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Abstract
We derive exact expressions for the finite-time statistics of extrema (maximum and minimum) of
the spatial displacement and the fluctuating entropy flow of biased random walks. Our approach
captures key features of extreme events in molecular motor motion along linear filaments. For
one-dimensional biased random walks, we derive exact results which tighten bounds for entropy
production extrema obtained with martingale theory and reveal a symmetry between the
distribution of the maxima and minima of entropy production. Furthermore, we show that the
relaxation spectrum of the full generating function, and hence of any moment, of the finite-time
extrema distributions can be written in terms of the Marčenko–Pastur distribution of
random-matrix theory. Using this result, we obtain efficient estimates for the extreme-value
statistics of stochastic transport processes from the eigenvalue distributions of suitable Wishart
and Laguerre random matrices. We confirm our results with numerical simulations of stochastic
models of molecular motors.

1. Introduction

Life is a non-equilibrium phenomenon characterized by fluxes of energy and matter at different scales. At
the molecular level, molecular motors play a key role for the generation of movements and forces in cells.
Examples are vesicle transport, muscle contraction, cell division and cell locomotion [1, 2]. A molecular
motor consumes a chemical fuel, adenosine triphosphate (ATP), that is hydrolysed to adenosine
diphosphate (ADP) and inorganic phosphate. The chemical energy of this reaction is transduced to generate
spontaneous movements and mechanical work. Single-molecule experiments have revealed that the activity
of single or a few molecular motors displays strong fluctuations [3–13] which can be captured by the theory
of stochastic processes [14–21].

An important question is to understand general features and universal properties that govern the
statistics of fluctuations of stochastic transport processes that include the motion of molecular motors.
Universal relations for the fixed-time statistics of time-integrated currents, such as the distance travelled and
the work performed, have been investigated in the framework of non-equilibrium stochastic
thermodynamics [22–25]. These results provide e.g. universal bounds for the efficiency of molecular motors
given by the ratio between the mechanical power and the chemical power put in the motor [26]. Timing
statistics of enzymatic reactions, such as those powering the motion of molecular motors, have been
discussed within the framework of Kramers theory [27]. Recent theory and experiments in Kinesin have
revealed symmetry relations between forward and backward cycle-time distributions of enzymatic reactions
[28–30]. Related results have been derived in the context of waiting times of active molecular processes [31]
and transition-path times in folding transitions of DNA hairpins [32].

When discussing stochastic processes, it is often sufficient to study averages and small fluctuations.
However, rare events and large fluctuations play an important role when resilience and reliability of a
system are investigated. In this context, the statistics of extreme values and of extreme excursions from the
average play an important role, as has been discussed applying extreme-value theory in biophysics [33–35]
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but also in other fields ranging from statistical physics [36] to climate [37, 38], finance [39–41], and sports
[42–44].

Extreme events are important in biophysics as they are key to understand the robustness of biological
processes. Illustrating examples are microtubule catastrophes or a sperm winning a race against a billion
competitors. Here we consider the extreme value statistics of transport processes. Extreme-value theory has
provided useful insights for e.g. long-range correlations of DNA sequences [33, 34] and DNA replication
statistics in frogs’ embryonic cells [35]. However, exact results on extreme-value statistics of stochastic
transport phenomena in biophysics at finite time are so far lacking. For example, what is the maximal
excursion of a molecular motor against or in the average direction of its motion within a given time? How
long does it take a motor to reach its maximum excursion against the chemical bias? What is the entropy
production associated with an extreme fluctuation of a molecular motor?

The statistics of extreme values of random walks has raised a lot of interest. In particular the record
statistics of correlated time series was investigated in the long-time limit [36, 45–51]. These results also
apply to continuous-time random walks in the long time limit [49] and to biased diffusions [48], for which
exact results can be obtained also at finite time [31, 52]. However, the extrema statistics of biased hopping
processes such as the transport of molecular motors is not captured by these results, except for the limit of
weak bias. Recently, exploiting the duality between extreme values and first-passage times, it was shown for
Markov processes in confining potentials that extreme values behave as a relaxation process with a discrete
relaxation spectrum [53–55]. It remains an open question to understand the generic features of the
relaxation spectra of the time dependent extreme value statistics of stochastic processes.

In this article, we derive exact results for extreme-value statistics of a simple and generic model of
stochastic transport. We discuss the statistics of the maximum and minimum excursion (with respect to its
initial location) and the associated extremal entropy changes. Moreover, we investigate the timescales
associated with those extrema, combining concepts from stochastic thermodynamics, random walks and
random-matrix theory. As we show below, our results provide insights on extreme-value statistics beyond
recently derived inequalities for the finite-time infimum statistics of entropy production [31, 56]. We show
that this finite-time statistics of entropy-production extrema can be written in terms of a continuous
relaxation spectrum with finite support. Strikingly, this spectrum is known as the Marčenko–Pastur
distribution, revealing a connection between relaxation of finite-time extrema statistics and random matrix
theory. We then illustrate the results of our theory by constructing efficient random-matrix estimates for
extrema, and apply them in the context of molecular motors.

The article is organized as follows: section 2 describes the model of stochastic transport used in this
paper and provides exact extreme-value statistics for one dimensional (1D) biased random walks. Section 3
discusses the connection between extrema of 1D biased random walks and random matrix theory. In
section 4 we apply our theory to two-dimensional stochastic models of molecular motors. Section 5
concludes the paper. Details on the derivations and numerical simulations are provided in the appendices.

2. Extreme-value statistics of 1D biased random walks

Many nonequilibrium phenomena at mesoscales can be described at a coarse-grained level as a
continuous-time Markov jump process between discrete states x, y, z etc, with exponential waiting times.
The transition rate from x to y can be written as [57–59]

k(x, y) = ν(x, y)eA(x,y)/2, (1)

with ν(x, y) = ν(y, x) symmetric and A(x, y) = −A(y, x) antisymmetric with respect to the exchange x → y.
If local detailed balance holds A(x, y) = β[W(x) − W(y)] with W(x) the potential energy of state x,
β = (kBT)−1 with kB Boltzmann’s constant and T the temperature of a thermostat. First, we consider the
simple case of a 1D biased random walk on a line with discrete states denoted by the integer x ∈ Z (see
figure 1(a) for an illustration). The forward and backward jump rates are given by
k± ≡ k(x, x ± 1) = νe±A/2. Here ν > 0 is a rate and A > 0 the affinity, which satisfy

ν =
√

k+k−, A = ln(k+/k−). (2)

This biased random walk describes e.g. the motion of a molecular motor along a periodic track fuelled by
ATP [19]. In the simplest case, A = βΔμ, with Δμ = μATP − (μADP + μP) the chemical potential
difference of ATP hydrolysis, often of the order of 20kBT, and the rate ν depends on ATP concentration and
internal timescales that determine the dwell-time statistics of the motor.
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Figure 1. (a) Sketch of a one-dimensional (1D) biased random walk with hopping rates k+ and k− with displacement X.
(b) Example of a trajectory X(t) (black), its maximum Xmax(t) (red), minimum Xmin(t) (blue) and its average over many
realizations 〈X(t)〉 (thick grey) as a function of time t. The trajectories are obtained from a numerical simulation of a 1D biased
random walk with hopping rates k+ = 1.05 and k− = 0.95 in the positive and negative direction, respectively. The entropy
production along the trajectory X(t) is S(t) = AX(t), with A = ln(k+/k−) = 0.1.

An individual trajectory of a motor starting from a reference state X(0) = 0 at time t = 0 is denoted by
X[0,t] = {X(s)}t

s=0. It contains jumps j = 1, 2, . . . from state x−j to state x+j that occur at stochastic times tj.
The entropy production in unit of kB associated with this trajectory is S(t) = ln[P(X[0,t])/
P(X̃[0,t])] = AX(t) [31]. Here P is the path probability and X̃[0,t] = {X(t − s)}t

s=0 is the time reversed path.
Thus, the entropy production S(t) is a stochastic variable that undergoes a biased random walk of step size
A with trajectories S[0,t] = AX[0,t]. For A positive, both the average velocity
v = 〈X(t)〉/t = (k+ − k−) = 2ν sinh(A/2) and the average rate of entropy production σ = 〈S(t)〉/t = vA
are positive. Here and in the following we denote by 〈·〉 averages over many realizations of the process X(t).
However, due to fluctuations, the stochastic variables X(t) and S(t) can in principle take any value with
finite probability and even become negative.

