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Abstract

Photoionization of alkali metal clusters is investigated theoretically for dif-
ferent photon energy regimes. At low energies the photo cross section is char-
acterized by the well known plasmon peak resulting from collective electron
dynamics. For high energies the ionization cross section exhibits an oscilla-
tory behavior which can be explained by single particle effects. In this work
we use the Random Phase Approximation (RPA) to calculate the photo cross
section on an equal footing for both, the low and the high energy regime.
Thereby, we can show that the cross sections for photoionization calculated
in the collective (RPA) and in the single particle picture indeed merge for high
photon energies. Moreover, we demonstrate that the oscillatory behavior can
already be identified at low photon energies where the cross section is not yet
exponentially small. Hence, it should be possible to identify the oscillations
experimentally.
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I. INTRODUCTION

Since the beginning of cluster physics in the late seventies the irradiation with laser light
has revealed fundamental cluster properties [1,2]. One of the important characteristics is
the collective response of the valence electron cloud to laser radiation. The most prominent
consequence of this collective behavior in the absorption spectrum is the occurrence of the
giant dipole resonance that accounts for almost the entire oscillator strength. This resonance,
which can be excited in most cases with visible laser light corresponding to an energy of a
few electron volts, was investigated thoroughly in experimental regard [2,3]. Theoretically,
it can be described quite well within the Random Phase Approximation (RPA) or the Time
Dependent Local Density Approximation (TDLDA), see for example [1,4,5]. From this work
one can conclude that the observed behavior of the clusters is mostly due to the dynamics
of the valence electrons with the collective nature of the response to linear perturbations of
the ground state playing a key role.

While the vast majority of publications deals with the energy regime close to the giant
dipole resonance, little attention has been devoted to higher photon energies, e.g. to the
photoionization well beyond the ionization potential [6,7]. Our analysis of this regime under
the assumption of the validity of the effective single particle picture has revealed an expected
exponential decrease of the cross section as a function of photon energy superimposed with
an unexpected oscillatory structure [6]. We argued that at very high photon energies the
single particle picture should give reasonable results since the valence electron cloud is too
inert to follow the rapid oscillations of the electromagnetic field. Therefore, the electron
density within the cluster would not be altered significantly and the effective perturbing
potential should equal the external potential represented by the laser field.

While this argument certainly applies to the limit of high photon energies one cannot
say apriori for which finite energies it is already valid. However, for the oscillations to be
an effect observable in the experiment, it is crucial that they can be identified already at
photon energies that are lower than those for which the first innershell ionization processes
occur since the latter dominate the ionization cross section.

To our knowledge no measurements of the photoionization cross section of alkali metal
clusters for an energy interval large enough to reveal one cycle of the oscillatory structure
have been performed. For alkali metal clusters with up to 100 constituents such a mea-
surement requires to cover an interval of approximately 5 eV in the regime of synchrotron
radiation [6].

However, analogous experiments have been performed for the photoionization cross sec-
tions of Cgg [8] and Cyg [9]. There, an oscillatory structure has been found which is consistent
with our calculation in the single particle picture [7], see also [10]. Hence, in this case the
single particle approach seems to be reasonable at photon energies of the order of 102 eV,
which is approximately twice the energy of the plasmon resonance in Cg.

Another possibility to observe the oscillations, although very difficult to realize exper-
imentally, is the measurement of the differential electron impact ionization of clusters as
shown by Keller et al. [12].

The goal of this work, calculating the photo cross section within an RPA—approach, is
twofold: Firstly, to confirm the oscillatory behavior of the cross section which was discovered
using an effective single particle approach only. Secondly, to investigate, how the low energy



(collective) signature of the cross section merges into the single-particle dominated high
energy behavior. As a result, we will demonstrate that it should be possible to identify the
oscillations in the experiment.

The paper is organized as follows. The first part of section II contains a short summary
of the results of the semiclassical analysis of the cross section for photoionization in the
single particle picture from [6]. In the second part of section II the methods which account
for the influence of collective effects (RPA, TDLDA) are briefly reviewed and the approach
used in this work is explained. In section III the results of the single particle calculation
are compared to the results of RPA calculations for the same test system, Nag,. The paper
ends with a conclusion in section IV.

II. THEORY

The description of physical properties of clusters is due to the high number of degrees
of freedom a major problem. A drastic approximation is to neglect the ionic structure of
the cluster and to assume that the valence electrons of the atoms move freely in the ho-
mogeneously distributed background charge density of the ionic cores. This approximation,
known as jellium model, has proven to work well in the case of alkali metal clusters [1,2].
The ionic charge density is distributed over the volume of the cluster and its integral gives
the total charge of the ions. For the ground state of the cluster the valence electron density
can be calculated using Density Functional Theory (DFT) [13]. A set of trial wavefunctions
is obtained, which are the solutions of a single particle Schrodinger equation with an effec-
tive single particle potential that contains the interaction among the valence electrons. This
approach was introduced successfully to alkali metal clusters by Ekardt [14]. To some ap-
proximation the trial wavefunctions may be interpreted as the single particle wavefunctions
[20].

