneous
profile corresponding to the condensate [Fig. 1(a), bottom].
This profile typically exhibits a sharp change in volume frac-
tion, which defines the interface. Within the interface the
volume fraction varies between φ− (dense phase) and φ+
(dilute phase). At equilibrium of the two coexisting phases
the system reaches a stationary profile φeq(x). The ratio be-
tween the equilibrium volume fractions in the dense and dilute
phase, � = φ−/φ+, is a partition coefficient that characterizes
the interface. In an infinite, phase-separated system with inter-
face perpendicular to the x-axis positioned at x = 0, φeq(x) �
φ+[1 + (� − 1)[1 − tanh (x/w)]/2], where w is the width of
the interface [22,23].

III. DYNAMICS OF LABELED MOLECULES

To develop the stochastic equation for single molecules
inside and outside of condensates, we now introduce a fraction
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φ1 of the condensate molecules that are labeled, while the
molecules of volume fraction φ2 = φ − φ1 are unlabeled. The
number of each component is conserved, ∂tφi = −∇ · ji. The
fluxes are driven by chemical potential gradients and can be
expressed as ji = −∑ j Mi j∇μ j , where Mi j is a symmetric
mobility matrix (see Appendix A). The chemical potentials
are obtained using the free-energy density

f̃ = kBT

νs

[
φ1

n
ln φ1 + φ2

n
ln φ2 + (1 − φ) ln(1 − φ)

+ χ (1 − φ)φ

]
, (4)

which takes into account the entropy of mixing of labeled
and unlabeled molecules [24]. The gradients of the chemical
potentials μi = νiδF [ f̃ ]/δφi then read

∇μi = kBT

[∇φi

φi
− 2nχ∇φ + n

∇φ

1 − φ

]
− nκ∇∇2φ. (5)

We consider labeled and unlabeled molecules to have the same
molecular properties. Therefore, they have the same molec-
ular volumes ν = ν1 = ν2, and they cannot be distinguished
by their interactions with other molecules. The total volume
fraction φ = φ1 + φ2 as well as the total flux j = j1 + j2
follow the dynamics of the binary mixture with j given in
Eq. (3a). For given j, the dynamics of labeled and unlabeled
components (i = 1, 2) can then be expressed as

∂tφi =∇ ·
[

D

(
∇φi − φi

∇φ

φ

)
− φi

φ
j
]
, (6)

where D = kBT gm is the single-molecule diffusion coeffi-
cient and g depends on cross couplings described by the
mobility matrix Mi j (see Appendix A). Note that the single-
molecule diffusion constant is in general different from the
collective diffusion coefficient Dcol, given in Eq. (3b).

At phase equilibrium the total volume fraction φ(x) =
φeq(x) describes the coexistence of two phases and j vanishes.
Note that even at phase equilibrium, labeling permits to reveal
the dynamics of molecules. For example, when labeling a
fraction φ1(x, t0) at time t0 within a narrow region, φ1(x, t )
will be dynamic and relax towards equilibrium. In this pro-
cess, φ(x) is not changing as it remains at phase equilibrium.
If we generalize our approach to a multicomponent mixture,
we obtain again Eq. (6) but φ and j now are the volume
fraction and flux, respectively, of any one component and the
index i refers to the labeled and unlabeled fractions of that
component [see Eq. (A10) in Appendix].

IV. SINGLE-MOLECULE DYNAMICS: FOKKER-PLANCK
AND LANGEVIN EQUATIONS

Equation (6) can be interpreted as a diffusion equation in an
effective potential. In the limit of individual labeled molecules
P = φ1/

∫
dxφ1 plays the role of a single-molecule probability

density, which satisfies a Fokker-Planck equation:

∂t P = −∇ · J,

J = −D∇P − (D/kBT )(∇W )P + vP. (7)

Equations (6) and (7) are equivalent if we identify the effec-
tive potential W = −kBT ln φ and the drift velocity v = j/φ.

Equation (7) describes the statistics of many realizations of
single-molecule trajectories. These stochastic trajectories can
also be described by a Langevin equation for the position X
as a function of time t , which reads

dX
dt

= − D

kBT
∇W + v + ∇D +

√
2D η(t ). (8)

Here, η denotes a Gaussian white noise which satisfies
〈ηi〉 = 0 and 〈ηiη j〉 = δi jδ(t − t ′). If the diffusivity D depends
on volume fraction φ(x), the noise in Eq. (8) is multiplica-
tive and the term ∇D compensates a spurious noise-induced
drift (see Refs. [25–28] and Appendix B). Note that Eq. (8)
expresses the stochastic trajectories in Ito interpretation. At
thermodynamic equilibrium we have Peq ∝ e−W/kBT = φeq.
The stochastic dynamics of the individual molecules [see
Fig. 1(a), top] is characterized by diffusion with a diffusion
coefficient D, and a drift velocity

vd = −(D/kBT )∇W + v + ∇D. (9)

The profile of the drift velocity for an equilibrium condensate
with v = 0 is shown in Fig. 1(b).

V. SINGLE-MOLECULE PROPAGATOR

We next describe how single molecules move and feel
the presence of the phase boundary. This is determined by
the single-molecule propagator, i.e., the probability density
of finding a molecule at position x at time t given that it
was at position x0 at time t0. For simplicity, we consider
the one-dimensional case. This probability can be obtained
either by solving the Fokker-Planck equation (7) with initial
condition P(x, t0) = δ(x − x0) or by sampling many realiza-
tions of the Langevin equation (8) starting at x0. Figures 1(c)
and 1(d) show examples of this probability density at three
different times using numerical solutions of the Fokker-Planck
equation and simulations of the Langevin equation for x0 < 0
and x0 > 0, respectively. In this example, the diffusion co-
efficient depends on volume fraction as D = D0(1 − φ) (see
Appendix A). After a short time, the probability density dis-
plays the characteristic Gaussian shape of free diffusion. At
longer times, the probability to cross the phase boundary
increases. At the phase boundary, the molecule is exposed to
the effective potential gradient and its diffusion coefficient can
change. For a molecule starting in the dense phase, the ef-
fective potential hinders the molecule from leaving the dense
phase, as captured by the decrease in probability across the
phase boundary [orange and green data in Fig. 1(c)]. Fig-
ure 1(d) shows an example where x0 starts in the dilute phase.
In this case, the effective potential pulls the molecule into
the dense phase. At long times, the propagator approaches
a piecewise constant profile Peq(x), which contains a step
described by the partition coefficient � and is proportional to
the condensate volume fraction φeq [green data in Figs. 1(c)
and 1(d)].