We now derive exact expressions for the statistics of the minimum Xmin(t) = minτ∈[0,t] X(τ) and the
maximum Xmax(t) = maxτ∈[0,t] X(τ) of the position of the motor with respect to its initial position, see
figure 1(b) for illustrations. We also discuss the global minimum and maximum of the stochastic entropy
production S(t) = AX(t) denoted by Smin(t) and Smax(t), respectively. We first discuss the statistics of the
global extrema of the position Xmin ≡ limt→∞ Xmin(t) and Xmax ≡ limt→∞ Xmax(t), and of the entropy
production, Smin and Smax. The probability that the global minimum of the discrete position is −x, with
x � 0, is P(Xmin = −x) = Pabs(−x) − Pabs(−x − 1), where Pabs(−x) = e−Ax [31] is the probability that X(t)
reaches an absorbing site in −x at a finite time. Thus, the global minimum follows a geometric distribution

P(Xmin = −x) = P(Smin = −Ax) = e−Ax(1 − e−A), (3)

for x � 0 and P(Xmin = x) = P(Smin = Ax) = 0 for x < 0. From equation (3) we obtain the mean global
minimum of a 1D biased random walk and of its associated entropy production:

〈Xmin〉 =
−1

eA − 1
, 〈Smin〉 =

−A

eA − 1
. (4)

Therefore, the global minimum of the position diverges in the limit of a small bias A whereas the entropy
production minimum is bounded for all A � 0 and obeys the infimum law 〈Smin〉 � −1 [31]. This bound is
saturated in the limit of small affinity, which corresponds to the diffusion limit [60]. Because S(t) and X(t)
have positive drift, the average global maxima of entropy production and displacement are not defined.
However the difference limt→∞[〈Smax(t)〉 − 〈S(t)〉] = A/(eA − 1) is finite and obeys symmetry properties
that we discuss below.

Finite-time extrema statistics of the 1D biased random walk may be obtained from the finite-time
absorption probabilities

P(Xmin(t) = −x) = P(Smin(t) = −Ax) (5)

= Pabs(−x; t) − Pabs(−x − 1; t),

3
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where Pabs(−x; t) is the probability that X reaches an absorbing site at −x at any time smaller than or equal
to t. The absorption probability Pabs(x; t) = δx,0 +

∫ t
0 Pfpt(T; x)dT, with δi,j Kronecker’s delta and

Pfpt(T; x) = eAx/2 |x|
T

Ix(2νT)e−2ν cosh(A/2)T , (6)

is the first-passage time probability for the walker to first reach an absorbing site in x, with |x| � 1, at time
T � 0 [61, 62], see appendix A. Here Ix denotes the xth order modified Bessel function of the first kind.
Note that

∫∞
0 dT Pfpt(T; x) = Pabs(x) � 1. We identify in equation (6) two timescales. The smaller timescale

τ1 = (k+ + k−)−1 = (2ν cosh(A/2))−1 is the average waiting time between two jumps, and
τ2 = (2

√
k+k−)−1 = (2ν)−1 is inversely proportional to the geometric mean of the transition rates; their

ratio τ 2/τ 1 = cosh(A/2) � 1 increases with the bias strength. Normalizing (6) by Pabs(x), we obtain the
mean 〈T〉 = |x|A/σ and variance Var[T] = (coth(A/2)/|x|)〈T〉2 of the first-passage time, in agreement with
the first-passage time uncertainty relation Var[T]/〈T〉 � 2/σ [63]. Furthermore, the first-passage time
probability density (6) obeys the following symmetry properties. First, the ratio

Pfpt(T; x)

Pfpt(T;−x)
= eAx, (7)

is independent on T, as follows from the stopping-time fluctuation theorem [28, 31, 64]. Second, the
‘conjugate’ first-passage time probability P̃fpt(T; x), obtained exchanging k+ by k− (i.e. A by −A), obeys

Pfpt(T; x)

P̃fpt(T; x)
= eAx. (8)

These two properties imply P̃fpt(T; x) = Pfpt(T;−x), which has interesting consequences for random walks
[48, 65] and for the extrema statistics of S(t), see below.

In order to derive exact finite-time extrema statistics, it is often convenient to use generating functions
and Laplace transforms. The generating functions of the distributions of finite-time entropy production
extrema are defined as Gmin/max(z; t) =

∑∞
x=−∞ zxP

(
Smin/max(t) = Ax

)
Θ(∓x), with Θ the Heaviside

function. Their Laplace transforms are given by Ĝmin/max(z; s) =
∫∞

0 dt e−st Gmin/max(z; t)

= s−1[1 − P̂fpt(s;−1)]/[1 − z∓1P̂fpt(s;−1)]. Here, P̂fpt(s; x) = eAx/2 e−|x| cosh−1[s/2ν+cosh(A/2)] − δx,0 is the
Laplace transform of the first-passage-time probability density at site x. These expressions enable the
computation of the Laplace transform of all the moments of the extrema from successive derivatives of the
generating functions with respect to ln z. In particular, the Laplace transform of the average minimum of
entropy production reads s〈Ŝmin(s)〉 = −A/[P̂fpt(s;−1)−1 − 1]. In the time domain, we may write this
equality as 〈Smin(t)〉 = −A

∫ t
0 dT

∑∞
x=1 Pfpt(T;−x) [55] which can be written as (see appendix B):

〈Smin(t)〉 = − A

2π

∫ 1

−1

1 − e−2νt(cosh(A/2)−y)(
cosh(A/2) − y

)2

√
1 − y2 dy. (9)

Numerical simulations of the 1D biased random walk are in excellent agreement with equation (9)
(figure 2, blue symbols). Note that equation (9) can also be expressed in terms of the Kampé de Fériet

function F as 〈Smin(t)〉/A = −k−t + 2+0F1+1

[
[2 1] , ∅ , ∅

3 , 2 , 2

∣∣∣− k−t , −k+t
]

(k−k+t2)/2 (see appendix E).

Interestingly, our simulations reveal (figure 2, red symbols) that the average maximum of entropy
production minus the average entropy production at time t equals to minus the right-hand side of
equation (9):

〈Smax(t)〉 − 〈S(t)〉 = −〈Smin(t)〉. (10)

Equation (10) follows from the symmetry relation of the 1D biased random walk P̃fpt(T; x) = Pfpt(T;−x)
and the relation 〈Smax(t)〉 − 〈S(t)〉 = A

∫ t
0 dT

∑∞
x=1 P̃fpt(T; x). Moreover, this symmetry extends to the

distribution of minima and maxima of entropy production

P (S(0) − Smin(t) = s) = P (Smax(t) − S(t) = s) , (11)

where, in this case, S(0) = 0. Figure 3 shows empirical distributions of entropy-production minima and
maxima obtained from numerical simulations, which fulfil the symmetry relation (11).
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Figure 2. Average minimum 〈Smin(t)〉 (blue open symbols) and average of the maximum minus the final value 〈Smax(t)〉 − 〈S(t)〉
(red filled symbols) of stochastic entropy production as a function of time of a 1D biased random walk. The symbols are averages
over 10 sets of 103 numerical simulations; the error bars are the standard deviation of the mean values obtained from these sets.
The black lines are obtained from numerical integration of equation (9) using the trapezoidal method. Simulation parameters:
A = 1, ν = 0.5 (squares); A = 2, ν = 2 (circles); A = 0.1, ν = 100 (diamonds). The horizontal orange lines at ±1 correspond
to the bound obtained using martingale theory [31]. Inset: 〈Smin(t)〉 − 〈Smin〉 as a function of time rescaled by
τ∞ = [2ν(cosh(A/2) − 1)]−1. The different curves correspond to ν = 1 and 0.5 � A � 5.

Figure 3. Empirical probability density of −Smin(t) (blue open symbols) and Smax(t) − S(t) (red filled symbols) obtained from
108 numerical simulations of a 1D biased random walk with parameters A = 1 and ν = 1. Different symbols represent different
integration times t = 10−2 (squares), t = 10−1 (circles), t = 1 (up triangles), t = 10 (down triangles). The black lines are the
theoretical distributions for different values of t (from left to right) evaluated using equation (5). The orange line is an
exponential distribution with mean value equal to minus one.

