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Dense cellular aggregates are common in biology, ranging from bacterial biofilms to organoids, cell
spheroids, and tumors. Their dynamics, driven by intercellular forces, is intrinsically out of equilibrium.
Motivated by bacterial colonies as a model system, we present a continuum theory to study dense, active,
cellular aggregates. We describe the process of aggregate formation as an active phase separation
phenomenon, while the merging of aggregates is rationalized as a coalescence of viscoelastic droplets
where the key timescales are linked to the turnover of the active force. Our theory provides a general
framework for studying the rheology and nonequilibrium dynamics of dense cellular aggregates.
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Complex biological aggregates, such as bacterial colo-
nies, organoids, cell spheroids, and tumors, are formed by
thousands to millions of individual interacting cells.
Studies of dense cellular aggregates provide a bridge
between tissues and organs to the level of single cells with
implications in various biological contexts. Examples
include wound healing [1,2], tissue spreading [3–6], tumor
growth and treatment [7,8], and formation of biofilms or
organoids [8–12]. As the interactions between cells are
associated with chemical energy being typically trans-
formed to mechanical work, cellular aggregates are intrinsi-
cally out-of-equilibrium (active) systems [13] and behave
differently compared to normal viscous liquid droplets
[14–18].
A prototypical example of active multicellular aggre-

gates are the microcolonies of Neisseria gonorrhoeae (N.
gonorrhoeae) bacteria. Microcolonies forming on human
epithelial tissue are the infectious units of the second most
common sexually transmitted disease gonorrhea. These, as
well as numerous other bacteria species, use thin and long
retractable filaments called type IV pili to interact with
their environment and with each other [19,20] [see
Figs. 1(a)–1(c)]. Cycles of pili growth, attachment, retrac-
tion, and detachment drive cell motility on surfaces and the

process of colony formation. Forces of contracting and
constantly remodeling pili networks create a densely
packed colony [see Fig. 1(b)] and, together with excluded
volume interactions, form an active viscoelastic material.
Multiscale computer simulations have played an impor-

tant role in biophysical studies of N. gonorrhoeae colonies
[21–23]. Coarse grained continuum approaches, such as
hydrodynamic theories of active matter, have provided
powerful concepts to capture large scale emergent behav-
iors in active systems [24–28]. In biological systems,
important insights can often be gained by starting from
more specific microscopic models that capture key features
of the system of interest. The resulting continuum descrip-
tion is less generic and can provide a deeper understanding
of the essential, biologically relevant processes governing
the system. Here, starting from microscopic, pili-mediated
interactions, we derive the continuum theory of dense
active multicellular systems. We show how the turnover
of active forces determines the viscoelastic behavior of
aggregates. The developed theory rationalizes the forma-
tion of N. gonorrhoeae colonies as phase separation and
highlights the role of viscoelasticity during the complex
process of colonies merging. Thus, we are enabled to,
theoretically, fully understand the rheological behavior of
multicellular aggregates.
Pili-mediated forces.—Pili-mediated intercellular inter-

actions of bacteria are well studied and serve as an
important model example for active cellular force gener-
ation. N. gonorrhoeae bacteria have multiple (∼10–20) pili
isotropically distributed over the cell body [see Fig. 1(c)]
[29–31]. Statistics of pili length is well captured by an
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exponential distribution with a mean of l0 ∼ 1–2 μm
(diameter of the cell is ∼1 μm) [29]. Pili may attach to
a substrate or to pili of other N. gonorrhoeae bacteria (but
not to their cell membrane) [21]. Pili grow (retract) by a
process of (de)polymerization driven by specific motor
protein complexes [19,30,32–35]. Retraction of an attached
pilus generates the pulling force of up to fp ≈ 180 pN
[33,36,37]. If even a greater stretching force is applied to a
pilus, it may extend via a conformational change without
detaching [38]. Detachment happens stochastically in a
load dependent manner [37]. These key pili characteristics
are, in some instances with simplifications, introduced in
the microscopic model below.
Cell-based model of aggregate dynamics.—In a simpli-

fied two-dimensional setting, cells are represented as disks
with the radius R [see Fig. 1(d)]. Pili are formed stochas-
tically, with isotropic orientation and with an exponential
length distribution with average l0. Two individual pili of
two neighboring cells may bind to each other. Retraction of
the pili generates no net force acting on the two cells, but it
gives rise to the attractive force dipole of strength fp
pulling the cells together [see Fig. 1(d)]. Pili can also bind
to the substrate. Pili-substrate interactions can drive bac-
terial motility and are important for understanding the
kinetics of aggregation as has been shown before [39].
Here, we focus on the behavior of dense aggregates and,
thus, do not consider effects due to pili-substrate

