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Mechanochemical processes in thin biological structures, such as
the cellular cortex or epithelial sheets, play a key role during the
morphogenesis of cells and tissues. In particular, they are respon-
sible for the dynamical organization of active stresses that lead to
flows and deformations of the material. Consequently, advective
transport redistributes force-generating molecules and thereby
contributes to a complex mechanochemical feedback loop. It has
been shown in fixed geometries that this mechanism enables pat-
terning, but the interplay of these processes with shape changes
of the material remains to be explored. In this work, we study the
fully self-organized shape dynamics using the theory of active flu-
ids on deforming surfaces and develop a numerical approach to
solve the corresponding force and torque balance equations. We
describe the spontaneous generation of nontrivial surface shapes,
shape oscillations, and directed surface flows that resemble peri-
staltic waves from self-organized, mechanochemical processes on
the deforming surface. Our approach provides opportunities to
explore the dynamics of self-organized active surfaces and can
help to understand the role of shape as an integral element of
the mechanochemical organization of morphogenetic processes.

active fluids | surface mechanics | self-organization | morphogenesis

Morphogenesis is the generation of patterns and shapes by
dynamic processes. In the biological context, cells and tis-

sues are shaped during developmental processes that give rise
to organisms starting from a fertilized egg. Biological morpho-
genesis is fundamentally mechanochemical; i.e., it relies on an
interplay between chemical signals and active mechanics (1–
3). Active mechanical processes in cells are generated in the
cytoskeleton, a gel-like network of protein filaments. Motor
proteins, such as myosin, interact with cytoskeletal filaments
and generate movement and forces driven by the hydrolysis
of ATP (4), thus making the cytoskeleton an active material.
The capacity of living matter to generate spontaneous motion,
flows, and material deformations as a result of molecular force-
generating processes can be captured by the theory of active
matter (5, 6).

The cellular actomyosin cortex is a thin layer of an active mate-
rial near the cell membrane, which governs cell mechanics and
cell shape changes. For example, during cell division a contrac-
tile ring forms in the cell cortex that drives cortical flows and
constricts the cell to create two daughter cells (7–10). Active cor-
tical contractions also play a role in tissue shape changes (11, 12).
For example, during gastrulation it has been suggested that con-
traction of the apical cell cortex drives the invagination of a 2D
cell layer, called the epithelium (13). These examples show that
active mechanical processes on surfaces play a key role in driving
morphogenesis.

The emergent character of morphogenetic processes naturally
arises from a feedback loop in which chemically regulated active
stresses induce material flows and deformations that in turn
affect the chemical regulators (14). This raises the fundamen-
tal question of how active stresses are dynamically organized
during shape changes of cells and tissues. In the absence of
shape changes, it has already been demonstrated that advec-
tion of regulators of active stress gives rise to mechanochemical

self-organization and patterning (14–16). The general process
of morphogenesis introduces additional feedback via changes
of the underlying geometry that enables the generation of
shapes by self-organizing processes. Here, we present a gen-
eral framework to describe the dynamics of shapes that arise
from the self-organization of mechanochemical processes on
an active surface and develop a numerical technique to cap-
ture the corresponding shape changes of surfaces with axial
symmetry.

Our formulation can be seen as a generalization of previous
work, in which shapes are determined from a minimization of
energy functionals (17–19) or from a deformations dynamic that
is guided by phenomenological rules (20–22). Here, we derive
the deformation dynamics and the steady states from the gen-
eral force and torque balance on curved surfaces. This allows
including constitutive relations that are associated with energy
functionals of the surface shape (23), as well as constitutive rela-
tions that describe active elastic or viscous materials (24, 25). In
particular, we consider in this work an active thin film descrip-
tion, which has been extensively applied as a generic model to
account for the dynamic behavior of the cellular cortex and tis-
sue layers (7, 16, 26, 27). In our description, active stresses in the
material can depend on the concentration of a stress-regulating
molecular species that is dynamically changing in response to
flows on and deformations of the surface. We study this system
on surfaces with spherical and tubular geometries, which repre-
sent a broad class of biological structures including the cellular
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cortex (7, 9, 17, 24, 26, 27) and various types of biological tissue
(12, 16, 19, 28).