3. From a relaxation spectrum to a random-matrix approach

We now explore a connection between entropy-production extrema and random-matrix theory. More
precisely, we relate the previously derived expressions for the average and distribution of extrema with
eigenvalue distribution of specific random matrices. Equation (9) can also be written in terms of a finite
relaxation spectrum (see appendix C)

〈Smin(t)〉 = 〈Smin〉
(

1 −
∫ τ∞

τ0

e−t/τ ρ(τ/τ̄)
dτ

τ̄

)
. (12)

Here τ0 ≡
(√

k+ +
√

k−
)−2

is the minimal relaxation time of the extreme value statistics and

τ∞ ≡
(√

k+ −
√

k−
)−2

is the maximal extrema relaxation time. Here ρ is the Marčenko–Pastur

distribution, where times are normalized by τ̄ ≡ k+/(k+ − k−)2. The Marčenko–Pastur distribution is
given by [66]:

ρ(λ) ≡

⎧⎨
⎩

1

2πδ

√
(λ+ − λ)(λ− λ−)

λ
if λ ∈ [λ−,λ+]

0 if λ /∈ [λ−,λ+],
(13)

5



New J. Phys. 22 (2020) 123038 A Guillet et al

Figure 4. Illustration of the random-matrix approximation of the mean entropy production minimum. (a) Color-coded
representation of a realization taken from the Wishart ensemble of real m × m random matrices with m = 16, n = 44 and
β = 1. (b) Histogram of λτ̄ (green bars), with λ denoting the eigenvalues of the random matrix shown in panel (a) and
τ̄ = eA/2/(4ν sinh2(A/2)) a characteristic timescale. The corresponding Marcenko–Pastur distribution is shown as a solid line.
(c) Average minimum 〈Smin(t)〉 as a function of time (black solid line) shown together with the random-matrix approximation
for the matrix shown in (a). In panels (b)–(c) we used the affinity A = 1 and rate ν = 1, for which n = eAβm ≈ 43.5.

with
∫∞

0 ρ(λ)dλ = 1, where δ = k−/k+ = e−A and λ± =
(

1 ±
√
δ
)2

= (
√

k+ ±
√

k−)2/k+. Interestingly,

the Marčenko–Pastur theorem states that ρ(λ) is the distribution of eigenvalues in the large size limit of
Hermitian matrices drawn from the ensemble of the Wishart–Laguerre random matrices [67–69], whose
structure is explained below. Note that τ0 = λ−τ̄ and τ∞ = λ+τ̄ . Because the distribution of 1/λ can also
be expressed in terms of the Marčenko–Pastur distribution (see appendix C), equation (12) can be written
in terms of Marčenko–Pastur distributed relaxation rates k = τ−1, see equation (C2). The average
minimum given by equation (12) can be obtained from the generating function of the minimum
distribution (see appendix C)

Gmin(z; t) = 1 +
1 − z

eA − 1

∫ τ∞

τ0

1 − e−t/τ

1 + f (z)τ
ρ(τ/τ̄)

dτ

τ̄
, (14)

where f(z) = k+(z − 1) + k−(z−1 − 1).
Equations (12)–(14) imply that the time at which the distribution of the extrema relaxes to its long time

limit is given by the largest timescale of the relaxation spectrum τ∞ = τ̄λ+. We illustrate this result in the
inset of figure 2 which shows this for the case of 〈Smin(t)〉. Furthermore, the Marčenko–Pastur theorem
implies the following trace formula:

〈Smin(t)〉 = 〈Smin〉
(

1 − lim
m→∞

1

m
Tr e−M−1t/τ̄

)
, (15)

where M is an m × m random matrix drawn from the Wishart or Laguerre ensembles. It can be obtained as

M = n−1RRT. (16)

Here, R is a random matrix and RT its transpose, n = eAβm plays the role of a degree of freedom, with β

the Dyson index of the Wishart or the Laguerre ensemble [70]. Hence, the rectangularity of R is linked to
the bias of the random walk through n/m = βeA. In the case of real Wishart matrices for A > 0 the matrix
R is an m × n rectangular random matrix, whose real entries are independent and identically distributed
Gaussian random numbers with zero mean and unit variance. This implies that M is drawn from the
distribution P(M) ∼ (det M)(n−m−1)/2 e(n/2)Tr M. An alternative is the use of Laguerre matrices. The
construction of these matrices and further details are given in appendix D.

Equation (15) can be approximated numerically using random matrices with finite but sufficiently large
m. In practice, we use the following estimate:

〈Smin(t)〉  〈Smin〉
(

1 − 1

m

m∑
i=1

e−t/(τ̄λi)

)
, (17)

where λi is the ith eigenvalue of M drawn from either the Wishart or Laguerre random-matrix ensembles.
This is illustrated in figure 4 using a 16 × 16 Wishart random matrix, shown in figure 4(a). This matrix has
a set of eigenvalues λ with distribution shown as a histogram in figure 4(b) together with the
Marcenko–Pastur distribution which is reached in the infinite matrix size limit. The corresponding extrema
relaxation times correspond to values τ̄λ. The approximation for the relaxation of the mean minimum is
given by equation (17) for m = 16 and shown together with the exact result in figure 4(c).

6
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Figure 5. Finite-time average minimum of entropy production associated with 1D biased random walks as a function of time:
exact result [equation (12), black line] and estimates obtained from the spectrum of a single m × m random matrix drawn from
the Wishart (blue filled symbols) and the β-Laguerre ensembles (β = 2, open cyan symbols). The random-matrix estimates are
obtained evaluating the right-hand side in equation (15), i.e. 〈Smin〉[1 − m−1

∑m
i=1e−t/(τ̄ λi)] with 〈Smin〉 = −A/(eA − 1),

τ̄ ≡ k+/(k+ − k−)2 = eA/2/(4ν sinh2(A/2)), and λi the ith eigenvalue of the corresponding Wishart/Laguerre random matrix.
Values of the parameters: A = ν = 1.

In figure 5 we show the approximation for different random-matrix ensembles of different sizes. We
compute numerically the eigenvalues of a single random matrix of the Wishart ensemble and of a matrix
drawn from the β-Laguerre ensemble with parameter β = 2. Notably, using a single 64 × 64 random
matrix from the Wishart or Laguerre ensembles, we obtain an estimate of the average entropy production
minimum that differs with respect to the exact value by at most 2% (at small times).

4. Extrema statistics of molecular motors

We now investigate whether similar results also hold for more complex stochastic models of molecular
motors. We consider a biochemical process where a molecular motor’s fluctuating motion is described by a
continuous-time Markov jump process on a potential energy surface in two dimensions x and y
(figure 6(a)). Here x denotes the spatial displacement of the motor along a discrete track of period 
, and y
is a chemical reaction coordinate denoting the net number of fuel molecules spent by the motor.

The motion of the motor is biased along the track by a mechanical force fext applied to the motor. In
addition, the motor hydrolyzes ATP with chemical potential difference Δμ. We consider both fext and Δμ to
be independent of the state of the motor, which corresponds to the limits where the external force and the
concentration of fuel molecules are stationary. States (x, y) of the motor are in local equilibrium at
temperature T = β−1. The dynamics of the motor is as follows. From a given state the motor can perform,
at a random time, a jump to eight adjacent states corresponding to the following four transitions and their
reversals: (i) sliding along the track by a distance 
 (−
) without consuming fuel but generating work in
(against) the direction of the force, at a rate k+m (k−m), with k−m = k+m e−βfext
; (ii) consumption of one ATP
(ADP) molecule without generating work, at a rate k+c (k−c ), with k−c = k+c e−βΔμ; (iii) work generation in
(against) the external force using ATP (ADP) at a rate k+mc (k−mc), with k−mc = k+mc e−β(fext
+Δμ) and (iv) work
generation against (in) the external force using ATP (ADP) at a rate k+cm (k−cm), with k−cm = k+cm eβ(fext
−Δμ).
We use transition rates of the form k±α = να e±Aα/2, where να give different weights to each transition type.

