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Synopsis: Modeling Biodiversity

According to the fossil record, about  million years ago the number of marine species began growing exponentially and then
leveled off for  million years before exploding again. To understand how and why these changes occurred, researchers have
formulated a variety of models built upon different assumptions. Some models support the idea that biodiversity increased after
stagnation, others that the increase is an artifact of how the fossils have been collected and sampled. In a paper in Physical
Review Letters, Jan Nagler at the ETH Zurich, Switzerland, and colleagues from the Max Planck Institute for Dynamics and Self-
Organization, Germany, present a model based on network dynamics that takes into account the role of strong fluctuations,
especially extinctions, in an exponentially growing ecosystem. The results agree well with paleontological data and offer insights
into the sequence of growth and stagnation.

The authors base their model on a species interdependency network that captures how a given species thrives or dies because
of other species. Species can become extinct either by abiotic causes (e.g., changes in environment) or biotic causes (e.g.,
extinction cascades in which a species disappears, taking with it all of its dependent species). With each time step of the
calculation, a species goes extinct or turns into new species, with other species dependent on it. Over time, the species percolate
up and down in a hierarchical ladder of dependency.

In this model, over time, a stable situation can develop where a few species at the top are dependent on a large number of
species at the bottom, increasing robustness against extinction cascades. But unstable situations can arise in which species at
the top are dependent on only a few species at the bottom—extinctions of which can wipe the whole ecosystem out. Because of
the way that diversity depends on relative extinction probabilities, the results provide a possible explanation for why marine
biodiversity stagnated while diversity on the continents did not. – David Voss
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why plateau / exponential ?
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ks in which the form
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rned by a ra

ndom process
often underg

o a

percola
tion transiti

on, whe
rein around

a critical
point, t
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n of a small n

umber
of
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fraction
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ly beco
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ed togethe
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ally
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nsitions

are con
tinuous

, so tha
t the pe

rcentag
e of the

network
linked t

ogether
tends to

zero

right ab
ove the

transiti
on point. W

hether
percola

tion transiti
ons cou

ld be disc
ontinuo

us has
been

an open questio
n. Here

, we show that inc
orporat

ing a limited
amount
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ce in the classic

Erdös-R
ényi ne

twork f
ormatio

n model
causes

its perc
olation
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on to become

discont
inuous.

A
large system

is said
to undergo

a phase
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n when one or

more of its p
rop-

erties ch
ange ab

ruptly a
fter a sl

ight cha
nge

in a con
trolling

variable
. Beside

s water
turning

into

ice or stea
m, othe

r proto
typical

phase transitio
ns

are the spontan
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nce of mag
netizati
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and sup
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ctivity i
n metal

s, the ep
idemic
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orks an
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haps th
e most
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stic of a

phase
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n is its

order, i
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ther the
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quantity
it affects
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continu
ously a

t the tra
nsition.
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ous (sm

ooth)
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der and
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ization
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uous

(abrupt
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°C.
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el (1), w

e start
with n

iso-

lated ve
rtices (p
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(Fig. 1A
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us, the
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much attentio
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7 and 2

get mer
ged. (B)

In mod-

els with
choice,
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-

dom edges {e1,e2}
are

picked
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ed to th
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the other i
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he prod

uct rule
(PR), th

e edge
selected
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„Explosive Percolation in Random Networks“
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ns in

models
of rando

m network
formatio

n. In th
e classi

c

Erdös-R
ényi (E

R) mod
el (1), w

e start
with n

iso-

lated ve
rtices (p

oints) a
nd add

edges (
connec

tions)

one by
one, ea

ch edge fo
rmed by pick

ing two ver
-

tices uniform
ly at random

and connect
ing them

(Fig. 1A
). At an

y given
moment, the

(conne
cted)

compon
ent of a

vertex v is the
set of v

ertices
that

can be reac
hed from v by traversi

ng edges.
Com-

ponents
merge u

nder ER
as if att

racted by gravita-

tion. Th
is is bec

ause ev
ery time

an edge
is added

, the

probabi
lity two

given c
ompone

nts will
be merg

ed is

proport
ional to

the number
of poss

ible edges b
e-

tween t
hemwhich,

in turn,
is equa

l to the
produc

t

of their
respect

ive size
s (num

ber of v
ertices)

.