To solve the resulting equations and the shape dynamics
numerically, we use an integral representation of the deform-
ing surface and develop a dynamic coordinate transformation.
We show that a mechanochemical instability of a spherical
active surface leads to spontaneous polarization and the forma-
tion of deformed stationary shapes. We point out that surface
deformations, even in the absence of this instability, lead to
an accumulation of stress regulators in regions of high curva-
ture due to geometric effects. Furthermore, we show that the
self-organization of active stress regulators can spontaneously
constrict tubular surfaces and can lead to mechanochemical
shape oscillations. Finally, we describe the emergent formation
of directed flows on tubular surfaces with bending rigidity that
resemble a peristaltic wave resulting from the coupling between
self-organized active stresses and surface geometry.

Geometry and Mechanics of Self-Organized Active Surfaces
We consider a time-dependent surface Γ⊂R3 that is repre-
sented by a parameterization X(s1, s2, t)∈R3. The parameters
(s1, s2) and t denote the surface coordinates and time, respec-
tively. Basis vectors in the tangent space of Γ are given by
ei = ∂iX (Fig. 1A), where ∂i = ∂/∂s i denote partial deriva-
tives with respect to the surface coordinates. The metric tensor
is defined by gij = ei · ej and g ij gjk = δik , where we use the
Einstein summation convention. With the surface normal n =
e1× e2/|e1× e2|, vector fields on the surface can be decomposed
into tangential and normal parts a = a‖+ a⊥, where a‖= a iei
and a⊥= ann. The surface shape is characterized by the cur-
vature tensor Cij =−n · ∂i∂j X. The mean curvature H of the
surface is defined by 2H = g ijCij =C k

k .

Force and Torque Balance Equations of Curved Surfaces. To describe
deformations of Γ as a result of mechanical stresses within and
onto the surface, surface configurations should obey force and
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Fig. 1. Description of curved surfaces. (A) Parameterization X(s1, s2) of a
curved surface Γ embedded in R3. The tension tensor tij and moment tensor
mij are used to describe forces f and torques τ in the surface acting on a line
element ds. (B) Representation of an axisymmetric, deforming surface with
arc-length parameterization map s(u, t) :S0→S. Shown is a schematic set
of collocation points u(i) used for the numerical discretization, mapped onto
the inhomogeneous grid s(i) in physical space via the coordinate transfor-
mation h. The meridional curvature Cs

s encodes the shape of axisymmetric
surfaces. The vectors (ēr , ēφ, ēz) denote the normalized standard basis in
cylindrical coordinates, ψ is the tangent angle, and es = ∂sX(φ, s, t).

torque balance equations that we briefly introduce in the fol-
lowing. Consider a line element of length ds across the surface
with in-plane normal ν = νiei (Fig. 1A). The forces acting on
this line element can be written as f = dsνi ti (23). This defines
the in-plane tension tensor tij and the out-of-plane shear ten-
sion t in by ti = t ij ej + t inn. Torques τ = dsνimi acting on the line
element can be treated in the same way. Additionally, exter-
nal forces fext = f ext,iei + f ext

n n may act on the surface. With
these definitions, the force and torque balance equations read
(23–25)

∇i t
i
j +Cij t

i
n =−f ext

j [1]

∇i t
i
n −Cij t

ij =−f ext
n [2]

∇im
ij +C j

i m i
n = ε j

i t
i
n [3]

∇im
i
n −Cijm

ij =−εij t ij , [4]

where ∇i denotes the covariant derivative and εij denotes the
covariant Levi–Civita tensor (SI Appendix). Eqs. 1 and 2 describe
the force balance in the directions tangential and normal to
the surface, respectively, and we have omitted inertial effects.
Eq. 3 determines how bending moments in the surface are
balanced by out-of-plane shear tension t in , and Eq. 4 deter-
mines their coupling to the antisymmetric part of the tension
tensor tij . Constitutive relations of the material provide expres-
sions for the tension and moment tensors tij ,mij ,m

i
n (25),

which are introduced in Constitutive Relations of Active Fluid
Surfaces.