VI. SHARP INTERFACE LIMIT

If one observes single molecules at scales larger than the
interface width w, the dynamics simplify to diffusion equa-
tions in the dense and the dilute phase, connected by boundary
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conditions at the interface at x = 0. The propagator then satis-
fies ∂t P±(x, t ) = D±∂2

x P±(x, t ), where P− (P+) describe the
dense (dilute) phase for x < 0 (x > 0). The matching condi-
tions at the phase boundary read: P−(0, t ) = �P+(0, t ) and
D−∂xP−(0, t ) = D+∂xP+(0, t ) [29–32]. Here the partition
coefficient � stems from the sharp change of the effective po-
tential across the phase boundary: � = exp(
W/kBT ), where

W = W + − W − is the difference of the potential across
the phase boundary. Using Laplace transforms we compute
the propagator for a molecule starting in the dense phase at
x0 < 0, which reads

P
t (x|x0) =

⎧⎪⎨
⎪⎩

1√
4D−π
t

[
αe− (x+x0 )2

4D−
t + e− (x−x0 )2

4D−
t

]
, x � 0

1−α√
4D+π
t

e− (x−x0
√

D+/D−)2

4D+
t , x > 0
(10)

where

α = �
√

D−/D+ − 1

�
√

D−/D+ + 1
, (11)

with −1 � α � 1. The propagator for a molecule starting in
the dilute phase can be obtained from Eq. (10) by a reflection
at x = 0 and exchanging the two phases D± → D∓ and � →
1/�, corresponding to α → −α [see Eq. (C9) in Appendix C].
The propagator in the sharp interface limit given by Eq. (10)
[dotted lines in Figs. 1(c) and 1(d)] shows excellent agree-
ment with numerical solutions of the Fokker-Planck equation
and histograms of the corresponding Langevin simulations, as
long as one considers length scales larger than the interface
width.

The parameter α defined in Eq. (11) governs boundary
conditions at the interface. For simple diffusion start-
ing from x = x0 in a homogeneous phase with diffu-
sion coefficient D, the flux at position x = 0 is JD =
−x0exp[−x2

0/(4D
t )]/(2
t
√

4πD
t ). The presence of an
interface at x = 0 changes this flux, which for x0 < 0 be-
comes JI = (1 − α)JD− . In the limiting case α = 1 the flux
across the interface JI vanishes, implying that the interface
acts as a reflecting boundary. For positive α < 1, α plays
the role of a reflection coefficient that describes the fraction
of the diffusion flux αJD− that is not crossing the interface.
For α = 0 the interface does not perturb the diffusion in
the dense phase (x < 0). Therefore the flux at the interface
is JI = JD− . For negative α the flux across the interface is
higher than for simple diffusion in a homogeneous phase,
JI > JD− , corresponding to enhanced transmission. This can
be interpreted as the dilute phase absorbing molecules coming
from the dense phase. Indeed, in the limiting case α = −1,
molecules that have crossed the interface do not diffuse back,
since they are now facing the reflective side of the interface.
These molecules are therefore absorbed into the dilute phase.
To illustrate these points we discuss propagator profiles in Ap-
pendix C. Note that exchanging the roles of dense and dilute
phase implies certain symmetries, for example if molecules
starting from the dense phase encounter an interface with
reflection coefficient α > 0, then molecules moving in the
opposite direction encounter an absorbing condition described
by enhanced transmission −α. If � >

√
D+/D−, α is positive

and there is reflection at the interface. For � <
√

D+/D−, α

is negative and there is enhanced transmission. This shows

that the partition coefficient � and the diffusivity ratio D−/D+
contribute antagonistically to reflection at the interface. In the
presence of partitioning we have P
t (x|x0) = �P
t (x0|x) if
x0 < 0 and x > 0, i.e., the probability to transition during the
time 
t from the dilute to the dense phase is by the factor
� more likely than the reversed transition [see Eq. (C10) in
Appendix C]. Considering an ensemble of molecules, this
imbalance in the transition rate gives rise to the observed par-
titioning between the dense and dilute phases at equilibrium.

VII. STATISTICS OF DISPLACEMENTS DURING
A FIXED TIME INTERVAL

In single-molecule tracking experiments one typically ob-
serves the statistics of molecular displacements 
 within a
time interval 
t . This method can be used to explore the
statistics of molecular movements across a phase boundary
[19]. The displacement distribution of molecules crossing the
phase boundary starting from the dense side (
 > 0, denoted
by the forward arrow) is defined as

q→

t (
) =

∫ −ε

−∞ dx0
∫∞
ε

dxδ(
 − (x − x0))P(x0)P
t (x|x0)

p→

t

,

(12)

where the normalization is the probability of observ-
ing a transition from dense to dilute phase p→


t =∫ −ε

−∞ dx0
∫∞
ε

dx P(x0)P
t (x|x0). Here we specify an exclusion
region −ε < x < ε around the phase boundary. Displace-
ments starting or arriving in this region of width 2ε are
excluded from the displacement statistics. In experiments, ε

could be used to account for ambiguity of boundary crossings
due to limited optical resolution. For a condensate at equi-
librium, detailed balance implies that q→


t (
) = q←

t (−
) and

p→

t = p←


t , where q←

t (
) and p←


t are the displacement distri-
bution and the probability of a transition from dilute to dense
phase, respectively [see Figs. 2(b) and 2(c)]. In the limit of a
sharp interface, at equilibrium, P(x0) = �/N for x0 < 0 and
P(x0) = 1/N for x0 > 0, where N is a normalization constant.
In this case, for ε = 0, the displacement distribution defined
in Eq. (12) reads

q→

t (
) =

Erf
(




2
√

D−
t

)− Erf
(




2
√

D+
t

)
2(

√
D+ − √

D−)
√


t/π
, (13)

where Erf(x) = (2/
√

π )
∫ x
−∞ e−y2

dy is the error function.
This expression is independent of the partition coefficient �

but depends on the diffusion coefficients D±. The displace-
ment distribution in the simple case D = D− = D+ reads
q→


t (
) = |
| exp[−
2/(4D
t )]/(2D
t ). Note that this is the
same expression one would obtain for the displacement dis-
tribution of a freely diffusing molecule crossing a reference
point in a homogeneous mixture, as shown in Figs. 2(e) and
2(f). For the expressions for a finite ε, see Eq. (C12) in
Appendix C.
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(d)(a)