interactions beyond substrate friction [23]. In the over-
damped limit, for an individual cell, the pili-pili mediated
forces are balanced by excluded volume interactions and
substrate friction [see Fig. 1(d)]

fp
X

j

l̂jin
ji
p þ

X

j

fji − ξvi ¼ 0; ð1Þ

where vi is the velocity of cell i on the substrate and ξ is a
friction coefficient. The steric repulsion force exerted by cell
joncell i isdenotedfji.Theunitvector l̂ji ¼ lji=lji shows the
direction of the pili-pili mediated force exerted by cell j on
cell i, where lji ¼ rj − ri is the vector pointing from cell i at
the position ri to cell j at the position rj, and lji is the
correspondingdistance.Thepili-pilimediated forcebetween
cells is proportional to the number of bound pili pairs
between cells i and j, denoted njip [see Fig. 1(d)]. Note that
njip is changing with time. We consider formation of bound
pili pairs with a binding constant kon and assume that the
detachment happens with a constant rate koff . Because
the steady-state pili length distribution is exponential, the
number of bound pili pairs obeys (for details, see [40])

d
dt

njip ¼ kone
−
lji
l0

2πl20
− koffn

ji
p : ð2Þ

Continuum limit.—At the microscopic level, there are
two key features signifying nonequilibrium nature of the
system and distinguishing it from previous models of active
particle systems [45–48]. First, the network of bound pili
leads to an elasticlike response to deformation at time
scales smaller than the pili detachment time. At larger time
scales, pili can rearrange, leading to stress relaxation and
fluidlike material response. Pili turnover and force gen-
eration are also responsible for breaking the detailed
balance. Second, the pili-pili mediated forces acting as
attractive force dipoles are balanced by steric repulsion
forces allowing us to consider the regime of dense cellular
aggregates. These two features, as well as the details of pili
interactions, are captured by the resulting continuum
equations. Now, we use the microscopic force balance
equation together with pili turnover to obtain dynamic
equations for coarse-grained cell number density n and
force balance (the coarse-graining procedure is described
in [40])

∂tn ¼ −∇ · ðvnÞ; ξnv ¼ ∇ · σa þ∇ · σp: ð3Þ

Here, v is the cell velocity field, and σa;p are the active and
passive stress tensors, respectively. The expression for the
passive stress incorporates effects from short range repul-
sive interactions. In the continuum, we use the expression

σp ¼ −
Evcn
1 − vcn

I; ð4Þ

FIG. 1. Bacterial colonies and interactions. (a) N. gonorrhoeae
aggregates formed on a solid substrate. (b) Two merging
aggregates and pili network. (c) A single cell and its pili. The
images are from (a) optical, (b) electron, and (c) transmission
electron microscopy. (d) Microscopic forces acting on the cells.
Cells are represented as disks of radius R. Solid and dashed lines
denote pairs of bound and free pili, respectively. Pili length l is
exponentially distributed with the mean l0. Cells i and j have nijp
bound pili pairs between them. Each pair generates a force dipole
of strength fp. Thus, fpn

ij
p is the magnitude of the force acting

from cell j on cell i due to the pili, while the green arrow shows its
direction. fik and red arrows show the magnitude and the
direction of the steric repulsive force.
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where vc ¼ πR2 is the area of a single cell, E is the bulk
elastic modulus, and I is the identity matrix. This, in fact, is
the van der Waals gas law for pressure without attractive
interaction, and is one of the simplest forms for describing
the excluded volume effects.
Because of the intrinsic nature of pili-pili interaction as

force dipoles [25], the first nontrivial term of the active
stress has nematic symmetry [25,49] and can be written as
σa ¼ fpN, where

N ¼
X

i≠j

!
lji l̂jin

ij
pδ

"
r −

ri þ rj
2

#$
ð5Þ

is a nematic tensor which characterizes the amount of the
bound pili pairs and their axis of anisotropy (see [40]).
Phase separation.—The continuum theory allows for a

phase separation regime where attractive pili-pili forces
drive the formation of dense aggregates from an initially
homogenous distribution of cells [see Figs. 2(a) and 2(b),

movie S1]. Here, we take advantage of the adiabatic
approximation assuming that pili turnover, Eq. (2), happens
much faster than the motion of cells. The resulting, much
simplified equation for cell density, is of the Cahn-Hilliard
type [39,50]. By applying the linear stability analysis, we
can find the critical density nc above which the initially
homogeneous state becomes unstable with respect to small
density fluctuations [Fig. 2(a) and [40] ]