One of
the mo

st studi
ed phenom

ena in
prob-

ability
theory

is the percola
tion transitio

n of ER

random
network

s, also k
nown a

s the em
ergence

of

a giant c
ompon

ent. W
hen rn edges

have been

added,
if r <

½, the
largest

compon
ent rem

ains

miniscu
le, its nu

mber o
f vertice

sC scaling
as logn

;

in contras
t, if r >

½, ther
e is a c

ompon
ent of s

ize

linear in
n. Spec

ifically,
C ≈ (4r − 2

)n for r
slightly

greater
than ½ and, th

us, the
fraction

of verti
ces

in the largest
compon

ent und
ergoes

a continu
ous

phase tr
ansition

at r =½
(Fig. 1C

). Such
continu

ity

has bee
n conside

red a basic
charact

eristic
of per-

colatio
n trans

itions,
occurri

ng in m
odels r

anging

from classic
percola

tion in the two-dim
ensiona

l

grid to r
andom

graphm
odels o

f social
network

s (2).

Here, w
e show

that pe
rcolatio

n trans
itions i

n

random
networ

ks can
be disc

ontinuo
us. We dem-

onstrat
e this result

for models
similar

to ER,

thus also establis
hing that al

tering
a networ

k-

formation proces
s slightly

can affect
it dra-

matically
, chang

ing the
order o

f its pe
rcolatio

n

transiti
on. Co

ncretely
, we co

nsider
models

that,

like ER, sta
rt with

n isolated
vertice

s and add

edges o
ne by

one. Th
e differ

ence, a
s illust

rated

in Fig. 1B
, is tha

t to add a singl
e edge

we now

first pic
k two random

edges {
e1,e2}

, rather
than

one, ea
ch edge pi

cked exactly
as in ER and inde-

penden
tly of the

other. O
f these,

with no knowl-

edge of
future e

dge-pai
rs, we a

re to se
lect one

and

insert it
in the g

raph an
d discard

the othe
r. Clear

ly,

if we always
resort t

o random
ness for sele

cting

among
the two

edges,
we reco

ver the
ER model.

Whether
nonrand

om selectio
n rules ca

n delay (or

accelera
te) perc

olation
in such

models
, which

have

become
known

as Achliop
tas process

es, has
re-

ceived
much attentio

n in recent y
ears (3–

6).
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Fig. 1. Network
evolu-

tion. (A)
Under th

e Erdös-

Rényi (E
R) mode

l, in eac
h

step two
vertices

are cho-

sen at rando
m and con-

nected b
y an edg

e (shown

as the
dashed

line). In

this exa
mple, t

wo com-

ponents
of size

7 and 2

get mer
ged. (B)

In mod-

els with
choice,

two ran
-

dom edges {e1,e2}
are

picked
in each step yet

only on
e is add

ed to th
e

network
based on some selectio

n rule, w
hereas

the other i
s discard

ed.

Under t
he prod

uct rule
(PR), th

e edge
selected

is the o
ne min

imizing
the

product
of the s

izes of t
he com

ponents
it merg

es. In th
is exam

ple, e1
(with

product
2 × 7 = 14) wou

ld be chos
en and e2 disc

arded (becaus
e 4 × 4 =

16). In
contrast

, the ru
le selec

ting the edg
e minim

izing the sum
of the c

om-

ponent
sizes ins

tead of
the prod

uct wou
ld selec

t e2 rath
er than

e1. (C)
Typical

evolutio
n of C/n

for ER, B
F (a bou

nded siz
e rule w

ith K =
1), and

PR, show
n for

n = 512,000
.
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Is there a real gap for competitive rules ?

> 200 papers since 2009

When there a real gap for competitive rules ?



main conclusion of rigorous proof:  

„any percolation process based on picking a fixed 
number of random vertices gives a continuous 

transition“  

„Explosive percolation’’ is continuous  

brea
kthr

ough

Riordan & Warnke, Science 333, 322 (2011)
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gap?

PR (explosive percolation) model:  
Achlioptas et al., Science 2009  



Scaling of largest gap

102 103 104 105 106 107 108

N

slope −0.045

slope −0.01
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Nagler, Levina & Timme, Nat. Phys. 2011  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I IIBDoes it always look like this? 
 (in thermodynamic limit)
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microscopic components
macroscopic component

 
 
Schröder, Rahbari, Nagler, Nat. Commun. 2013  

What is fractional percolation?

(cartoon taken from www)

 
 
Preferentially merge components of similar size  



Fragmentation



Random network version, ‘counter example’:  

„Pick 3 vertices at random, join the two 


vertices inside the most commensurate clusters“ 

What is fractional percolation?