(f)(c)

(e)(b)

FIG. 2. Statistics of single-molecule displacements during a fixed time interval and their application to measure phase-separation parame-
ters. (a) Schematic of displacements (colored arrows) across the phase boundary (grey dashed line) from dense to dilute (
) or dilute to dense
(−
). The parameter ε defines a region in which displacements are excluded from the distribution. (b) Displacement distribution for � = 5.8,
w = 0.027 μm, and 
t = 0.1. (c) Same as (b) but for stronger phase separation, � = 24.6 and w = 0.021 μm. Both (b) and (c) are obtained
for D = D0(1 − φ). Note that for (b) and (c) the displacement distribution of transitions from the dense to the dilute phase in → out equals the
one of transitions from the dilute to the dense phase out → in, q→


t (
) = q←

t (−
). The solid colored lines refer to numerical solutions of the

Fokker-Planck equation, the dotted lines to the sharp interface limit solution following Eq. (13) and the histograms are sampled from stochastic
simulations of the Langevin dynamics. (d) Mean displacement length normalized by

√

tD− as a function of the diffusivity ratio between the

dilute and dense phase D+/D−. The dotted line shows the sharp interface limit given in Eq. (18) and the solid lines are numerical solutions of
the Fokker-Planck equation. The solid symbols are the results of Langevin simulations. Circles are for time intervals 
t = 0.1 s and squares
for 
t = 1 s. Different diffusion ratios are obtained using D = D0(1 − aφ) and varying the parameter a. [(e),(f)] Comparison between the
distribution of displacements crossing the phase boundary with the distribution of displacements crossing an arbitrary boundary in the dilute
phase (virtual boundary). Histograms are obtained sampling from displacements generated with Langevin simulations. (e) uses a boundary
resolution ε = 0 μm, corresponding to a perfectly resolved interface [see (a) for definition of boundary resolution]. (f) uses ε = 0.02 μm, thus
not counting displacements with initial or final positions −0.02 μm < x < 0.02 μm. Same parameters as in (c), but constant D = D0. For all
panels we set D0 = 1 μm2/s.

VIII. STATISTICS OF FIRST-PASSAGE TIMES
OVER A FIXED DISTANCE

We now consider the first-passage time statistics for a
molecule starting at −L < x0 < 0 in the dense phase of size L
to reach a position x > 0 in the dilute phase for the first time,
described by the probability density f (t ; x0, x). The moment
generating function for the first-passage time F (s; x0, x) =∫∞

0 f (t ; x0, x)est dt can be obtained for the sharp interface

limit (see Appendix D)

FS (s; x0, x) = cos
(√ s

D− (L + x0)
)

cos
(
x
√ s

D+
)

cos
(
L
√ s

D−
)

× 1

1 − �

√
D−
D+ tan

(
x
√ s

D+
)

tan
(
L
√ s

D−
) (14)
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(a)

(b)

FIG. 3. Mean first-passage times. (a) Mean first-passage time
as a function of initial position. (b) Mean first-passage time as a
function of final position. In both panels the dashed lines correspond
to the sharp interface limit as given in Eq. (15) and the solid lines
to the evaluation of Eq. (D10). The solid circles are obtained from
Langevin simulations. Both panels refer to a diffusion coefficient
profile D = D0(1 − φ) with D0 = 1 μm2/s.

where reflecting boundary conditions at x = −L have been
imposed and the subscript S indicates that the result is ob-
tained in the sharp interface limit. This expression allows to
directly compute the moments of the first-passage time. The
mean first-passage time T (x0, x) reads

TS (x0, x) = − L2

2D−

(
2 + x0

L

)
x0

L
+ L2

2D+

(
2� + x

L

)
x

L
. (15)

Taking into account the interface profile φeq(x), with width
w, exact expressions for the mean first-passage time can be
obtained [see Eq. (D10)]. Figures 3(a) and 3(b) show the
mean first-passage times as a function of initial position x0

and final position x, for different values of the partition co-
efficient. The values in the sharp interface limit [Eq. (15)] are
shown together with the results for the finite interface obtained
both from numerical evaluation of the exact expression in
Eq. (D10), and from numerical simulations of the Langevin
equation (8). This plot reveals that in the sharp interface limit
the mean time required to reach the target is systematically
increased as compared to a system with a finite interface
width. This difference is roughly position independent and,
for the volume fraction profile shown in Fig. 1(a), can be

approximated as

TS (x0, x) − T (x0, x)

� Lw

2D−

D−
D+ (� − 1)2 ln � − �

(
D−
D+ − 1

)2
ln D−

D+

� − D−
D+

, (16)

for small w and for a linear dependence of the diffusion
constant on the volume fraction (see Appendix D).

IX. DETERMINING PHASE-SEPARATION PARAMETERS
FROM SINGLE-MOLECULE TRAJECTORIES

Single-molecule trajectories carry detailed information
about the environment in which the molecules move. In prin-
ciple, the diffusion coefficients can be measured from the
statistics of displacements inside each phase [11]. However,
such approaches are complicated by the confinement and the
presence of the interface. In addition to measurements in
a single phase, the presence of the interface could permit
to measure both diffusion coefficients simultaneously using
the time- and displacement-statistics from those trajectories
where molecules cross the interface. Indeed, the distribution
of displacements crossing an interface during a fixed time
depends on the diffusion coefficients of both adjacent phases.
This is revealed in Eq. (13) in the case of a sharp interface. In
this case, both diffusion coefficients can in principle be deter-
mined from the mean and the variance of the displacements,
which read

〈
�〉 = ±
√

π
t

2

(√
D+ +

√
D−) (17)

〈(
�)2〉 = 4
3
t
(
D+ + D− +

√
D+D−). (18)

Note that the shape of the distributions of displacements into
and out of the dense phase are identical. Therefore these
distributions do not determine which diffusion coefficient cor-
responds to which phase.