fpkonl0
koff

nc −
Evc

ð1 − ncvcÞ2
¼ 0: ð6Þ

Above the critical density, multiple, similarly sized aggre-
gates emerge [Fig. 2(b)] with a characteristic length scale,
which can also be derived from the linear stability analysis.
On a longer time scale, coarsening dynamics leads to the
formation of a single stabilized aggregate, Figs. 2(c)
and 2(d). This adiabatic regime also admits an effective
free-energy, equilibriumlike description (see [40]).
Dynamic equations.—Now, we discuss the equations

describing dynamics of colony formation. The time evo-
lution of the active stress is determined by calculating its
time derivative in the coarse-graining procedure. Naturally,
it leads to the appearance of higher rank tensors, which we
estimate using a standard closure approximation and by
introducing the density of the total number of bound pili N
(see [40])

dσaαβ
dt

¼ fp

"
Nαγ∂γvβ−Nβα∂γvγ þNβγ∂γvα−

NαβNϵγ∂ϵvγ
Nl0

#

þ4fpkon

Z
d2l

lβlα
l
e−2l=l0

2πl20
nðrþ lÞnðr− lÞ

−fpkoffNαβ: ð7Þ

Equation (7) describes the stress-strain relation due to cell
movement (the first term), the active stress from the newly
formed pili pairs (the second term), and the relaxation by
the detachment of bound pili (the last term). Together with
continuity and force balance equations, Eq. (3), and time
evolution for N, it constitutes the full system describing the
dynamics (see [40]). Coupling of the nematic tensor to cell
movement for the finite pili turnover is the source of the
broken detailed balance that does not allow for an equi-
libriumlike description. For linearized dynamic equations,
there exists a region in parameter and wave vector space
corresponding to complex eigenvalues and, thus, oscilla-
tory behavior. A homogeneous density perturbed by a
mode with a suitable wave length will oscillate with a
decreasing amplitude, exemplifying a nonequilibrium
behavior [40,51].
Viscoelasticity.—Next, we discuss the material properties

of colonies mediated by pili forces and controlled by the
nematic tensor N. The active stress Eq. (7) relaxes at a rate
koff , implying viscoelastic material properties. Combined
with the definition of the active stress Eq. (5), the relaxation

FIG. 2. Aggregate formation as a phase separation phenome-
non. (a) Difference of high and low cell number density phases as
a function of time. The critical initial density of the onset of the
phase separation is at ncR2 ≃ 0.049 for kon=koffR2 ¼ 1.78, the
initial density fluctuation level of 0.001, and pili length is set
l0=R ¼ 2.67 [for all panels except (c)]. (b) The snapshot of the
density after the onset of the phase separation [initial density is
n0R2 ¼ 0.079 as in the second line from top of panel (a), and
fp=πRE ¼ 6]. (c) The cell number density (solid curve) and total
number of bound pili density (dashed curve) of stable aggregates
for two different pili lengths. The bulk elastic moduli are taken as
fp=πRE ¼ 6 (smaller plateau) and fp=πRE ¼ 7.5 (larger pla-
teau) to provide the same degree of phase separation. The pili
length controls the width of the aggregate’s boundary
(n0R2 ¼ 0.072). (d) The nematic tensor N − 1

2Tr½N& inside of
a stabilized aggregate (n0R2 ¼ 0.072). Lines and their length
indicate the nematic ordering direction and the order parameter,
respectively.
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dynamics can be rewritten as the Maxwell model with a
source term due to newly binding pili

"
1þ 1

koff

d
dt

#
σaαβ ¼

λαβγϵ
koff

∂γvϵ þ 4fp
kon
koff

Z
d2l

lβlα
l

e−2l=l0

2πl20
× nðrþ lÞnðr − lÞ; ð8Þ

where λαβγϵ ¼ fpðNαγδβϵ þ Nβγδαϵ − Nαβδγϵ − ðNαβNγϵ=
Nl0ÞÞ is an elastic tensor. At short times (t ≪ k−1off ; k