A single trajectory of the motor is a 2D random walk containing snapshots (X(t), Y(t)) of the state of the
motor at time t. Here X(t) is the spatial coordinate of the motor (with respect to its initial position) and
Y(t) is the reaction coordinate representing the net number of ATP molecules consumed up to time t. Note
that when Y(t) is negative, the motor has consumed more ADP than ATP molecules. The entropy
production associated with a single trajectory of the molecular motor is S(t) = AmX(t) + AcY(t), where
Am = βfext
, Ac = βΔμ are the mechanical and chemical affinities. Thus S(t) is a random walk with four
different step lengths Am, Ac, Amc ≡ Am + Ac and Acm ≡ −Am + Ac corresponding to the jumps along the
X, Y and the diagonal directions, respectively.

We perform numerical simulations of this 2D stochastic model of the molecular motor using Gillespie’s
algorithm, and evaluate the entropy flow associated with different trajectories of the motor. Obtaining exact
extreme-value statistics in this model is challenging. However the following simple approximation provides
good estimates. The average (figures 6(b) and 7(b)) of the entropy production extrema obtained from

7
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Figure 6. Entropy production extrema for a two-dimensional stochastic model of a molecular motor. (a) Sketch of the model
with states given by the vertices of the 2D grid and the possible transitions from state (2, 1) marked with arrows. (b) Finite-time
average minimum of entropy production (〈Smin(t)〉, blue open symbols) and average maximum of the entropy production minus
its final value (〈Smax(t) − S(t)〉, red filled symbols) for values of the external force fext = −2.5 pN (squares, solid line), −1.5 pN
(circles, dashed line), −0.5 pN (up triangles, dash-dot line), 0.5 pN (down triangles, dotted line). The lines are estimates
obtained using equation (9) with effective parameters Aeff and νeff given by equations (18) and (19), see text for further details.
(c) Cumulative distribution of −Smin(t) (blue open symbols) and of Smax(t) − S(t) (red filled symbols) for fext = −1.5 pN
(circles) and 0.5 pN (down triangles), and t = 50 ms. The black symbols are estimates given by equation (3) with effective
parameters Aeff , and the orange line is an exponential distribution with mean one. Values of the simulation parameters:
kBT = 4.28 pN nm, 
 = 8 nm, Δμ = 4kBT, νm = 10 Hz, νc = 5 Hz, νmc = 25 Hz, and νcm = 1 Hz. The numerical data were
obtained from 108 simulations done using Gillespie’s algorithm.

simulations can be approximated by equations (4)–(9) replacing A and ν by the effective parameters.

νeff =
∑
α

να, (18)

Aeff = 2 cosh−1

(∑
α

να
νeff

cosh
Aα

2

)
, (19)

where the index α runs over the four types of transitions α = m, c, mc and cm. This approximation based
on effective parameters follows from considering effective 1D models with jumping rate
k+eff + k−eff =

∑
αk+α + k−α . Furthermore, we find for this model that the symmetry relations (10) and (11)

between the distribution and the mean of finite-time minima and maxima of entropy production are
satisfied with high accuracy in our numerical simulations, see figure 6. Notably, the distributions of entropy
production maxima and minima coincide despite having irregular shapes for irrational ratios of the
mechanical and chemical affinities.

The average extrema of the mechanical and chemical currents are shown in figure 7 as a function of the
external force. The behaviour of these currents is known exactly from a mapping to 1D biased random

8
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Figure 7. Numerical results of mechanical and chemical currents and of entropy production extrema as a function of the force
for the two-dimensional stochastic model of a molecular motor of figure 6. (a) Average long time minima and maxima of
mechanical steps 〈Xmin/max〉 (blue and red squares respectively) and average minima of chemical steps at long time 〈Ymin〉 (blue
circle) are shown as a function of the external force. The black lines are analytical results obtained using equation (4) with
effective affinities Ax/y = ln(k+

x/y/k−x/y). For comparison, we also show the mechanical net stepping rates k+
x − k−x (dashed grey

line) and the chemical net stepping rate k+
y − k−y (dotted grey line). k±x/y are defined in equation (20). (b) Average long time

minima (blue circles), maxima minus final value (red filled circles) and rate of total entropy production (grey line) as a function
of the external force. The black line is an estimation obtained using equation (4) with the effective parameters Aeff and νeff given
by equations (18) and (19). The values of the fixed parameters are the same as in figure 6. The averages at long time in (a) and (b)
were obtained at t = 0.5 s from 106 simulations done using Gillespie algorithm.

walks X(t) and Y(t) with effective forward and backward hopping rates given, respectively, by

k±x = k±m + k±mc + k∓cm, k±y = k±c + k±mc + k±cm. (20)

This yielding effective affinities Ax/y and rates νx/y defined as in equation (2). This allows us to calculate the
extreme value statistics of the net number of steps X(t) and Y(t), as illustrated in figure 7(a) as solid lines.
Note that Ax = β(fext − fstall)
 is related to the mechanical affinity Am = βfext
 and the stall force

fstall =
1

β

ln

(
1 + k−mc/k−m + k+cm/k−m
1 + k+mc/k+m + k−cm/k+m

)
. (21)

In the examples shown in figures 6 and 7, fstall  −1.2 pN in the simulations. Ay and the chemical affinity
Ac obey a similar relationship. We observe in figure 7(b) that the largest average extreme values of entropy
production occur when the external force applied to the motor is near the stall force. Interestingly, the
minima and maxima of the displacements, Xmin and Xmax, show diverging averages when the stall force is
approached from above or below respectively. Such behaviour could be measured in experiments on the
statistics of the stepping of molecular motors near stall forces. Note that in figure 7 the long time limit of
the average extrema is already reached at 0.1 s, see figure 6.

5. Discussion

We have derived analytical expressions for the distribution and moments of the finite-time minimum and
maximum values of continuous-time biased random walks. Such stochastic processes provide minimal
models to describe the fluctuating motion of molecular motors and cyclic enzymatic reactions that take
place in a thermal reservoir and under non-equilibrium conditions induced by e.g. external forces and/or
chemical reactions.

Our key results are: (i) exact statistics of the extrema of the position and the entropy production of a
biased random walk; (ii) simple expressions at finite time in terms of an explicit relaxation-time spectrum;
(iii) symmetry relations between distributions of extrema of stochastic entropy production; (iv) a novel

9
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connection between extreme-value statistics of biased random walks and the Marčenko–Pastur distribution
of random matrix theory.

For biased random walks, our results provide insights beyond the infimum law for nonequilibrium
steady states, 〈Smin(t)〉 � −1, which states that the entropy production of a mesoscopic system plus its
environment cannot be reduced on average by more than the Boltzmann constant. Further in continuous
systems this bound is approached at large times, limt→∞ 〈Smin(t)〉 = −1. Here we have shown that the
effects of discreteness are very important. At large times we find that a model dependent bound above −1 is
reached, see equation (4) and figure 2. We find that for Markovian biased random walks with homogeneous
stationary distribution, the difference between the minimum of entropy production and its initial
value has the same statistics as the difference between its maximum and its final value, for any given time
interval [0, t], see equations (10) and (11). For random walks, such a ‘min-max’ symmetry has been noticed
before [48]. This result further reveals that a supremum law for entropy production bounds the average of
the difference between the maximum of entropy production and its value at a fixed time t � 0:

〈Smax(t)〉 − 〈S(t)〉 � 1. (22)

The inequality (22) applies to any Markovian nonequilibrium stationary process. It can be obtained by
applying the results of reference [31] to the process R(t) = P(X[0,t])/P(X̃[0,t]), exploiting the martingale
property of R(t). We have shown that the inequalities for the average extrema of entropy production and
displacement of a biased random walk saturate in the limit of a small affinity A � 1. This limit corresponds
to systems that exchange a small amount of heat with their environment—below the thermal energy
kBT—in each forward or backward step of the walker. For larger values of A, our analytical expressions
reveal that details on the discreteness in the walker’s motion have a strong influence in the extrema
statistics. The time-asymmetric parameter A fully determines the distribution of extrema at large times, as
well as the shape of the relaxation time spectrum at finite times, whereas the time-symmetric rate constant
ν (see equation (2)) only scales the time dependence.

Relaxation or retardation spectra describe the dynamics of systems governed by a continuum of
characteristic times, such as those found in fractional rheology [71]. In this spirit, we expressed in
equations (12) and (14) the extreme value statistics for a 1D biased continuous time random
walk as a relaxation process, whose spectra of relaxation times follow the Marčenko–Pastur distribution
(13).