When ε > w, displacements occurring within the inter-
face do not contribute to the displacement distribution. In
this case the displacement distribution obtained in the sharp
interface limit Eq. (C12) provides a good approximation for
the distribution obtained for the finite interface width, see
Fig. 6. Choosing ε < w the displacement distributions can
differ when comparing the sharp interface limit and finite
interface width see Figs. 2(b)–2(d). One way to think about it
is as follows. In the sharp interface limit, every displacement
of length 
 crossing the boundary x = 0 is associated with a
change in the effective potential 
W = kBT ln �. For a finite
interface width, displacements of length 
 occurring within
the interface involve smaller changes 
W . As a consequence
the statistics of these displacements differ from the one in the
sharp interface limit, as shown in Figs. 2(b)–2(d).

If the diffusion coefficients are the same in the dense
and dilute phase, D− = D+, and the interface is sharp, the
displacement distributions of phase boundary crossings are
identical to the displacement distributions crossing a virtual
boundary within one phase. For an interface of finite width,
distributions can differ slightly for ε 
 w, see Figs. 2(e) and
2(f).
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(a)

(b)

FIG. 4. Non-equilibrium effects on single molecules.
(a) Non-equilibrium volume fraction profile for χ = 2.08,
κ = 10−4 μm2kBT , and equilibrium interface width w = 0.036 μm,
featuring a homogeneous flux j = 0.047 μm/s. (b) Drift velocity
profile vd under non-equilibrium conditions and for constant
D0 = 1 μm2/s. The solid line is the exact expression from Eq. (9).
The dotted line is the approximation given in Eq. (19), obtained
by neglecting the interface contributions to the flux proportional to
∇∇2φ, which is accurate outside the interface region.

The mean first-passage time given in Eq. (15) reveals in-
formation about diffusion coefficients in the two phases and
the partition coefficient. These quantities could be determined
from mean first-passage times as a function of the initial
and final positions. The mean first-passage time also contains
information about the interface width w, which could be esti-
mated from the shift of the mean first-passage time given by
Eq. (16) and shown in Fig. 3.

X. SINGLE-MOLECULE DYNAMICS IN
NON-EQUILIBRIUM CONDITIONS

So far we have considered trajectories of single molecules
moving in equilibrated condensates. We now consider the
situation where a diffusion flux j is imposed by boundary
conditions. This results in volume fraction gradients on both
sides of the interface [Fig. 4(a)]. Figure 4(b) shows the drift
velocity vd as a function of position, which extends beyond
the interface region for non-equilibrium conditions [compare
Fig. 1(b) and Fig. 4(b)]. Interestingly, this drift velocity is in
the opposite direction of the diffusion flux introduced by the
boundary conditions. In order to understand the origin of this
drift velocity, we first consider the simple case of a concentra-
tion gradient ∇φ in a dilute solution, with constant diffusion

coefficient. In this case, vd , as defined in Eq. (9), vanishes
because Dcol = D, v = −D∇φ/φ and −∇W/kBT = ∇φ/φ.
This reflects the fact that a single particle that undergoes a
random walk does not exhibit any drift. Note that many inde-
pendent random walkers arranged in a concentration gradient
give rise to a net diffusion flux but individual walkers do not
exhibit drift. In our system, molecules interact with each other
and the diffusion flux given in Eq. (3a) contains the effect
of such interactions. As a result, single molecules moving in
a concentration gradient exhibit a net drift velocity vd . For
a constant molecular diffusion coefficient, D = kBT gm with
g = 1, neglecting the interface contributions proportional to
∇∇2φ in Eq. (3a), the single-molecule drift velocity becomes

vd � j
(n − 1) − 2nχ (1 − φ)

1 + φ[(n − 1) − 2nχ (1 − φ)]
, (19)

where j is the externally imposed diffusion flux. Note that
vd can be in the same or the opposite direction of j. We
discuss the direction of vd in the case where solute and solvent
have the same molecular volume, n = 1. In this case the drift
velocity vd is in the opposite direction of the flux j if χ > 0
and 2φ(1 − φ)χ < 1. The second condition is always satis-
fied for volume fractions for which the homogeneous phase
is locally stable. Therefore vd is negative on both sides of
the interface in Fig. 4(b). Equation (19) reveals the influence
of molecular interactions described by the parameter χ and
excluded volume described by n on the drift velocity. Note
that these effects play a role even in the bulk phase and in the
absence of phase separation.

XI. SIGNATURES OF NON-EQUILIBRIUM
IN DISPLACEMENT DISTRIBUTIONS

Under non-equilibrium conditions, the distributions of
transitions across the phase boundary and the probabil-
ity of crossing are in general not equal for the reversed
transitions, q→


t (
) �= q←

t (−
), p→


t �= p←

t . The signatures of

non-equilibrium are pronounced in the difference p→

t −

p←

t = 
tJ , where J is the single-molecule probability flux

as defined in Eq. (7). For the parameters used in Fig 4, J =
0.016 s−1 and the differences between q→


t (
) and q←

t (−
) are

weak.

XII. DISCUSSION

We have shown that single molecular trajectories in a
phase-separating system can be described by a Langevin equa-
tion with an effective potential and a drift velocity, which
can both be determined from the coarse-grained concentration
fields and fluxes. The effective potential exhibits a step-like
change at the phase boundary, corresponding to a potential
well that describes the enrichment of molecules in the conden-
sate. Thus, a single molecule diffuses as a Brownian particle
in an effective potential well that is determined by the profile
of the volume fraction and subject to an additional drift in
the presence of fluxes. We find expressions for single-
molecule and collective diffusion coefficients and discuss how
they differ from each other as a result of molecular inter-
actions. Because of such interactions, diffusion coefficients
usually depend on composition. However, as shown in the
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Appendix, molecular diffusion coefficients inside and outside
a condensed phase can be similar if solvent volume fractions
are similar. Our approach also captures another important and
well known difference between single-molecule movements
and collective transport. In a concentration gradient, freely-
diffusing molecules display a collective diffusion flux while
individual molecular trajectories have no drift. Interestingly,
if molecules interact, we find that individual molecular trajec-
tories tend to drift towards higher concentrations, opposite to
the collective diffusive flux of the same molecules.