Constitutive Relations of Active Fluid Surfaces. To define the active
thin film description studied in this work, we first introduce the
equilibrium properties of the surface. We consider here a surface
with constant surface tension γ and bending rigidity κ, described
by the Helfrich free energy (29)

FH =

∫
dA
[
γ+κ

(
C k

k

)
2
]
. [5]

Bending rigidity has been implicated as a key element in deter-
mining cell and tissue shapes (3, 19, 21). The tension and
moment tensors of a surface described by Eq. 5 read (23)

tHij = γgij +κC k
k

(
C k

kgij − 2Cij

)
[6]

mH
ij = 2κC k

k εij . [7]

Spontaneous curvature and Gaussian bending rigidity lead to
additional terms in Eqs. 5–7, which we do not consider here for
simplicity (25). Note that the normal force balance Eq. 2 yields
for tij = tHij and mij =mH

ij the well-known shape equation of
membranes (23).

To characterize flows and deformations of the thin film, we
use the symmetric part of the in-plane strain rate tensor ei · ∂j v,
which reads (25)

vij =
1

2
(∇ivj +∇j vi)+Cij vn . [8]

The component v‖= v iei denotes the in-plane flows, v⊥= vnn
describes deformations of the surface, and v = v‖+ v⊥ is the flow
velocity of surface elements. The deformation velocity vn con-
tributes to strains that are generated when deforming curved
surface regions, such that curvature becomes a natural ele-
ment of the constitutive equations of a deforming surface. The
deviatoric tension of the isotropic active thin film is given by
(25, 27)

tdij = 2ηs

(
vij −

1

2
vk

kgij

)
+ ηbv

k
kgij + ξagij . [9]

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1810896115 Mietke et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810896115/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1810896115


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

Here, ηs and ηb are the shear and bulk viscosities. The viscous
limit is justified whenever the turnover time scales of the sub-
structures that constitute the surface are smaller than the time
scales of deformations and in-plane flows (8, 30, 31). An effec-
tive in-plane compressibility can for example arise from surface
height changes (8, 32) or from an exchange of surface mate-
rial with the environment, which we do not explicitly take into
account. The last term with ξa ≥ 0 describes an isotropic, con-
tractile active tension in the surface. The constitutive relations
can be obtained using

tij = tHij + tdij [10]

mij =mH
ij , [11]

with the contributions to the tension and moment tensors given
by Eqs. 6, 7, and 9. Additionally, we consider m i

n = 0 and note
that t in can be computed using the moment balance Eq. 3. Fur-
thermore, we assume that the volume enclosed by the surface
is conserved, which defines a pressure p that enters the normal
force balance Eq. 2 as f ext

n = p (SI Appendix).

Chemical Regulation of Active Tension. We consider an active ten-
sion amplitude of the form ξa = ξf (c), where ξ is the contractility
and c is a concentration field that regulates the strength of the
local active tension. Following previous works (7, 14, 15), this
regulation is represented by a saturating Hill function

f (c) =
cm

cm0 + cm
. [12]

The concentration field c is changing over time due to advective
transport, reactions, and diffusion and therefore plays a cru-
cial role for the self-organization of morphogenetic processes.
These processes are captured by the dynamic equation for the
concentration field (25, 33)

∂tc =−∇i

(
cv i
)
− 2Hvnc +D∆Γc− k (c− c0). [13]

The first term on the right-hand side describes advection due to
in-plane flows. The second term describes dilution and accumu-
lation due to local surface expansion (Hvn > 0) or compression
(Hvn < 0), respectively, that occurs during deformations of sur-
face regions with nonvanishing mean curvature H . Isotropic
in-plane diffusion with diffusion constant D is incorporated using
the Laplace–Beltrami operator ∆Γc = g ij∇i∇j c. The last term
describes the turnover with a rate k and preferred concentration
of the stress regulator c0.