A relation between statistical properties of stochastic processes and random matrices has also been
found in different contexts [72–76]. In quantum-mechanical scattering problems, retardation rates have
been described using spectra of Laguerre random matrices [74]. For classical Markovian relaxation
processes, relaxation time spectra of the extreme value statistics have been discussed [53–55]. Path counting
combinatorial problems have been shown to be described in terms of random matrix spectra [77]. These
works suggest that large random matrices may be used as a combinatorial shortcut to tackle the relaxation
of the statistics of extreme values.

Here we have shown that the finite-time extreme-value statistics of stochastic transport can be
approximated by drawing suitable Wishart and Laguerre random matrices of finite size. The resulting
random-matrix estimates can outperform the accuracy and convergence of Monte Carlo simulations that
determine extrema statistics. As shown in figure 4, only a small number of eigenvalues are needed for an
accurate description of the extreme value statistics.

The first passage times of non-Gaussian stochastic transport processes are well-described by a universal
distribution involving their three first cumulants [64]. This distribution is similar to the distribution of first
passage times given in equation (A19) that we obtain exactly. Note that the extreme value statistics of
Gaussian transport such as a diffusion process is found as the small bias limit A � 1 of our 1D model (see
(A7)). In particular, the velocity v and diffusion coefficient D for small bias are v  νA and D  ν. In this
limit A → 0, the characteristic relaxation time of extrema is τ̄  1/(νA2)  D/v2 and the relaxation
spectrum (13) reads:

ρ(λ) 

⎧⎪⎨
⎪⎩

1

2π

√
4 − λ

λ
if λ ∈ [0, 4]

0 if λ /∈ [0, 4].
(23)

In other words,
√
λ follows Wigner’s semi-circle distribution [69]. From this result, we recover the

finite-time average minimum of entropy production in the diffusive limit
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〈Smin(t)〉  1

2π

∫ 4

0

(
e−v2 t/λD − 1

)√4 − λ

λ
dλ

= −erf

(√
s

2

)
+

s

2
erfc

(√
s

2

)
− e−

s
4

√
s

π
, (24)

where s = v2t/D, cf. reference [31].
Our work has important consequences for the theory of nonequilibrium fluctuations of active molecular

processes and biomolecules. For example, the statistics of the maximum excursion of a motor against its net
motion along a track provides insights on the physical limits of pernicious effects of fluctuations at finite
times, which can be relevant in e.g. the finite-time efficiency of enzymatic reactions responsible of
polymerization processes, muscle contraction by molecular motors, etc. We have shown that the
displacement of motors with small cycle affinity exhibits large extreme values on average. However, the
associated extreme entropy flows are on average always bounded in absolute value by the Boltzmann
constant; an improved bound can be estimated from our results for 1D biased random walks, as shown in
our application to an homogeneous 2D biased random walks describing the motion of molecular motors.
Insights of our theory could be also discussed in the context of more complex biomolecular stochastic
processes (e.g. microtubule growth [7, 78] and transport in actin networks [79]). It will be interesting to
extend our theory to Markovian and non-Markovian processes with time-dependent driving [80–85],
stochastic processes with hidden degrees of freedom [86, 87], and also to explore whether extrema statistics
from single-molecule experimental data reveal relaxation spectra described by the Marčenko–Pastur
distribution.
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Appendix A. First-passage-times, large deviations, and absorption probabilities of
biased random walks

In this section we review some knowledge of random walk theory (e.g. first-passage statistics [61]) to derive
equation (6) in the main text i.e. the exact formula for the first-passage time distribution of a 1D
continuous-time biased random walk. We also discuss large-deviation properties of this model, absorption
probabilities using martingale theory.

A.1. Model and solution of the Master equation
We consider a continuous-time biased random walk in a discrete one-dimensional lattice, where
X(t) = {0,±1,±2, . . .} denotes the position of the walker at time t � 0. We assume that X(0) = 0 and that
the walker can jump from state X(t) = x to x + 1(x − 1) at a rate k+(k−).

The waiting time at any site is exponentially distributed with the rate parameter k+ + k−. The
probability Px(t) = P (X(t) = x) to find the walker at the lattice site x at time t obeys the master equation

dPx(t)

dt
= k+Px−1(t) − (k+ + k−)Px(t) + k−Px+1(t), (A1)

with initial condition Px(0) = δx,0. From this evolution equation, a velocity v = k+ − k− and a diffusion
coefficient D = (k+ + k−)/2 can be defined. Its solution is the Skellam distribution [88]
PSk(x;μ1,μ2) = (μ1/μ2)x/2Ix(2

√
μ1μ2)e−(μ1+μ2) with parameters μ1 = k+t and μ2 = k−t

Px(t) =

(
k+
k−

)x/2

Ix

(
2
√

k+k− t
)

e−(k++k−)t , (A2)

where Ix(y) denotes the xth order modified Bessel function of the first kind. Equation (A2) follows from
(A1) and the exact expression for the generating function of the modified Bessel function of the first kind∑∞

x=−∞ zxIx(y) = ey(z+z−1)/2.

11
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A.2. Large deviation and diffusion limit
We now discuss and review large deviation properties of the 1D biased random walk [89, 90] and relate
them to the statistics of 1D drift diffusion process. For this purpose we consider the scaling limit of Px(t)
given by equation (A2) for large x ∼ vt, with v = k+ − k− the net velocity of the walker. We assume a large
deviation principle for Px(t) of the form

Px(t) ∼ e−2νtJ(x/vt). (A3)

In order to derive an analytical expression for the rate function J, we first approximate the modified Bessel
function in equation (A2) using a saddle point approximation

Ix(x/z) =
1

2π

∫ 2π

0
ex(z−1 cos θ−iθ) dθ (A4)

∼ ex(z−1 cos θ0−iθ0)

√
2πxz−1 cos θ0

=
e

x
(√

1+z−2−sinh−1 z
)

√
2πx

√
1 + z−2

, (A5)

where the saddle point is given by i sin θ0 = z i.e. iθ0 = sinh−1 and we have used cos iθ0 = cosh θ0 and
z−1 cosh sinh−1 z =

√
1 + z−2. The rate function J(u) with u = x/vt can be evaluated from the leading

term of equation (A2) which is found using equation (A5):

J(u) = J
(
z/ sinh(A/2)

)
≡ lim

t→∞
− ln P2νtz(t)

2νt

= lim
t→∞

2 cosh(A/2)νt − νtzA − ln I2νtz(2νt)

2νt

= cosh
A

2
+ z

(
sinh−1 − A

2

)
−
√

1 + z2, (A6)

where z = u sinh(A/2) = x/2νt and the change of variables (k+, k−) → (A, ν) have been used for
convenience.

In the vicinity of the minimum where u ∼ 1 and thus z ∼ sinh(A/2), the large deviation function
behaves as

J(u) =
sinh (A/2)2(u − 1)2

2 cosh(A/2)
+

sinh (A/2)4(u − 1)3

6 cosh (A/2)3
+ O(u − 1)4. (A7)

Interestingly, the ratio between the second and the leading term of (A7), given by tanh(A/2)2(u − 1)/3,
vanishes for small deviations u ∼ 1 but also for large deviations in the limit of a small bias A � 1. The
continuum limit of the biased random walk for A small simplifies to the drifted Brownian motion
Px(t) = e−(x−vt)2/4Dt/

√
4πDt, where the polynomial prefactor is recovered by normalization, and we have

used the expressions for the velocity v = 2ν sinh(A/2) and the diffusion coefficient D = ν cosh(A/2). In
this regard, the 1D biased random walk can be seen as a generalization of the drifted Brownian motion for
any bias. A finite bias modifies occurrences of extreme large deviations with respect to those occurring in
the drift diffusion process. Consequently, the bias A is expected to affect the extreme value statistics of the
process, as shown below.

A.3. Martingales and absorption probabilities
In this subsection we employ martingale theory to derive an analytical expression of the absorption
probability Pabs(−x) for a 1D biased random walk starting at x = 0 to ever reach an absorbing boundary
located at −x < 0.

We first show explicitly that e−S(t) is a martingale process with respect to X(t), i.e.