Our paper explicitly shows that, despite the difference in
concentration between the dense and dilute phase, the dis-
placement statistics across the phase boundary are equal for
transitions entering the dense phase and for those leaving it
when the system is at equilibrium. This is a consequence
of detailed balance and microscopic reversibility. Out of
equilibrium, detailed balance is broken and displacement
distributions across the phase boundary are different. The
statistics of movements in opposite directions have also been
discussed in other contexts. The equality of jump time distri-
butions of movements in opposite directions was shown for
particles crossing asymmetric ion channels [33,34]. This was
also observed experimentally for transition path times for the
formation and opening of DNA hairpins [35]. In this case, also
the breaking of the symmetry under non-equilibrium condi-
tions was observed. Recently, an example of the Langevin
equation (8) that we systematically derive here was used to
investigate single-molecule statistics in condensates [20].

Single-molecule trajectories of RNA Polymerase were re-
cently studied in biological compartments associated with
viral replication [19]. The authors observed the same diffu-
sion coefficients of RNA Polymerase inside and outside the
compartments. Furthermore, the displacement distributions
into and out of the compartments were indistinguishable.
Both were also indistinguishable from the distributions of
displacements across a randomly located line. From these
observations, the authors concluded that the compartment
boundary is not a phase boundary and that the compartment
and its surroundings are not coexisting liquid-like phases. Our
paper, however, shows for coexisting liquid phases that the
displacement distributions into and out of the compartment
must be equal at equilibrium and that diffusion coefficients
inside and outside the compartment can be equal. For similar
diffusion coefficients inside and outside a compartment, the
displacement distributions across the phase boundary are very
similar to the distributions obtained from crossings of a line
located within or outside the compartment. Therefore, the
single-molecule data of [19] is consistent with viral replica-
tion compartments behaving as liquid-like phases that coexist
with the surrounding cytoplasm. The equality of displacement
distributions provides evidence of local equilibrium condi-
tions. This is similar to recent observations that P granules in
C. elegans embryos can be understood as phase coexistence at
local equilibrium [36].

Our paper shows how the statistics of single-molecule
trajectories in phase-separating systems provides informa-
tion about key parameters such as diffusion coefficients,
partition coefficients, and interface profiles. In particular,
single-molecule techniques provide an independent way to
measure the partition coefficient, for which estimates from

fluorescent intensities alone are often unreliable [37]. Apart
from its application to single-molecule trajectories, the pre-
sented theory can also be used to analyze collective diffusion
of labeled molecules, e.g., in fluorescence recovery after pho-
tobleaching (FRAP) assays [38]. Interesting extensions of
our approach will include condensation on surfaces, effects
of chemical reactions and of glass-like aging in biological
condensates [39].
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APPENDIX A: DYNAMICS OF A LABELED COMPONENT
IN A MULTICOMPONENT FLUID

Let us consider an incompressible mixture composed of
n + 1 different components and denote φi the volume fraction
of component i (with i = 1, . . . , n), and φS = 1 −∑n

i=1 φi the
volume fraction of the solvent. The Flory-Huggins free energy
density reads

fm(φi, T ) = h

ν
+ kBT

ν

[
n∑

i=1

φi ln φi +
(

1 −
n∑

i=1

φi

)

× ln

(
1 −

n∑
i=1

φi

)]
, (A1)

where h includes all the energetic contributions from the in-
ternal energies and the interaction energies. For simplicity,
we restrict ourselves to identical molecular volumes ν. The
chemical potential μi = νδF/δφi reads

μi = kBT ln

(
φi

φS

)
+ hi, (A2)

where hi = δh
δφi

. The dynamics of the system is governed by
the conservation laws ∂tφi = −∇ · ji where the fluxes are
given by ji = −∑ j Mi j∇μ j . Mi j is a n × n mobility matrix,
which in general depends on volume fractions. To understand
its structure it is useful to consider a lattice model where the
molecules of the different species and solvent are allowed
to exchange position with their neighbors. Let us define the
exchange attempt rate on the lattice between molecules of
species i and j as mi j and the exchange attempt rate between
species i and the solvent as miS . For simplicity, we assume
them to be independent of the volume fractions. In a mean-
field approach, the overall exchange rate is proportional to the
attempt rate multiplied by the product of the volume fractions
of the two molecular species to be exchanged. This yields the
mobility matrix

Mii = miSφiφS +
n∑

j �=i

mi jφiφ j, (A3)

Mi j = −mi jφiφ j, ∀i �= j, (A4)

with mi j = mji. This choice of mobility is equivalent to the
one derived in [40] to describe the interdiffusion of polymer
couples. The first term in Eq. (A3) expresses the rate with
which a molecule of species i is exchanged with a molecule

043150-8



STOCHASTIC DYNAMICS OF SINGLE MOLECULES … PHYSICAL REVIEW RESEARCH 3, 043150 (2021)

of the solvent. The second term in Eq. (A3), together with
Eq. (A4), represents the rates of exchanges between molecules
of species i with molecules of species j. Note that the rate with
which a molecule of species i exchanges its position with a
molecule of the same kind mii is not relevant for the evolution
of the volume fraction profile. It will prove convenient to
rewrite Mii = miSφi[(1 − φi ) −∑n

j �=i ρi jφ j] where we have
introduced

ρi j = 1 − mi j/miS, (A5)

with ρi j � 1. Using

∇μi = ∇hi + kBT

φiφS

[(
1 −

n∑
j �=i

φ j

)
∇φi + φi

n∑
j �=i

∇φ j

]

(A6)

∇(μi − μ j ) = kBT

φiφ j
[φ j∇φi − φi∇φ j] + ∇(hi − h j ), (A7)

the flux of component i reads

ji = −miS

(
kBT ∇φi + φi∇hi − φi

n∑
j=1

φ j∇h j

)

− miS

n∑
j �=i

ρi j[kBT (φi∇φ j−φ j∇φi ) − φiφ j (∇hi − ∇h j )].