Dynamic Representation of Deforming Axisymmetric
Surfaces
For a given deformation velocity vn , the dynamics of the surface
Γ represented by the Lagrangian parameterization X(s1, s2, t)
obeys

dX
dt

= vnn, [14]

where d
dt

denotes the total time derivative. In the following, we
consider deformations of axisymmetric surfaces and develop a
framework to numerically solve Eq. 14 for a given deformation
velocity vn .

An arbitrary axisymmetric surface can be represented explic-
itly using an arc-length parameterization

X(φ, s, t) = r(s, t) ēr (φ) + z (s, t)ēz , [15]

where (ēr , ēφ, ēz ) is the normalized standard basis ēα · ēβ = δαβ

with α,β ∈{r ,φ, z} in cylindrical coordinates, φ= s1 ∈ [0, 2π]
is the azimuthal angle, and s = s2 ∈ [0,L(t)] is the arc-length

parameter of the meridional outline (Fig. 1B). In the following,
we use φ and s explicitly as tensor indexes. The nonvanishing
components of the curvature tensor are the azimuthal curvature
Cφ

φ(s, t) = sinψ/r and the meridional curvature

C s
s(s, t) = ∂sψ, [16]

where ψ(s, t) is the tangent angle defined by (∂sr , ∂sz ) =
(cosψ, sinψ). This definition implies that the full shape informa-
tion about Γ is encoded in the meridional curvature C s

s , together
with a point X(t)|s=0. Indeed, for given C s

s , we can compute the
tangent angle from Eq. 16 as

ψ(s, t) =ψ(t)|s=0 +

s∫
0

C s
s(s
′, t)ds ′ [17]

and reconstruct Γ, parameterized as in Eq. 15, via

r(s, t) = r(t)|s=0 +

∫ s

0

cos
[
ψ(s ′, t)

]
ds ′ [18]

z (s, t) = z (t)|s=0 +

∫ s

0

sin
[
ψ(s ′, t)

]
ds ′. [19]

Consequently, the shape of the surface Γ during deformations,
and therefore the solution to Eq. 14, can be found by determining
the time evolution of the meridional curvature C s

s and of the
values of ψ, r , and z at s = 0.

An arc-length parameterization s ∈S(t) : =[0,L(t)] simplifies
the parametric form of covariant equations and the shape recon-
struction via Eqs. 17–19. However, the time dependence of the
domain S makes it difficult to evaluate the total time derivative in
the equation of the shape dynamics, Eq. 14, and renders the arc-
length parameterization impractical for the numerical treatment
of differential equations on a deforming surface. We therefore
introduce additionally a Eulerian parameterization of Γ given by

Xe(φ, u, t) = r(u, t) ēr (φ) + z (u, t)ēz , [20]

where u is a parameter on an interval S0 = [0,L0] that remains
fixed during surface deformations. For convenience, we chose
here L0 =L|t=0, such that S0 =S|t=0. The azimuthal angle φ
is defined as in Eq. 15. Note that X and Xe represent the
same surface Γ, but for the Eulerian parameterization, the shape
dynamics Eq. 14 can be written as

∂Xe

∂t
= vnn. [21]

The surface coordinates s and u are then related by a time-
dependent coordinate transformation h(u, t) that is defined
by

s(u, t) =

∫ u

0

h(u ′, t)du ′. [22]

To obtain a dynamic equation for h(u, t), we first note that we
have gss = h−2guu = 1 and thus guu = h2. Furthermore, it follows
from Eq. 21 and the definition of the metric tensor that for an
Eulerian parameterization (SI Appendix) ∂tgij = 2Cij vn , which
implies

∂th(u, t) = hC s
svn . [23]

Here, we have used Cuu = h2C s
s . For our choice S0 =S|t=0 of

the fixed interval where u is defined, h is uniquely determined as
the solution of Eq. 23 with initial condition h(u) = 1.