〈e−S(t)|X[0,t′]〉 = e−S(t′), (A8)

for t � t′. In words, the average of e−S(t) over all trajectories with common history X[0,t′] up to time t′ � t
equals to its value at the last time of the conditioning e−S(t′). The proof is as follows:

〈e−S(t)|X[0,t′]〉 = 〈e−[S(t)−S(t′)]|X[0,t′]〉e−S(t′)

= 〈e−S(t−t′)〉 e−S(t′)

12
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= e−S(t′)
∞∑

x=−∞
Px(Δt)

(
k−
k+

)x

= e−S(t′) e−(k++k−)Δt
∞∑

x=−∞

(
k+
k−

)−x/2

Ix

(
2
√

k+k− Δt
)

︸ ︷︷ ︸
=e(k++k−)Δt

= e−S(t′). (A9)

�
In the first and second lines we have used the additive property and the Markov property of entropy
production, respectively. In the third line we have used the definitions Δt ≡ t − t′ and
S(t) = X(t)ln(k+/k−). In the fourth line we have used the identity

∑∞
x=−∞ zxIx(y) = ey(z+z−1)/2.

We remark that the proof sketched above can be simplified using the integral fluctuation relation
〈e−S(t−t′)〉 = 1 in the second line, which holds for any t � t′ [91, 92]. It has been shown [31, 93] that the
martingality of e−S(t) implies a set of integral fluctuation relations at stopping times

〈e−S(T)〉 = 1, (A10)

where T is any bounded stopping time, i.e. a stochastic time at which the process X(t) satisfies for the first
time a certain criterion. In particular, equation (A10) holds for the first-passage time T2 of X(t) to reach any
of two absorbing barriers located at −x− and x+, with x+ and x− two arbitrary positive integer numbers.
When applying equation (A10) to this particular stopping time, we can unfold the average in the left-hand
side using the absorption probabilities

〈e−S(T2)〉 = Pabs(x+)〈e−S(T2)〉+ + Pabs(x−)〈e−S(T2)〉−
= Pabs(x+)e−Ax+ + Pabs(x−)eAx−

= e−Ax+ + Pabs(x−)[eAx− − e−Ax+]

= 1, (A11)

where in the second line we have used the fact that e−S(T2) = e−Ax+ with probability Pabs(x+) and
e−S(T2) = eAx− with probability Pabs(x−). In the third line we have used Pabs(x+) + Pabs(x−) = 1, and in the
fourth line equation (A10). Solving the third line equation (A11) for the absorption probability we obtain

Pabs(x−) =
1 − e−Ax+

eAx− − e−Ax+
. (A12)

Taking the limit x+ →∞ in equation (A12) we obtain the well-known analytical expression for the
absorption probability

Pabs(x) = e−Ax, (A13)

which we used to derive the analytical expressions − equations (3) and (4) − of the distribution and mean
of the global minimum of entropy production in the biased random walk.

A.4. First-passage-time distribution
The first-passage-time density Pfpt(t′; x) can be derived from the solution of the Master equation (A1) with
an absorbing boundary at site x �= 0, with x an integer number [61]. It can also be derived from the
distribution of the walker using Laplace transforms through the renewal equation:

Px(t) =

∫ t

0
Pfpt(t′; x)P0(t − t′)dt′. (A14)

where P0(t) is the probability to be at a state at time t when the system was at the same state at t = 0. This
convolution integral becomes a product in the Laplace domain, for any x �= 0:

P̂x(s) = P̂0(s)P̂fpt(s; x) =
eAx/2

(
h(s) +

√
h(s)2 − 1

)−x

2ν
√

h(s)2 − 1
, (A15)

where

h(s) ≡ s + k+ + k−
2
√

k+k−
=

s

2ν
+ cosh(A/2), (A16)
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and

P̂0(s) =

∫ ∞

0
dt e−stP0(t) =

1

2ν
√

h2(s) − 1
. (A17)

We thus obtain, using equations (A16) and (A17) in (A15)

P̂fpt(s; x) = eAx/2
(

h(s) +
√

h(s)2 − 1
)−x

= eAx/2−|x|cosh−1(s/2ν+cosh(A/2)). (A18)

In the above equations and in the following we will use the variables ν = (k+k−)1/2 and A = ln(k+/k−), see
equation (2) in the main text. The inverse Laplace transform of equation (A18) implies
Pfpt(t; x) = (|x|/t)Px(t):

Pfpt(t; x) =
|x|
t

eAx/2Ix(2νt)e−2 cosh(A/2)νt , (A19)

which is equation (6) in the main text.

Appendix B. Exact extrema statistics for the 1D biased random walk

In this section, we use generating functions to derive the statistics of the finite-time extrema of entropy
production. In particular, we focus on the generating function for the probability Gmin of the minimum and
the generating function for the absorption probability Gabs, which are defined respectively as

Gmin(z; t) ≡
∞∑

x=0

z−x P (Smin(t) = −Ax) , (B1)

Gabs(z; t) ≡
∞∑

x=1

z−xPabs(−x; t). (B2)

These two generating functions are related by

Gmin(z; t) = 1 + Gabs(z; t)(1 − z). (B3)

Moments and probabilities follow taking derivatives of the generating functions (B1) with respect to z

〈Smin(t)m〉 = ∂mGmin(zA; t)

∂(ln z)m

∣∣∣∣
z=1

, (B4)

P (Smin(t) = −mA) =
∂mGmin(z; t)

m! ∂(z−1)m

∣∣∣∣
z−1=0

. (B5)

For instance, inserting (B3) into (B4) to compute the first moment reduces to the simple expression

〈Smin(t)〉 = −AGabs(1; t). (B6)

B.1. Finite time statistics in the Laplace domain
We rewrite the probability-generating function Gmin using the first-passage-time density derived above
(A18). First we use the fact the first-passage-time density is the derivative of the absorption probability,
P̂fpt(s; x) = sP̂abs(x; s) − δx,0, which holds for any x. Equation (A19) implies that the Laplace transform
P̂fpt(s;−x) of the first-passage-time probability to reach an absorbing site located at −x, with x � 1, can be
expressed as the xth power of the Laplace transform P̂fpt(s;−1) of the first-passage time probability to reach
x = −1:

P̂fpt(s;−x) = P̂fpt(s;−1)x. (B7)

Consequently, the statistics of the minimum (maximum) can be expressed in terms of just P̂fpt(s;−1)
(P̂fpt(s; 1)). Using equations (B1)–(B3) and (B7), we derive the generating functions in terms of P̂fpt(s;−1)

sĜabs(z; s) =
∞∑

x=1

z−xP̂fpt(s;−1)x =
z−1P̂fpt(s;−1)

1 − z−1P̂fpt(s;−1)
, (B8)

sĜmin(z; s) =
1 − P̂fpt(s;−1)

1 − z−1P̂fpt(s;−1)
. (B9)
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Because P̂fpt(s;−1) = e−A/2(h(s) +
√

h(s)2 − 1) is algebraic, all the moments and probabilities, obtained
from equations (B4) and (B5), are algebraic expressions. For instance, the Laplace transform of the mean
minimum is obtained directly from (B6) and (B8):

s〈Ŝmin (s)〉 = −A

P̂fpt(s;−1)−1 − 1
. (B10)

B.2. Integral representations of extreme value statistics
We start from the first-passage-time density formula (A19) and we exploit two properties of the modified
Bessel function of the first kind. This allows us to rewrite the absorption probability as a definite integral of
trigonometric and hyperbolic functions and the parameters A and ν:

Pabs(x; t) =

∫ t

0
Pfpt(t′; x)dt′

= eAx/2

∫ t

0

|x|
t′

Ix(2νt′)e−2 cosh(A/2)νt′ dt′ (B11)

= eAx/2

∫ π

0

∫ t

0
e−2νt′(cosh(A/2)−cos θ)2ν dt′

(
cos

[
(|x| − 1)θ

]
− cos

[
(|x|+ 1)θ

]) dθ

2π
(B12)

= eAx/2

∫ π

0

1 − e−2νt(cosh(A/2)−cos θ)

cosh(A/2) − cos θ

(
cos

[
(|x| − 1)θ

]
− cos

[
(|x|+ 1)θ

]) dθ

2π
. (B13)