−1
on ),

the active stress behaves elastically. At larger times
(ðd=dtÞσaαβ ≃ 0), the network of bound pili pairs is re-
modeled due to the binding or unbinding processes, and
the active stress behaves as in a viscous fluid with the viscous
tensor ηαβγϵ ¼ λαβγϵk−1off (calculated from the ratio between
the strain and relaxing stress). The viscoelastic behavior
emerges naturally in the continuum description and shows
intimate relation to the pili turnover dynamics. Pili-induced
elastic moduli and viscosities explicitly depend on the cell
number density. At the surface of the colony, the density is
lower than in the bulk, and thus, we expect the elastic moduli
and the viscosities to be smaller at the surface. Thus, our
theory naturally accounts for the experimentally observed
effect of heterogeneous cell motility in N. gonorrhoeae
aggregates [21,23]. This heterogeneity, in turn, effects the
merging of colonies, a complex dynamic process and the
major mechanism of colony growth considered next.
Coalescence of colonies.—The merging of cellular

aggregates [Fig. 3(a)] is reminiscent of a coalescence of
liquid droplets [21,52–54]. It can be quantified by follow-
ing the “liquid (capillary) bridge” height hðtÞ [inset in top
panel of Fig. 3(b)] as a function of time. Overall, we see an
interesting behavior which is not captured by a single time
scale. Because of the viscoelastic nature of the active stress
[see Eq. (6)], at short times t ≪ k−1off , the merging is
dominated by the cell movements without pili detachment
and leads to an elastic response. At large times t ≫ k−1off , the
bound pili network has enough time to remodel, leading to
an effective viscous behavior, and gives rise to a time scale
governed by the ratio of the effective viscosity to the
average stresses.
For the increasing force fp and decreasing pili detach-

ment rate koff , aggregates tend to merge faster [Fig. 3(b)].
During the late stage of the merging, an additional time
scale from the ratio of the effective viscosity and the stress
tensor becomes relevant [55–58], which, due to the similar
scaling of the effective viscosity, linearly depends on k−1off
[inset in the middle panel of Fig. 3(b)]. By dimensional
analysis, we find four nondimensional parameters: l0=R,
kon=koffR2, fp=πRE, fp=Rξkoff and the rescaled time
tfp=Rξ which determine the scaling of the system. The
first is the ratio of the mean pili length and the cell radius,
the second is related to the number of bound pili, and the
third is the ratio between the active and excluded volume
forces, which together determine the degree of the phase
separation [see, also, Eq. (6)]. The fourth parameter is the

ratio between the time for the cell to move its radius under
the pili force and the pili detachment time, which is the only
nondimensional parameter which can be varied if the
degree of the phase separation is fixed. Figure 3(b)
(bottom) confirms these scalings by collapsing the plots
for the bridge height as a function of time for different
parameters on a single master curve.
Conclusions.—Our work provides a systematic deriva-

tion of a continuum theory for studying active phase
separation and rheology of dense cellular aggregates.
The contribution of pili-mediated forces is incorporated
via turnover kinetics. For finite turnover rates, the coupling

FIG. 3. Coalescence of aggregates. (a) The snapshots of two
aggregates merging at different times (konξ=fpR ¼ 0.083,
koffξR=fp ¼ 0.047, and fp=πRE ¼ 6, Movie S2). Lines indicate
the magnitude and direction of the nematic ordering as in
Fig. 2(d). (b) The bridge height h=R as the function of the rescaled
time tfp=Rξ. Top: inset shows definition of hðtÞ. The boundary of
the aggregate is defined as the level set of midpoint between the
low and high density. Changing fp, while kon and koff are kept
constant, is shown with gradient of colors, with darker color
corresponding to higher force. Middle: changing koff , where
fp=πRE ¼ 6 and kon=R2koff ¼ 1.78 are kept constant to guaran-
tee the same degree of phase separation. The gradient of colors
indicates the values of koff , with the darker color corresponding to
higher value of koff . The inset shows the asymptotic merging time
τm (corresponding to the dashed lines in the main plot) which
linearly depends on k−1off due to the effective viscosity. Bottom:
changing both koff and fp. The inset shows the master curve after
rescaling as discussed in the text. The top curve is close to the
parameter regime considered in the previous study [21].
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of the nematic tensor to cell motion breaks detailed balance.
This potentially allows for steady states with nonzero
currents, and leads to damped oscillations when the system
is perturbed from the steady state, see [40,51]. For fast pili
turnover, the model behaves effectively like an equilibrium
system. Interestingly, for finite pili turnover, a steady state,
such as a circular droplet, exists, where the macroscopic
velocity vanishes and the system does not exhibit non-
equilibrium currents. It would be interesting to identify
general criteria for which an active system driven by active
force dipoles can be captured by an effective equilibrium
description. Force generation similar to pili-pili interactions
is common in many biological systems, such as interacting
cells or active gels [25,59]. The coupling between the active
stress and cell motion gives rise to space and time
dependent elastic moduli and viscosities, thus, enabling
our model to treat inhomogeneous systems, a prerequisite
for eventually understanding the morphogenesis of tissues.
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