To reconstruct the deforming surface via Eqs. 17–19 as a func-
tion of time, we need the meridional curvature C s

s that obeys (SI
Appendix)

∂tC
s
s(u, t) =−(C s

s)
2vn −

1

h
∂u

(
1

h
∂uvn

)
. [24]
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The first term captures curvature changes due to stretching of the
meridional outline, and the second term describes the outline’s
bending that occurs in the case of an inhomogeneous deforma-
tion velocity vn . Altogether, Eqs. 17–19 and 22–24 provide a
framework to solve Eq. 14 for a given deformation velocity vn
on axisymmetric surfaces.

Self-Organization of Active Surface Deformations
We now combine the dynamics of surfaces with the physics of
an active fluid film. For a given surface shape and distribution of
active tension, the instantaneous deformation velocity vn and the
meridional in-plane flow vs = es · v‖ can be obtained by solving
hydrodynamic equations of the active fluid surface. The hydro-
dynamic equations result from combining the force and torque
balance Eqs. 1–4 with the constitutive relations Eqs. 10 and 11
(SI Appendix). Note that these equations determine the veloci-
ties up to a constant velocity vector because the system is Galilei
invariant. The dynamics of the shape together with dynamics of
the stress regulator are then obtained by solving Eqs. 13 and 14,
using at all times the instantaneously determined velocity fields.
This combination of geometry and active hydrodynamics cap-
tures the mechanochemical feedback mediated by the chemical
regulator, where the latter organizes active stress patterns and
depends itself on material flows and on changes of the geometry.

We now study self-organized surface deformations of axisym-
metric spherical and tubular surfaces. To characterize the
strength of the mechanochemical feedback, we introduce a
dimensionless contractility parameter

α=
ξ

γ
c0∂cf (c0). [25]

In the following, we first perform a linear stability analysis
of homogeneous states to determine parameter regimes where
the surface is unstable. We then study the full nonlinear sur-
face dynamics using the framework introduced in the preceding
sections and detailed further in SI Appendix.

Self-Organized Shape Dynamics of Spherical Surfaces. We first con-
sider axisymmetric surfaces of spherical topology and analyze
the linear stability of the homogeneous steady state with c =
c0 and v = 0 on a sphere with radius R =R0. We expand
small perturbations of this state as δc =

∑∞
l=0 δclYl , δR =∑∞

l=0 δRlYl , and δv‖=
∑∞

l=0(δv
(1)
l Ψl + δv

(2)
l Φl). Here, Yl , Ψl ,

and Φl denote axisymmetric scalar and vector spherical harmon-
ics (34). Expanding the force balance Eqs. 1–4 and the dynamic
Eq. 13 for the concentration field to linear order (SI Appendix),
we find that for increasing contractility parameter α the mode
l = 1 has the largest growth rate and is the first mode that
becomes unstable at α=α∗s , where

α∗s =
ηb
γ

(
2D

R2
0

+ k

)
. [26]

This instability is independent of the bending rigidity κ.
The growing mode l = 1 characterizes a polar asymmetry.

Using a randomly perturbed concentration field as initial con-
dition in our numerical approach, we find that for α>α∗s the
instability leads to the spontaneous formation of a single patch
of the stress regulator and an asymmetric surface shape (Fig. 2B
and Movie S1). In the final steady state the advective influx of
stress regulator into the contractile region is balanced by a diffu-
sive outflux away from it. The resulting inhomogeneous tension
across the surface leads to an oblate shape with broken mirror
symmetry with respect to the z axis and thus spatially varying
curvature (Fig. 2B, Right).