In (B11) we have used equation (A19). In (B12) we have used the definition
Ix(y) = (1/π)

∫ π

0 ey cos θ cos(xθ)dθ and the property Ix(y) = (y/2x)[Ix−1(y) − Ix+1(y)]. Finally in (B13) we
have performed the integration over t. Using equation (B13), we express the generating function of the
absorption probability as an integral:

Gabs(z; t) =
∞∑

x=1

z−xPabs(−x; t) (B14)

=

∫ π

0

1 − e−2νt(cosh(A/2)−cos θ)

cosh(A/2) − cos θ

(sin θ)2

cosh(A/2 + ln z) − cos θ

dθ

2π
,

Where we have used in the above equation the identity

∞∑
x=1

e−αx (cos ((x − 1)θ) − cos ((x + 1)θ)) =
(sin θ)2

coshα− cos θ
, (B15)

which follows from the generating function of Chebyshev polynomials of the first kind Tx(cos θ) ≡ cos(xθ).
Performing the change of variable y = cos θ in equation (B14), and setting z = 1 (we recall
〈Smin(t)〉 = −AGabs(1, t), see equation (B6)) we obtain equation (9) in the main text:

〈Smin(t)〉 = − A

2π

∫ 1

−1

1 − e−2νt(cosh(A/2)−y)(
cosh(A/2) − y

)2

√
1 − y2 dy. (B16)

�

Appendix C. Extrema statistics and Mařcenko–Pastur distribution

In this section, we derive analytical expressions for the extrema statistics of 1D biased random walks in
terms of the Marčenko–Pastur distribution (13) of random matrix theory, copied here for convenience:

ρ(λ) ≡

⎧⎨
⎩

1

2πδ

√
(λ+ − λ)(λ− λ−)

λ
if λ ∈ [λ−,λ+]

0 if λ /∈ [λ−,λ+],
(C1)

where λ is a positive random variable, δ � 1 a parameter, and λ± =
(

1 ±
√
δ
)2

. Note that this distribution

is normalized with mean
∫ λ+
λ−

λρ(λ)dλ = 1.
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C.1. Average value of the finite-time minimum of entropy production
Performing the changes of variable k = 2ν(cosh(A/2) − y), as well as τ = 1/k, in equation (B16) we obtain

〈Smin(t)〉 = − A

2π

∫ k∞

k0

1 − e−kt

k

√
(k∞ − k)(k − k0)

dk

k
(C2)

= − A

2π

∫ τ∞

τ0

(
1 − e−t/τ

)√ (τ∞ − τ)(τ − τ0)

τ∞τ0

dτ

τ
, (C3)

where we have introduced the variables

k∞/0 ≡ (
√

k+ ±
√

k−)2, (C4)

τ∞/0 ≡
1

k0/∞
. (C5)

Thus, the average entropy production minimum can be expressed as exponential relaxation process with a
spectrum of relaxation times distributed according to Marčenko–Pastur distributions (C1)

〈Smin(t)〉 = −Ak−

∫ k∞

k0

1 − e−kt

k
ρ(k/k̄)

dk

k̄
(C6)

= 〈Smin〉
∫ τ∞

τ0

(1 − e−t/τ )ρ(τ/τ̄)
dτ

τ̄
, (C7)

where

k̄ ≡ k+, (C8)

τ̄ ≡ k+
(k+ − k−)2

=

√
τ0τ∞

1 − e−A
, (C9)

and

δ =
k−
k+

= e−A. (C10)

Note that equation (C7) provides equation (12) of the main text.

C.2. Generating functions of the absorption probability and the minimum
The generating function for the absorption probability can also be expressed using Marčenko–Pastur
distributions. Using the same method as described above for equation (B14), we find

Gabs(z; t) = k−

∫ k∞

k0

1 − e−kt

k + f (z)
ρ(k/k̄)dk/k̄ (C11)

=
1

eA − 1

∫ τ∞

τ0

1 − e−t/τ

1 + f (z)τ
ρ(τ/τ̄)dτ/τ̄ , (C12)

where
f (z) ≡ k+(z − 1) + k−(z−1 − 1). (C13)

Using equations (C12) and (B3) we obtain the generating function of the distribution of minima given by
equation (14) in the main text

Gmin(z; t) =
1

eA − 1

∫ τ∞

τ0

1 − e−t/τ

1 + f (z)τ
ρ(τ/τ̄)dτ/τ̄ . (C14)

C.3. Laplace transforms
Taking the Laplace transform of equation (C11), we obtain

sĜabs(z; s) = k−

∫ k∞

k0

k

k + s

ρ(k/k̄)

k + f (z)

dk

k̄
. (C15)

Equation (C15) and (B6) imply that the Laplace transform of the average minimum can be written as a
Stieltjes-like transform of the Marčenko–Pastur distribution for the variable k
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s〈Ŝmin(s)〉 = −Ak−

∫ k∞

k0

ρ(k/k̄)

k + s

dk

k̄
, (C16)

and similar relations hold for moments of any order. Notably, equations (C15) and (C16) have a similar
mathematical structure as the Laplace transform of the first-passage-time density of Markovian stochastic
processes found in [55], where instead P̂fpt(s; x) is expressed as a weighted discrete sum of relaxation modes.

Appendix D. Random-matrix estimates of extreme-value statistics

In this section we discuss the connection between the relaxation spectrum of first-passage and extrema
statistics in the 1D biased random walk with random-matrix theory. We now describe how one can estimate
finite-time statistics of the minimum entropy production from the spectrum of suitable random matrices.
For this purpose, we use a celebrated result by Marčenko and Pastur [66]. Consider a real m × m Wishart
matrix defined as

W =
1

n
RRT, (D1)

where R (its transpose RT) is an m × n random matrix, with n � m. The random matrix R is filled with
independent identically distributed (i.i.d.) random variables drawn from a normal distribution of zero
mean and unit variance, i.e. Rij ∼ N (0, 1), for all i, j � m. The resulting positive definite random matrix
follows the Wishart distribution of degree of freedom n and density cn,m(det w)(n−m−1)/2eTrw n/2 (where cn,m

is a normalization factor). Following Marčenko and Pastur, the eigenvalues λ of the Wishart random matrix
W are asymptotically distributed according to the distribution (C1) in the limit n, m →∞ with finite
rectangularity m/n → δ < 1. It has been shown that this asymptotic result also holds when all Rij are i.i.d.
random variables drawn from any distribution of zero mean and unit variance [69].

We now put in practice Marčenko and Pastur’s result, namely we find random matrices whose spectral
density matches with that of the relaxation spectrum of the average minimum of entropy production. This
can be achieved e.g. by using a Wishart random matrix of rectangularity m/n identified as
δ = k−/k+ = e−A in terms of the bias A of the walker, i.e. we draw a real m × n Wishart random matrix W
with m, n � 1 and m/n  e−A (for instance n = �eAm�). Then we evaluate the m eigenvalues λi of the
matrix W and we give them a dimension using equations (C8) and (C9) and performing the changes of
variables k = λk̄ in equation (C6) and τ = λτ̄ in equation (C7) respectively. We thus obtain the following
two estimates, 〈S̃min(t)〉k and 〈S̃min(t)〉τ , for the average entropy production minimum:

〈S̃min(t)〉k ≡ −A e−A 1

m

m∑
i=1

1 − e−λi k̄t

λi
, (D2)

〈S̃min(t)〉τ ≡ 〈Smin〉
1

m

m∑
i=1

(
1 − e−t/λi τ̄

)
, (D3)

where k̄ = k+ and τ̄ = k+/(k+ − k−)2 as identified previously. These estimates converge respectively to the
exact result in the limit of a large matrix size. Using equations (C11) and (C12), the same procedure can be
applied to estimate the generating function and any order moment of the distribution of entropy
production extrema.