 
 
Schröder, Rahbari, Nagler, Nat. Commun. 2013  

Nagler, Tiessen & Gutch, Phys. Rev. X 2012 (DS model)
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Fractional percolation & Barkhausen noise

 
 
Schröder, Rahbari, Nagler, Nat. Commun. 2013  

Non-finite stochastic discontinuous phase transitions



Ferromagnetism

fragmentation & 
domain wall motion



power law fluctuations

D(s) ⇠ 1/s

s=jump size of largest component

rigor
ous 

resu
lt
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2009
2012

2015

 
 
      Schröder, Rahbari, Nagler, Nat. Commun. 2013  

DS model: Nagler, Tiessen & Gutch, Phys. Rev. X 2012 
Riordan & Warnke, Phys. Rev. E 2012 

Fractional 
percolation



Fluctuations survive in the thermodyn. limit!  
 

DS

a)

mER

b) c) gBFW

critical peak
(macroscopic phase transition)

micro transition cascade

0.12

0.08

0.04

0.00
 t4  t5  t9 t7 t6  t8  tc

N =   2.104

N =   8.104

N = 32.104

Anomalous critical and supercritcial behavior:  
non-self-averaging

fluctuation function =  
relative variance, Rv, of largest cluster size as a function of time

Rv :=
⇥M2⇤ � ⇥M⇤2

⇥M⇤2
M=order parameter

Relative variance non-zero in thermodynamic limit

M=Size of largest cluster



PART III: droplets

Marcel ThielmannJakob de Maeyer, Marc Timme, Jürgen Vollmer, Marcel Thielmann, JN (unpublished)



Experiments

Beetroot-Carrot salad



LED + lens

Mirror

DSLR

Acryllic 

glass

Transparent 

paper

Aquarium
(3 mm distilled 

water, SDS)

Oil droplets

Water
n=1.33

Air
n=1.0

Oil
n=1.47

Experiment Jakob de Maeyer (MPI DS)

Experimental setup



1m x 1m, 30.000 droplets  

Experiment Jakob de Maeyer (MPI DS)



Experiment Jakob de Maeyer (MPI DS)

Merger of two large clusters



Experiment Jakob de Maeyer (MPI DS)



Experiment Jakob de Maeyer (MPI DS)



small droplets green (< 1cm)

large droplets blue (>=1cm)

preliminary result: two time scales for different cluster sizes(*)
(modelled by composite kernel model)

(*) expected for other systems:  
 aggregation under gravity, 
aggregation in planetary systems,  
polymerization in a thermal gradient  
 

 C. B. Mast et al., PNAS 110: 8030 (2013) 
 N. Brilliantov et al., PNAS 112: 9536 (2015) 
Cho, Mazza, Kahng, Nagler (under review)  



Cluster size distribution : bimodal

Experiment Jakob de Maeyer (MPI DS)
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2012
2015

2016

Genuine non-self-averaging and ultra-slow convergence in gelation,  
Cho, Mazza, Kahng, Nagler (under review)  



dnk

dt
=

X

i+j=k

Kijninj � 2nk

X

j

Kkjnj

! =

(
↵ if i 6= G1,

� otherwise

Kij = (ij)!

Aggregation with composite kernel

Smoluchowsky equation

Genuine non-self-averaging and ultra-slow convergence in gelation,  
Cho, Mazza, Kahng, Nagler (accepted, Phys. Rev. E)  

Two time scales -> rich phenomenology

G1=order parameter=size of largest cluster  



Early molecular evolution:  
DNA replication?

Eigen, Selforganization of matter and the evolution of  
biological macromolecules. Naturwissenschaften 58:465-523 (1971) 
Mast et al., PNAS 110: 8030 (2013) 
Worst, Zimmer, Wollrab, Kruse, Ott (under review)

PART IV



DNA replication and ligation

 
Zimmer, Kruse & Nagler (in prep.)

Concentration of polymers of length n as function of time

ligation only ligation and replication

First results from a model with autocatalysis (replication) and 
spontaneous concatenation (ligation) 

An +Am ��������!
↵[An+m]+�

An+m



fluctuation function =  
relative variance, Rv, of order parameter as a function of time  

Non-self-averaging behaviors

ligation only ligation and replication

(Rv>0)



Fluctuations survive in the thermodyn. limit!  
 

DS

a)

mER

b) c) gBFW

critical peak
(macroscopic phase transition)

micro transition cascade

0.12

0.08

0.04

0.00
 t4  t5  t9 t7 t6  t8  tc

N =   2.104

N =   8.104

N = 32.104

Anomalous critical and supercritcial behavior 
in other models

D’Souza & Nagler, Novel critical and supercritical phenomena in Explosive Percolation, Nature Physics 11:3378 (2015) 

fluctuation function =  
relative variance, Rv, of order parameter as a function of time  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Phase transition types

Review: D’Souza & Nagler,  
 Novel critical and supercritical phenomena  

in Explosive Percolation,  
Nature Physics 11:3378 (2015) 
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