Forα<α∗s the homogeneous concentration on the sphere rep-
resents a stable solution. This is revealed by the relaxation of a
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Fig. 2. Shape dynamics of spherical surfaces with concentration-dependent
active tension. (A) Schematic stability diagram of the system. The critical
contractility α∗s is independent of the bending rigidity κ. (B) Mechano-
chemically unstable surface with α>α∗s and κ= 0. (Left) After a small
concentration perturbation on a sphere (t = 0, not to scale), a deformed
steady-state shape emerges with a localized patch of stress regulator (Movie
S1). Red arrows denote the in-plane flow field v‖. (Right) Profiles of the
concentration c̃ = c/c0, in-plane flow ṽs = vsτ/R0 (vs = es · v, τ = ηb/γ), and
principle curvatures C̃s

s = R0Cs
s, C̃φ

φ = R0Cφ
φ of the steady-state surface. In

the steady state, the diffusive outflux away from the contractile patch is
balanced by an advective influx. The resulting tension across the surface is
inhomogeneous, which leads to a deformed steady-state shape. (C) Relax-
ation dynamics of a mechanochemically stable surface with α<α∗s and
κ= 0, starting with a spheroidal shape with eccentricity 0.75 (Movie S2).
Inhomogeneities in the initial mean curvature (t = 0) lead to transient inho-
mogeneities in the concentration field (t/τ = 0.07) due to a deformation-
induced local expansion and compression of the surface, before the stable
steady state of a sphere is reached (t→∞, not to scale). Surface flows in
B and C are shown in the reference frame where the pole velocities satisfy
v(s = 0) =−v(s = L) (SI Appendix). The parameters used in these simulations
are given in SI Appendix.

deformed sphere toward this stable steady state. Such a relax-
ation is depicted in Fig. 2C, where we use a spheroidal surface
with a homogeneous concentration as initial condition. During
the relaxation process, we observe the transient formation of
concentration maxima at the poles (Movie S2). These maxima
appear as a consequence of the large mean curvature H at those
locations, which leads to a locally increased surface compression
during deformations (Eq. 13).

Self-Organized Shape Dynamics of Tubular Surfaces. We now study
the self-organization of an active surface with a tubular geom-
etry. We analyze the linear stability of the homogeneous
steady state with c = c0 and v = 0 on a cylinder with radius
r0 and length L0 and consider periodic boundary conditions.
We expand small axisymmetric perturbations of this state
as δc =

∑∞
n=−∞ δc

(n) exp(iknz ), δr =
∑∞

n=−∞ δr
(n) exp(iknz ),

and δv‖= ēz
∑∞

n=−∞ δv
(n)
z exp(iknz ) with kn = 2πn/L0. From

the corresponding expansion of the force balance Eqs. 1–4 and
the dynamic Eq. 13 for the concentration field to linear order,
we derive the stability diagram as a function of the contrac-
tility parameter α and the aspect ratio L0/r0 (Fig. 3A and SI
Appendix). For κ= 0 the cylinder surface is unstable in the
blue-shaded region. For α<α∗c with

α∗c =
ηb
γ

(
D

r2
0

+ k

)
, [27]
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Fig. 3. Shape dynamics of tubular active fluid surfaces with concentration-
dependent active tension. (A) Representative stability diagram of the sys-
tem. Stable and unstable regions are separated by the blue curve for κ= 0
and the red dashed line for κ̃= 0.25, where κ̃=κ/(γr2