(A8)

Let us now consider the case in which we label one of the
molecular species. For the sake of clarity let us choose species
n and label it so that we now have have n + 2 molecular
species where the labeled (unlabeled) molecules of species n
are denoted as L (U ). The total volume fraction of species n
is φn = φL + φU and its flux jn = jL + jU . Since the labeled
and unlabeled molecules have the same physical properties
they must have the same exchange attempt rate with the sol-
vent as in the case without labeling mUS = mLS = mnS . The
same holds for exchanges with the other species miL = miU =
min for any i < n. Only the terms concerning the exchange
between labeled and unlabeled molecules require additional
knowledge. The exchange attempt rate among these species
has to be specified and is contained in the coefficient ρLU .
These exchanges do not affect the sum of the fluxes of la-
beled and unlabeled molecules, but they affect their specific
molecular diffusion constants. Concerning the free energy,
the fact that the nonentropic contributions to the chemical
potential for labeled and unlabeled molecules are the same
gives hn = hL = hU . The flux of labeled molecules then reads

jL = −mnS

[
kBT ∇φL + φL∇hn − φL

((
n−1∑
j=1

φ j∇h j

)

+(φU + φL )∇hn

)
+

n−1∑
j=1

ρn j[kBT (φL∇φ j − φ j∇φL )

− φLφ j∇(hn − h j )] + ρLU kBT (φL∇φn − φn∇φL )

]
.

(A9)

Recalling φn = φL + φU , the flux of labeled molecules can be
expressed in terms of the total flux of component n, jn as

jL = φL

φn
jn + Dn

(
−∇φL + φL

∇φn

φn

)
. (A10)

Together with the continuity equation ∂tφL + ∇ · jL = 0, one
finds Eq. (6) for the case of a binary mixture. The single-
molecule diffusion coefficient reads

Dn = kBT g mnS, (A11)

g = 1 − ρLU φn −
n−1∑
j=1

ρn jφ j, (A12)

where the coefficient g describes interactions with other com-
ponents. In the simple case of a binary mixture (n = 1),
setting mnS = m, the single-molecule diffusion coefficient
D = kBT m(1 − ρLU φ) with ρLU � 1. In the main text we
consider the two cases ρLU = 0 and ρLU = 1, corresponding
to a diffusion coefficient independent of volume fraction and
to a linear dependence on volume fractions, respectively. For
many components we consider the simple case where all
components except for the solvent have similar kinetics so
that ρ = ρn j for every j and n and ρLU = ρ. In this case
for all components D = kBT gm, with g = 1 − ρ(1 − φS ) and
m = mnS , only depends on the solvent volume fraction φS .
This shows for example that the diffusion coefficient of single
molecules can be similar inside and outside a condensate if
the solvent volume fractions are similar. All these cases are
compatible with the theory of phase separation.

APPENDIX B: INTERPRETATION
OF THE MULTIPLICATIVE NOISE

Equation (8) in the main text gives the Langevin equation
governing the motion of single molecules where the multi-
plicative noise is evaluated using the Ito interpretation. By
applying Ito’s lemma, we can derive the evolution of the
probability density of a molecule obeying this Ito stochastic
differential equation [26]:

∂t P = −∇ ·
[(

− D

kBT
∇W + v + ∇D

)
P − ∇(DP)

]
. (B1)

This equation is the same as the Fokker-Planck equation given
in the main text (7), as one can see by simply rearranging the
terms.

APPENDIX C: SOLUTIONS IN THE SHARP
INTERFACE LIMIT

As discussed in the main text, in the sharp interface limit
the single-molecule propagator evolves following

∂t P
±(x, t ) = D±∂2

x P±(x, t ), (C1)

with the condition, imposed by partitioning, that at the inter-
face (here set to x = 0)

P−(0, t ) = �P+(0, t ), (C2)

and the conservation law

−D−∂xP−(0, t ) = −D+∂xP+(0, t ). (C3)
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For a single molecule starting at x0 the initial condition is
P(x, 0) = δ(x − x0). The solution of the propagator in the
sharp interface limit can be obtained by a Laplace transfor-
mation of equation (C1), which reads

sP̂±(x, s) = D±∂2
x P̂±(x, s) + δ(x − x0), (C4)

where P̂±(x, s) = ∫∞
0 P±(x, t )e−st dt denotes the Laplace

transform of the propagator. The solution of this equa-
tion involves linear combinations of elementary solutions
exp [−ξ±x] and exp [ξ±x], with ξ± = √s/D±. Assuming the
starting position of the molecule in the dense phase (x0 < 0),
the full solution is given by

P̂(x, s) =
⎧⎨
⎩

deξ−x, for x < x0

aeξ−x + be−ξ−x, for x0 � x � 0
ce−ξ+x, for 0 < x

, (C5)

where we have imposed a vanishing probability density at
x → ±∞. The four unknown coefficients are fixed by the
conditions at the interface Eqs. (C2), (C3), and the conditions
at the starting point x0, ensuring continuity

lim
ε→0

(
P̂(x0 + ε, s) − P̂(x0 − ε, s)

) = 0, (C6)

for all s and

lim
ε→0

D−(∂xP̂(x0 + ε, s) − ∂xP̂(x0 − ε, s)
) = −1. (C7)

These conditions lead to a solution involving a linear combi-
nations of terms of the kind exp[−ki

√
s]/

√
s where ki � 0 are

themselves linear combinations of the initial and final position
x0 and x. The Laplace back transformation of these terms can
be explicitly obtained by recalling that, for ki � 0,∫ ∞

0
dt

1√
πt

e− k2
i

4t e−ts = 1√
s

e−ki
√

s, (C8)

see Eq. (29.3.84) in [41]. Assembling the various terms leads
to Eq. (10) in the main text, which is valid for for x0 � 0.