The effective potential of Nags from a calculation by Ekardt [14] is shown in fig. 1 along
with the Woods—Saxon potential
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~ 14exp(a(r — L))’

Vivs (1)
that will be used for the semiclassical analysis of the single particle cross section. The depth
of the Woods—Saxon potential is given by V; and a determines the steepness of the cluster
edge, which defines the cluster radius L. Vj, L and a are chosen in such a way that they
approximate the effective single particle potential from the DFT calculation.

The essential features of the potential, i.e. a flat interior and a pronounced rise at the
cluster edge, are similar in both potentials and they are found to mainly influence the overall
behavior of the cross section for photoionization as a function of photon energy. From these
potentials the cross section for photoionization can be calculated, either in the single particle
picture, or including the collective behavior of the valence electrons. For both cases we can
use the same initial and final state wavefunctions since within an RPA approach the collective
response of the electron cloud to the laser field can be described with an effective dipole
operator V,¢; whose form we will derive below.

For a spherical potential as in Eq. (1) the total photo ionization cross section is the sum
of the partial ionization cross section for transitions I’ — [ between eigenstates 1) of the single



particle hamiltonian with angular momentum [,1’. Assuming unpolarized light, including
summation over all final magnetic states m; and averaging over the initial magnetic states
m; [15], such a partial cross section reads (atomic units are used throughout the paper)

l

Optenr (W) = W(QW)%FﬁWEl(?‘)\D\%'l' ()l (2)
where D = D(r) is the radial dipole operator, - is max(/’,l), n’ is the principal quantum
number of the initial state and F is the energy of the final state in the continuum.

A. Independent particle approach and semiclassical results

For the independent particle picture the dipole operator represents the usual perturbation
Vewt () by the laser field only with the simple form D(r) = V4 (r) = r in the length gauge.
As long as gy, ¥ are exact eigenfunctions of H the dipole operator may be expressed in
a variety of different functional forms which can be generated by the commutator [H,7]. In
[16] we showed that for the interpretation and an analytical approximation of the photo cross
section the most valuable form for the dipole operator is given by the so called acceleration
gauge D= 61// w?, which expresses the dipole interaction as a force supplying the necessary
recoil for the electron momentum generated by the ionization process. With this form of
the dipole operator Eq. (2) reads
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where V' is the effective single particle potential.

A first insight into the analytic structure of the cross section can be gained by considering
a box potential as effective single particle cluster potential. The derivative of the potential
yields a —function in the radial coordinate at r = L, where L is the radius of the cluster
and the square of the matrix element in Eq. (3) collapses to a term proportional to |1 ;(L)[?.
For high photon energies the final wavefunction is well approximated by a free particle
wavefunction proportional to a cosine and the cross section oscillates as a function of the
photon energy. Hence, using the acceleration gauge for the dipole operator, the oscillation
of the cross section is almost trivially understood for this case.

The single particle potential originating from DFT calculations has a soft edge which
is modeled in the Woods—Saxon potential of Eq. (1) by the parameter a. Using WKB-
wavefunctions for the bound and continuum electron states and evaluating the integral of
the matrix element Eq. (3) by the method of stationary phase leads to a simple expression
for the ionization cross section. It depends merely on the effective single particle potential
and on the wavenumber £ of the continuum wave function inside this potential. Because the
ionization energy of the electrons can be approximated by —V;/2, the wavenumber in the

potential range turns out to be
k=1/2w+ V. (4)

The final analytical approximation for the cross section reads



o(w) = D%emm(l + Bcos(2kL — 7)), (5)

where D, R,  and v depend on the shape of the potential and a, L give the steepness of the
potential edge and the radius of the Woods—Saxon potential. The details are given in [6].
The interesting aspect of Eq. (5) is the oscillation of the cross section as function of the
wavenumber k of the ionized electron with frequency 2L and the exponential decay of the
cross section with —2amk. However, this result is only valid for the high energy regime as
discussed above because Eq. (5) has been derived within the single particle picture.