0 ). For κ= 0 the
dark blue-shaded region indicates parameter regimes where eigenvalues
of the Jacobian are complex. The critical contractility α∗c (Eq. 27) is described
in the main text. (B) Concentration c̃ = c/c0 and in-plane flow v‖ (red
arrows) during the spontaneous formation of a contractile ring (Movie
S3) for parameters indicated with a blue circle in the stability diagram
(τ = ηb/γ, t = 0 not to scale). This mechanism can constrict surfaces with
aspect ratios below the Rayleigh threshold of 2π. (C) Concentration and in-
plane flow over one oscillation period for parameters indicated with a blue
cross in the stability diagram (Movie S4). Oscillations result from the inter-
play between geometric stability of cylinder surfaces with L0/r0 < 2π and
the mechanochemical instability of the active fluid film. Surface flows in B
and C are shown in the reference frame where

∫ L
0 vsds = 0 (SI Appendix). (D)

Steady state of directed surface flows relative to a constricted shape (t = 0
not to scale). Shown are concentration (color code as in B), in-plane flow
ṽs = vsτ/r0 (vs = es · v), and principle curvatures C̃s

s = r0Cs
s, C̃φ

φ = r0Cφ
φ. The

surface flow is shown in the reference frame where the constriction does not
move (SI Appendix). In the reference frame where

∫ L
0 vsds = 0, this steady

state resembles peristaltic motion (Movie S5). The parameters used in these
simulations are given in SI Appendix.

the instability occurs when the aspect ratio L0/r0 increases
beyond a critical value that equals 2π and does not depend on
α. This instability corresponds to the Plateau–Rayleigh insta-
bility and is not driven by the self-organization of the stress
regulator. The case α= 0 and κ= 0 exactly represents the clas-
sical Plateau–Rayleigh scenario (35). For α>α∗c instabilities are
driven by the mechanochemical self-organization of the fluid sur-
face. In this regime the aspect ratio L0/r0 at which the cylinder
surface becomes unstable is smaller than 2π and decreases for
increasing contractility parameter α. The linear stability analy-
sis reveals furthermore a region where eigenvalues are complex
(dark blue-shaded area in Fig. 3A), which indicates oscillatory
behavior at the instability. These characteristics of the stability
diagram remain qualitatively unchanged when the bending rigid-
ity κ is finite. The instability line for κ= 0.25γr2

0 is shown as a
red dashed line in Fig. 3A. The red-shaded region indicates com-
plex eigenvalues. Note that the value of α∗c in general depends
on κ (SI Appendix).

We also study the surface dynamics beyond the linear regime,
using our numerical approach. For κ= 0, α>α∗c , and aspect
ratios L0/r0 inside the unstable region of the stability diagram
(blue circle in Fig. 3A), the cylinder surface constricts and gener-
ates a thin cylindrical neck region with decreasing radius (Fig. 3B
and Movie S3). The numerical analysis indicates that this radius
vanishes at finite time. The concentration of the stress regulator

increases along the tubular neck. For parameters that corre-
spond to complex eigenvalues in the linear stability diagram
(blue cross in Fig. 3A), the cylinder constricts and expands peri-
odically (Fig. 3C and Movie S4) with increasing amplitude until
the neck radius vanishes. For α<α∗c and L0/(2πr0)> 1, the
instability also leads to a tubular neck with vanishing radius, how-
ever, not driven by contractility but by surface tension γ due to
the Plateau–Rayleigh character of the instability in this param-
eter regime. In this case, the concentration of stress regulator
increases in the neck predominantly because of a local reduction
of surface area.