Propagator for a molecule starting in the dilute phase.
For a molecule starting in the dilute phase x0 > 0, one has
to perform a reflection at x = 0 and exchange the two phases
D± → D∓ and � → 1/�, corresponding to α → −α. This
gives, for x0 > 0,

P
t (x|x0) =

⎧⎪⎨
⎪⎩

1+α√
4D−π
t

e−
(

x−x0
√

D−/D+
)2

4D−
t , x < 0

1√
4D+π
t

[
−αe− (x+x0 )2

4D+
t + e− (x−x0 )2

4D+
t

]
, x � 0

(C9)

Reflection and enhanced transmission at the interface. As
discussed in the main text, the parameter α governs the flux
through the interface. Figure 1(c) gives the propagator profile
for the case in which the flux is partially reflected at the
interface, α = 0.41. In Fig. 5 we show three examples of the
propagators, for high reflection α = 0.94, no reflection α = 0,
and strongly enhanced transmission α = −0.94. The plots
show that, as α decreases, reflection at the interface decreases
and so does the probability of remaining in the dense phase.
It is worth noting that, keeping fixed the partition factor �

and diffusion in the dense phase D−, the limit α → −1 cor-

FIG. 5. Influence of the parameter α on propagators. The dif-
fusion coefficient in the dense phase (D− = 0.15 μm2/s) and the
partition factor � = 5.8 are the same as in Fig. 1(c). The param-
eter α is varied by varying the diffusion coefficient in the dilute
phase, which takes the value D+ = 0.005 μm2/s for α = 0.94, D+ =
5 μm2/s for α = 0, and D+ = 5000 μm2/s for α = −0.94. x0 =
−0.5 μm and 
t = 1 s. The inset focuses on the tails of the prop-
agators in the dilute phase.

responds to a very large D+, which implies for x > 0 a flat
profile of small magnitude, as shown in the inset in Fig. 5.

Time-reversed probabilities in the sharp interface limit. In
contrast with simple diffusion, the propagators presented in
Eqs. (10) and (C9) are not invariant under inversion of the
initial point x0 and the final point x if these are on opposite
sides of the phase boundary. By explicitly comparing them,
we find

P
t (x|x0)

P
t (x0|x)
=

⎧⎪⎪⎨
⎪⎪⎩

1 for x0 < 0, x < 0
1
�

for x0 < 0, x > 0
� for x0 > 0, x < 0
1 for x0 > 0, x > 0

, (C10)

FIG. 6. Displacement distributions with finite cutoff ε=0.02μm,
thus not counting displacements with initial or final positions
−0.02 μm < x < 0.02 μm. The parameters are the same as in
Fig. 2(c), 
t = 0.1, � = 24.6, w = 0.021 μm, D = D0(1 − φ) with
D0 = 1 μm2/s. The dotted line is the expression for the sharp inter-
face limit given in Eq. (C12), the solid colored line is the numerical
solutions of the Fokker-Planck equation, and the histograms are
sampled from stochastic simulations of the Langevin dynamics.
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where we have used the fact that 1 + α = �
√

D−/D+(1 − α).
To reach equilibrium, for x0 < 0, x > 0, Peq(x0) = �Peq(x),
in accordance with what is expected from partitioning. This
ensures the detailed balance condition

P
t (x|x0)Peq(x0) = P
t (x0|x)Peq(x). (C11)

Displacement distributions with cutoff. In the main text,
Eq. (13) shows the displacement distribution in the sharp
interface limit, for the case in which the cutoff length ε = 0.

For a finite ε,

q→

t (
) =

Erf

[

−ε

(
1−
√

D−
D+
)

2
√

D−
t

]
− Erf

[

+ε

√
D+
D−
(

1−
√

D−
D+
)

2
√

D+
t

]
2(

√
D+ − √

D−)
√


t/π Nε

(C12)

with

Nε = exp

⎡
⎢⎣−
(
ε
(

1 +
√

D+
D−

))2

4D+
t

⎤
⎥⎦− 1

2

√
π

D+
t
ε

(√
D+

D− + 1

)
Erfc

⎡
⎢⎣ε
(√

D+
D− + 1

)
2
√

D+
t

⎤
⎥⎦, (C13)

where Erfc(x) = 1 − Erf(x) is the complementary error func-
tion. These expressions do not depend on the partition
coefficient �. If ε = 0, Nε = 1, Eq. (C12) reduces to Eq. (13)
in the main text. If the diffusion coefficient is the same in the
two phases D+ = D− = D we have

q→

t (
) = (
 − 2ε)e−
2/(4D
t )

2
√

D
t
[√

D
te−ε2/(D
t ) − ε
√

πErfc
(

ε√
D
t

)] .
(C14)

APPENDIX D: FIRST-PASSAGE TIME STATISTICS

The first-passage time probability density f (t ; x0, x) is
defined as the probability density of reaching position x for
the first time at time t , having started in position x0 with
−L < x0 < 0 in the dense phase of size L. We consider re-
flecting boundary conditions at position x = −L. To compute
the first-passage time probability, it is useful to consider the
survival probability of not having reached position xa until
time t (see e.g., [42]):

S(t ; x0, xa) =
∫ xa

−L
P(x, t |x0)dx. (D1)

Here P(x, t |x0) is the solution of the Fokker-Planck equa-
tion (7) with the absorbing boundary condition at position
x = xa, P(xa, t |x0) = 0. The initial condition is P(x, 0|x0) =
δ(x − x0). The probability of reaching position x = xa for the
first time between time t and time t + dt is f (t ; x0, xa)dt .
Due to absorption at xa, the survival probability decreases
S(t + dt ; x0, xa) − S(t ; x0, xa) showing that f (t ; x0, xa) =
−∂S(t ; x0, xa)/∂t . The rate of change of the survival prob-
ability is ∂S(t ; x0, xa)/∂t = −J (xa, t |x0), where J is the
probability flux in the Fokker-Planck equation with absorption
at xa [see Eq. (7)]. We finally have

f (t ; x0, x) = J (x, t |x0). (D2)

First-passage time in the sharp interface limit. In the
sharp interface limit it is possible to explicitly obtain the
flux at the absorbing boundary, using the method presented
in Appendix C with boundary conditions P(xa, t |x0) = 0 and
(∂P(x, t |x0)/∂x)|x=−L = 0. The explicit solution allows us to
compute the Laplace transform of the flux at xa, Ĵ (xa, s|x0) =
−D+(∂P̂(x, s|x0)/∂x)|x=xa , which gives the Laplace trans-
form of the first-passage time probability f̂S (s; x0, x) =∫∞

0 fS (t ; x0, x)e−st dt . This reads

f̂S (s; x0, x) = cosh
(√ s

D− (L + x0)
)

cosh
(
x
√ s

D+
)

cosh
(
L
√ s

D−
)+ �

√
D−
D+ sinh

(
x
√ s

D+
)

sinh
(
L
√ s

D−
) . (D3)

Replacing s with −s gives the moment generating function of
the first-passage time reported in Eq. (14) in the main text.
The mean first-passage time can be computed by recalling
the definition of the Laplace transform and taking a series
expansion (see e.g., [42])

f̂S (s; x0, x) =
∫ ∞

0
dt e−st fS (t ; x0)

= 1 − s
∫ ∞

0
t fS (t ; x0, x)dt + O(s2), (D4)

where one sees that the term proportional to −s is the mean
first-passage time.