To test the convergence of these estimates, we define their relative error εk(t) and ετ (t) as the relative
difference

εk,τ (t) ≡ 〈S̃min(t)〉k,τ − 〈Smin(t)〉
〈Smin(t)〉 , (D4)

which is a random real quantity for both k and τ estimates. Their limiting values are related and can be
calculated analytically:

εmin ≡ lim
t→0

εk(t) = lim
t→∞

ετ (t) = 0 (D5)

εmax ≡ lim
t→∞

εk(t) = lim
t→0

ετ (t)

= (1 − e−A)

(
1

m

m∑
i=1

1

λi

)
− 1, (D6)

which vanishes in the limit of a large random matrix because 〈1/λ〉ρ = 1/(1 − e−A), with 〈. . .〉ρ denoting
an average over the Marčenko–Pastur distribution (C1). From the limits (D5), we conclude that the

17



New J. Phys. 22 (2020) 123038 A Guillet et al

estimate (D2) is advantageous to study the short-time behaviour whereas (D3) is most suited for large-time
asymptotics. Our numerical results show that |εk(t)| � |εmax| and also |ετ (t)| � |εmax| for all tested
parameter values and for all times t. Therefore we will use εmax given by equation (D6) as a conservative
bound for the relative error of the random-matrix estimates at any time t.

The estimates introduced above rely on the fact that one can achieve a rectangularity m/n  e−A with
large enough random matrices. Because e−A is not a rational number in general, it is desirable to develop
random-matrix estimates that achieve the Marčenko–Pastur distribution accurately for any value of A.
Following [67], the β-Laguerre matrices are an alternative ensemble whose spectral density tends
asymptotically to the distribution MP(e−A) in the large size limit. A β-Laguerre m × m random matrix L is
defined as

L =
1

n
RRT, (D7)

where n = mβeA, with β the Dyson index of the ensemble. Here, R is an m × m random matrix with all
entries equal to zero except the m × (m − 1) diagonal and sub-diagonal elements. The non-zero entries Rij

are drawn following χ(dij) distributions of dij degrees of freedom:

R =

⎡
⎢⎢⎢⎣

R1,1

R2,1 R2,2

R3,2 R3,3

. . .
. . .

⎤
⎥⎥⎥⎦ ∼

⎡
⎢⎢⎢⎣
χ(d1,1)
χ(d2,1) χ(d2,2)

χ(d3,2) χ(d3,3)
. . .

. . .

⎤
⎥⎥⎥⎦ . (D8)

The random variable Zij =

√∑dij

k=1 X2
k , where the Xk ∼ N (0, 1) are i.i.d., follows the χ(dij) distribution.

Equivalently, one can obtain a random variable that follows the χ(dij) distribution by taking the square root
of a random variable drawn from a chi-square distribution χ2(dij). The degrees of freedom dij of the χ
distributions in the β-Laguerre random matrix are:

d =

⎡
⎢⎢⎢⎢⎢⎣

n
β(m − 1) n − β

β(m − 2) n − 2β
β(m − 3) n − 3β

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦ . (D9)

We recall that in this case n = mβeA is not the dimension of the matrix R, which is an m × m square
matrix, but a positive real number. Therefore, the rectangularity parameter does not need to be
approximated in this method.

Figure 8 shows numerical results of the random-matrix estimates of the average entropy-production
minimum for the 1D biased random walk with bias A = 1. We draw m × m random matrices from the
β = 1, 2, 1000 Laguerre ensembles. Note that Laguerre ensembles of Dyson indices β = 1, 2, 4 are
equivalent to Wishart random matrices with Rij given respectively by real, complex and quaternionic
normal random variables, and use the appropriate conjugate transpose of R [70]. We plot the maximum
relative error εmax (D6) as a function of the size of the random matrix m (figure 8(a)). The Wishart
(1-Laguerre) ensemble provides a biased overestimate of the real value with maximum relative error 2.3%
for small random matrices of sizes larger than 64 × 64. We observe that the 2-Laguerre ensemble provides
an estimate that is practically unbiased, even using small matrices (except in the limit A � 1). Furthermore,
β-Laguerre matrices with large values of β (e.g. β = 1000) yield small dispersion in the relative difference
but a bias (underestimation) for small matrix sizes. The mean and the standard deviation of εmax obtained
from a large population of computer-generated random matrices are observed to converge to zero with the
matrix size m as ∼ 1/m. This fast convergence (compared to the usual 1/

√
m) is a consequence of the

correlation between the m eigenvalues of the β-Laguerre random matrices. The convergence of the
estimates is revealed in the difference between the spectral density of the random matrices and the
Marčenko–Pastur distribution for m = 26 (figure 8(b)) and m = 212 (figure 8(c)). Remarkably, even though
for m = 26 the eigenvalue distribution is a rough approximation to the Marčenko–Pastur distribution, the
relative error of the estimate is smaller than ±2.3% for a single 1-Laguerre and ±1.5% for a single
2-Laguerre random matrix.

Eventually, we notice that all the expressions that involve a sum over the eigenvalues can be recast into
random matrix traces. For instance, the two minimum entropy estimates and their associated maximum
relative error read:
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Figure 8. Numerical results for the random-matrix estimates 〈S̃min(t)〉 obtained using m× m random matrices drawn from the
β-Laguerre ensemble. Left: average value of the maximum relative difference εmax given by equation (D6) as a function of the
matrix size m obtained from 106/m random matrices, for three different β−Laguerre matrix ensembles (see legend). The error
bars are given by the standard deviation of εmax across the random-matrix populations. Middle and right: normalized histograms
for the eigenvalues of a single random matrix drawn from the β-Laguerre ensemble (β = 1, 2, see legend) with matrix sizes
m = 26 (middle panel) and m = 212 (right panel), compared to the Mařcenko–Pastur distribution (C1) with parameter δ = e−A

(black line) and affinity A = 1.

〈S̃min(t)〉k = −Ak−

∫ t

0

1

m
Tr e−Mk̄t′ dt′, (D10)

〈S̃min(t)〉τ = 〈Smin〉
(

1 − 1

m
Tr e−M−1t/τ̄

)
, (D11)

εmax = (1 − e−A)
1

m
Tr M−1 − 1, (D12)

where M is either a Wishart random matrix or the Laguerre random matrix of size m × m, scaled by
n = eAβm [see equations (D1) and (D7)].

Appendix E. Explicit expression for the average entropy production minimum

We now employ exact expressions for the moments of the Marčenko–Pastur distribution ρ to derive an
analytical expression for the average minimum of the 1D biased random walk. The nth moment (n � 1) of
the Marčenko–Pastur distribution ρ(λ), can be expressed as power series of the parameter δ = e−A known
as Narayana polynomials [77]:

〈λn〉ρ =
n−1∑
r=0

(n

r

)(n − 1

r

)
δr

r + 1
. (E1)

where 〈. . .〉ρ denotes an average over the Marčenko–Pastur distribution (C1). Then, it is convenient to
expand the exponential in equation (C6), and express the integrals in terms of the moments (E1). By
manipulating the indices, we obtain two infinite series:

〈Smin(t)〉 = A e−A
∞∑

n=1

(−k+t)n

n!

〈
λn−1

〉
ρ

(E2)

= A e−A

(
−k+t + (k+t)2

∞∑
r=0

∞∑
s=0

(−k+t)r+s

(r + s + 2)!

(
r + s + 1

r

)(
r + s

r

)
e−Ar

r + 1

)
. (E3)

This form can be identified as the Kampé de Fériet function F [94], a two-variable generalization of
hypergeometric functions. It is defined for integer vectors a, b, b′, c, d, d′, of lengths p, q, q, r, s and s
respectively, as follows:

p+qFr+s

[
a , b , b′

c , d , d′

∣∣∣∣ x , y

]
≡

∞∑
m=0

∞∑
n=0

∏p
α=1 (aα)m+n

∏q
β=1 (bβ)m(b′β)n∏r

γ=1 (cγ)m+n
∏s

δ=1 (dδ)m(d′
δ)n

xmyn

m!n!
, (E4)

where (m)n =
∏n−1

k=0 (m − k) = (m+n−1)!
(m−1)! denotes the rising factorial. The translations of the binomial

coefficient into rising factorials yields the following expression of the mean minimum entropy:

〈Smin(t)〉
A

= −k−t + 2+0F1+1

[
[2 1] , ∅ , ∅

3 , 2 , 2

∣∣∣∣− k−t , −k+t

]
k−k+t2

2
. (E5)
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[47] Wergen G, Bogner M and Krug J 2011 Record statistics for biased random walks, with an application to financial data Phys. Rev. E

83 051109
[48] Mounaix P, Majumdar S N and Schehr G 2018 Asymptotics for the expected maximum of random walks and Lévy flights with a
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