For κ> 0, an unstable cylinder surface constricts and reaches
at long times a finite neck radius for all values of the contrac-
tility parameter α. For α>α∗c a high concentration of stress
regulator additionally builds up in the neck region. The con-
centration pattern and surface flows that emerge at long times
spontaneously break the mirror symmetry with respect to the z
axis (Fig. 3D and Movie S5). As a consequence, average flows
directed along the z axis occur in a reference frame, where the
constriction does not move. This corresponds to a peristaltic con-
traction wave that propagates in a reference frame where the
average flow vanishes. Our numerical results reveal that such
propagating solutions emerge in all parameter regimes for which
the cylinder surface is linearly unstable and α>α∗c . For α<α∗c
no propagating solutions occur. To test whether the stabilization
of a finite neck radius is sufficient for directed flows to occur via
spontaneous symmetry breaking, we chose κ= 0 and consider
an external force fext =F0(r0/r − 1)ēr that also stabilizes small
neck radii. In this setting, we again find the formation of directed
flows relative to the constricted shape. This shows that the spon-
taneous symmetry breaking for α>α∗c is an intrinsic property of
the self-organized active fluid film and its tight coupling to the
surface geometry.

Discussion
We have introduced a simple but general model for the
mechanochemical self-organization of surface geometry. Active
stresses in the surface are regulated by a diffusible and advected
molecular species. Gradients of active stress induce surface flows
and shape changes, which in turn influence the distribution of
the stress regulator. As a consequence, shape changes, shape
oscillations, and spontaneous surface flows can be generated via
mechanochemical instabilities. In contrast to mechanochemical
instabilities that have been discussed in fixed geometries (14–16),
the phenomena described in the present paper give rise to shape
changes and depend themselves crucially on the shape changes
that occur.

To solve the dynamic equations for the shape, the flows,
and the concentration fields, we have developed a numerical
approach based on an integral representation of axisymmetric
surfaces. We use a time-dependent coordinate transformation,
which allows us to obtain the shape dynamics in an implicit sur-
face representation. The explicit coordinates of surface points
can be calculated independently.

Using our approach, we have identified a mechanochemical
shape instability of a sphere that leads to concentration and flow
patterns with a polar asymmetry and an accordingly asymmetric
oblate shape. For periodic cylinder surfaces, we find contractility-
induced instabilities beyond a critical value α∗c together with the
Plateau–Rayleigh instability for contractility parameters smaller
than α∗c . Near the point that separates these two regimes, we find
that the instability is oscillatory. This could result from a com-
petition between a weak contractile instability and the stability
of the cylinder with respect to the Plateau–Rayleigh criterion
in this parameter region. On tubular surfaces with stabilized
neck radii, we have described the spontaneous formation of
directed surface flows. In a reference frame of vanishing aver-
age surface flows, this corresponds to a propagating surface

Mietke et al. PNAS Latest Articles | 5 of 6

http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1810896115/video-3
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1810896115/video-3
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1810896115/video-4
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810896115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810896115/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1810896115/video-5
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810896115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810896115/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1810896115/video-3
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1810896115/video-4
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1810896115/video-5


constriction that resembles the dynamics of a peristaltic wave
(Movie S5).

Our framework provides a basis to explore a large variety
of systems that involve the mechanochemical self-organization
of deforming active surfaces. Here, we have focused on simple
cases, where the active material is embedded in an environ-
ment with a homogeneous pressure. The latter exerts a force
per area normal to the surface with position-independent mag-
nitude. In many real situations, the surrounding medium has
material properties that can give rise to more complex patterns
of external forces, including tangential shear forces acting on
the surface. Furthermore, it will be interesting to consider active
surface material properties with different constitutive relations,
such as viscoelastic systems and materials that are anisotropic
or chiral. Biological examples of such materials are given by
epithelial tissues with planar polarity (1) and by anisotropic

cytoskeletal systems (30). Furthermore, the minimal model of a
single stress regulator chosen here could be extended to more
complex chemical schemes that involve several species and inter-
actions between them. These extended models could represent,
for example, the actin dynamics present in the cell cortex and its
biochemical regulators (3) or the behavior of sets of morphogens
spreading in epithelial tissues (11). Finally, we note that many
biological processes, such as the migration of cells or invagina-
tion events in tissues (13, 27), lead to shapes that are not axisym-
metric. A generalization of our approach to nonaxisymmetric
surfaces therefore provides an important challenge.
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