Mean first-passage time for finite interfaces. For finite in-
terface widths it is more difficult to directly compute the first-
passage time probability, because it is difficult to solve the
Fokker-Planck equation (7). However, the mean first-passage
time can be studied. We follow the steps presented in [26],
section 5.2.7. By definition, the mean first-passage time reads

T (x0, x) =
∫ ∞

0
dt t f (t ; x0, x)

= −
∫ ∞

0
dt t

∂S(t ; x0, x)

∂t

=
∫ ∞

0
dt S(t ; x0, x), (D5)
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where, in the first step, we have used the relation between
the survival probability S(t ; x0, x) defined in Eq. (D1) and
the first-passage time probability. The last step follows from
integration by parts. To proceed we notice that the propagator,
in addition to the forward Fokker-Planck equation (7), obeys
also a backward Fokker-Planck equation, which, because of
stationarity, reads

∂P(x, t |x0)

∂t
= ∂

∂x0

(
D

∂

∂x0
P(x, t |x0)

)

− D

kBT

∂W

∂x0

∂

∂x0
P(x, t |x0). (D6)

We focus on the equilibrium case so that the non-equilibrium
drift velocity is zero, v = 0. Since the survival probability is
initially unity and vanishes for long times we can also write

∂

∂t

∫ ∞

0
dt S(t ; x0, x) = −1. (D7)

Combining Eqs. (D1), (D5), (D6), and (D7), we obtain a
differential equation for the mean first-passage time

−1 = ∂

∂x0

(
D

∂

∂x0
T (x|x0)

)
− D

kBT

∂W

∂x0

∂

∂x0
T (x|x0), (D8)

which, in one dimension, is an ordinary differential equation
with solution

T (x0, x) =
∫ x

x0

dy
e

W (y)
kBT

D(y)

∫ y

−L
e− W (z)

kBT dz. (D9)

Using that W = −kBT ln φ, the integral to compute is then

T (x0, x) =
∫ x

x0

dy

φ(y)D(y)

∫ y

−L
φ(z)dz. (D10)

The exact value of the mean first-passage time depends on
how the diffusion coefficient depends on volume fraction
and on the volume fraction profile. The sharp interface limit
can be recovered by neglecting the smooth variation of φ(x)
and D(x) within the interface. Approximating them as step
functions we can write φ(x) � θ (x)φ+ + θ (−x)φ−, and
φ(x)D(x) � θ (x)φ+D+ + θ (−x)φ−D−. Then, the integral in
Eq. (D10), for −L < 0, x0 < 0 and x > 0, evaluates to

T (x0, x) � −(2L + x0)x0

2D− +
x(2 φ−

φ+ L + x)

2D+ , (D11)

which, coincides with the expression obtained using the sharp
interface limit [Eq. (15) in the main text] once we recall that
� = φ−/φ+.

Difference between finite and sharp interfaces for the mean
first-passage time. Here we compute the leading contribution
to the difference between the sharp interface limit and the
finite interface case when the diffusion coefficient is a linear
function of volume fraction. We start by noticing that the
difference between the two solutions is relevant only in the in-
terface region, which has a width 2w, which we consider small
with respect to the other length scales L, x, x0. The main con-
tribution to the mean first-passage times for small distances is
given by the terms linear in x and x0 in Eq. (15). We therefore
focus on these terms, which are proportional to the inner inte-
gral in Eq. (D10) evaluated at the lower integration limit z =
−L, which is approximately Lφ−. The leading contribution is
then given by the difference between Lφ− ∫ x

x0
dy(φ(y)D(y))−1

and its stepwise approximation (the sharp interface limit),
which is L(−x0/D− + �x/D+). For a linear dependence of
the diffusion coefficient on the volume fraction and the vol-
ume fraction profile presented in the main text,

φ(x) = φ+

2

[
(� + 1) − (� − 1) tanh

(
x

w

)]
, (D12)

we have

∫
dy

φ(y)D(y)
= w

2�D−φ+( D−
D+ − �)

·
{
�

(
D−

D+ − 1

)2

ln

[(
D−

D+ + 1

)(
1 −

D−
D+ − 1
D−
D+ + 1

tanh

(
y

w

))]

+
(

D−

D+ − �

)(
ln

[
1 + tanh

(
y

w

)]
− �

D−

D+ ln

[
1 − tanh

(
y

w

)])

− (� − 1)2 D−

D+ ln

[
(� + 1)

(
1 − � − 1

� + 1
tanh

(
y

w

))]}
. (D13)

This expression takes a simple form if we evaluate it at
x0 
 −w and x � w where the tanh(y/w) approaches −1
and 1, respectively. The terms featuring ln[1 ± tanh(y/w)]
are the ones contributing the linear terms that are present in
the sharp interface limit L(−x0/D− + �x/D+). The other
terms give the correction reported in Eq. (16) in the main text.
In the special case in which D−/D+ = �, Eq. (16) reduces to

T (x0, x) − TS (x0, x) � −Lw

D− (� − 1)2

[
1 + � + 1

� − 1
ln �

]
.

(D14)

APPENDIX E: NUMERICAL SIMULATIONS

The histograms and the solid symbols presented in the
figures are obtained through Langevin simulations inte-
grated with the Euler method [43]. The histograms in
Figs. 1(c) and 1(d) are obtained simulating 20000 trajec-
tories. In Figs. 2(b) and 2(c) the histograms are obtained
using 500 000 displacements. The solid symbols in Fig. 2(d)
and the histograms in Figs. 2(e) and 2(f) are computed
from 280 000 displacements. Note that only a fraction of
the simulated displacements crosses the phase boundary.

043150-12
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The simulations in Figs. 1 and 2 are performed with time
step dt = 10−8 s. In Fig. 3 the solid circles are averages

obtained from 10 000 Langevin simulations with time step
dt = 10−6 s.
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