B. Inclusion of collective effects by Random Phase Approximation

If collective effects are important, i.e. for low excitation energies, the single particle pic-
ture is not valid and an alternative approach has to be considered. Generally, there is a
number of ways to include the collective effects in the calculation. Firstly, there is the Ran-
dom Phase Approximation (RPA) in a formulation where a number of eigenfrequencies of an
interacting system of single particle states is determined by a matrix diagonalization within
a linear approximation [17,18]. The absorption spectrum is then calculated by means of the
matrix element in Eq. (2) for the wavefunction of the interacting many particle system in
the ground state and the respective excited state which corresponds to an eigenfrequency
of the collective electronic motion. The number of single particle levels included in the
calculation determines the number of eigenfrequencies. However, for ionization one is in-
terested in a continuous cross section which requires a continuous spectrum as a function
of energy instead of peaks at isolated resonance frequencies. This can be obtained with an
RPA formulation by means of the polarization propagator of the system.

The polarization propagator II(7,¢,7,¢') gives the linear response of a system to an
external perturbation. The density variation of the ground state under the perturbation
Vezt(7, 1) can be expressed as [19]

i
5p(F, 1) = / dt / ATt 7 ) Vit (7, 1) (6)
The propagator is equivalent to the retarded density—density correlation function [19]
M7, #, 7, ) = —i6(t — ') (| [ p(F)e M, e p(*)e ] [¢hn), (7)

with the correlated ground state |1)) of the valence electrons in single particle representation,
the full Hamiltonian H and with the density operator

pR) = 387~ 7). ®)

where the index ¢ runs over the number of particles of the system. The linear polarization
of the system in z-direction is the integrated density variation weighted by z,

a(t) = — / A7 p(F, 1)z. 9)

The Fourier transform of «(t) is related to the photo cross section by [5]
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o(w) = drwarln(a(w)). (10)

The polarization propagator II can be calculated within the RPA resulting in an integral
equation for IT [19]. The rather involved derivation, however, yields the same expression for
IT as the Time Dependent Local Density Approximation (TDLDA) [20], which is pursued
here. The polarization propagator from Eq. (7) without interaction among the valence
electrons can be expressed by means of the single particle Green’s function G(7,7, E) in
energy representation,

Mo (7, 7, w) Z[qﬁ (Mi(F)G(7, 75 Ei + w) + 6 (7 (MG (7, 7, Ei — w)], (11)

where the sum runs over all occupied single particle states with eigenfunctions ¢; and
eigenenergies E;. An imaginary part € is added to the energy w to give a width to the
resonances in the spectrum.

In order to determine the polarization propagator II from Il the linear response of the
density p of the system to a perturbation is constructed explicitly. The external perturbation
V.t consists in the case of laserlight, linearly polarized along the Z axis, of the potential
Vewt(7, 1) = zexp(—iwt). For noninteracting particles the perturbation of the ground state
density can be expressed in the energy representation as [5]

5p(,w) = / A7 o (7, 7, ) Veat (7, ) = HoViar, (12)
with
Vel o) = [ dte“"Voua(7 1) (13)

In the case of linearly polarized light we simply have V.. (7,w) = z. Taking into account
the interaction of the electrons leads to an additional perturbation which depends itself on
the density variation dp. This perturbation induces a potential approximated by

a7 w) = [ dFf L Vael p(7)] 7w
Vsl = [ ar (L4 Q)
= Vp, (14)

where the first part is due to the Coulomb interaction and the second part is determined by
the exchange—correlation energy functional V. in the local density approximation, for details
see [21]. The density variation including the interaction among the electrons is obtained by
adding Vi,q to Veg in Eq. (12). The resulting integral equation for the density variation
reads in symbolic notation

dp = HoVez + LoV p. (15)

To solve Eq. (15) the density variation §p* must be found which is a fixed point of Eq. (15).
This can be achieved, e.g., by calculating dp selfconsistently [20]. Alternatively, the equation
can be explicitly solved for dp,

5p = (]. — HOV)AHOVM = H‘/:?:L‘t' (16)



In this formulation Jp includes the interaction among the electrons that occurs when the
ground state density is perturbed and is equivalent to dp from RPA calculations. Using Eq.
(16) in Eq. (9) the photoabsorption cross section Eq. (10) can be calculated for each desired
energy in a discrete coordinate space representation once the matrix (1 4+ II;V') has been
inverted numerically [22]. For a comparison of the different schemes mentioned above see
[23].

To calculate the photoionization cross section from the collective response of the valence
electron cloud we have to find the effective perturbation V.;f(r) representing the dipole
operator in Eq. (2) for this case. From the case without collective interaction we know that
Vewt is linked to the density variation through the polarization propagator Il (see Eq. (12)).
For Eq. (2) to hold under collective interaction we must determine the effective perturbation
from the very same form of the density variation as in Eq. (12)), i.e. we demand

(szﬂo‘/;ff, (17)
Comparison with Eq. (16) shows that
Verp = Vewr + Vp = (14 VII)Vege. (18)

The formulation in terms of an effective potential allows one to compare the cross sections
for photoionization in the single particle and the collective description simply and directly.
The difference between the two approaches lies in the difference between the dipole operators
which is equal to V4 = Vp from Eq. (14). Since Vj,4 is proportional to the density variation
0p one sees immediately that the single particle description does not differ much from the
RPA result if p is small. For high frequencies of the perturbing field the electron cloud can
not follow the rapid oscillations and dp is bound to be small, thus leading to the equivalence
of the single particle and the collective picture for high photon energies.

ITII. COLLECTIVE VERSUS SINGLE PARTICLE CROSS SECTION

Having provided the tools for the calculation of the collective and the single particle photo
cross section we are now able to compare both results to assess the energy range in which
the single particle approach is a valid approximation. The explicit calculations have been
developed along the lines of the numerical implementation by Bertsch [22] but include a more
accurate numerical calculation of the wavefunctions. High precision wavefunctions for the
single particle electronic states are required in a numerical calculation of the absorption cross
section for high photon energies, as the cross section depends crucially on the wavefunctions
at large radii.

check In Fig. (2) we present the total photoabsorption cross section for Nas, based on
the DF'T potential from Fig. 1. The resonances in the spectrum have been broadened by an
imaginary energy of ¢ = 0.04 eV inserted in Eq. (11). The absorption cross sections from
the single particle calculation (solid line) and from the RPA calculation (dashed line) differ
significantly for photon energies up to approximately 10 eV. A pronounced plasmon peak
develops in the RPA calculation, whereas in the single particle calculation single particle
excitations appear. For energies higher than about 15 eV the cross sections clearly merge.



The dipole sum rule, which serves as a numerical check, is fulfilled in this calculation to
better than one percent.

Proceeding further to the ionization cross sections we begin with the ionization of a
specific bound electronic level n'l’. The cross section for a transition from the given bound
state to an ionized state of a certain energy has to be calculated using the dipole operator
D, see Eq. (2). As discussed in the previous section, in the single particle calculation D = r
containing only the external perturbation while for interacting electrons within the RPA we
have D = Vs from Eq. (18) which represents the collective response of the electron cloud
to the oscillating electromagnetic field. The result is shown in Fig. (3) for the transition
from the 1s level with energy E; to p-states with energy F, = w + FE;. For higher photon
energies the cross sections merge although they become not entirely identical. However, the
main characteristics of the cross section that were predicted analytically are visible in both,
the single particle and the RPA calculations. A pronounced oscillation with a frequency
equal to the diameter of the cluster and an overall exponential decay of the cross section
can be identified. This behavior of the cross sections can be clearly demonstrated if the
cross section, scaled with respect to the exponential decay extracted from the semiclassical
analysis as summarized in section II.A, is plotted as a function of the wavenumber of the
ionized electron, see Fig. (3b).

Finally, we present the total photoionization cross section in Fig. (4). Again, the single
particle and RPA cross sections merge although they become not identical with increasing
photon energy. However, the oscillations are even better in phase than in the partial cross
sections of Fig. (3). The common oscillatory structure is clearly visible and the correspond-
ing wavelength agrees with the value analytically calculated in section II.A and shown in
Fig. (4b) for comparison.

Most importantly for a possible experimental extraction of the cluster radius from the
photoionization cross section, we can read off from Fig. (4) that the cross section from an
energy starting as low as about 10 eV can be used to determine the oscillation frequency,
despite the presence of collective electronic behavior (dashed line).

Finally we note, that according to our numerically obtained cross sections details of the
potential affect the absolute value, the absolute positions of the extrema and the decrease
of the cross section, but not the oscillation frequency. Therefore, we are led to the conclu-
sion that the oscillations will be observable in the experiment and that they provide direct
information about the cluster radius in agreement with theoretical predictions. This should
be the case, even if the theoretical ionization cross section, dependent on the form of the
single particle potential, does not very well agree with the experimental cross section.

IV. CONCLUSIONS

We have shown that the cross section for photoionization of alkali metal clusters can be
adequately accounted for by calculations in the single particle picture neglecting collective
effects if the photon energy is higher than a certain critical energy. For the cluster Nag, this
energy turns out to be of the order of 15 eV. Beyond this photon energy the cross sections
calculated in the single particle approximation and with RPA merge and they display a
pronounced oscillation as well as an exponential decrease as a function of the wave number
of the ionized electron. The decrease and the oscillation can be derived by means of a



semiclassical analysis that relates the cluster diameter and the steepness of the potential
edge to the oscillation frequency and to the exponential decrease, respectively. The RPA
calculation preformed here show that the oscillatory structure in the ionization cross section
appears already close to the ionization threshold where the ionization yield is still relatively
large and an experimental verification should be possible in the future.
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FIGURES

FIG. 1. Effective cluster potentials for Nags from a DFT calculation by Ekardt [14] (solid line)
and from Eq. (1) with parameters Vy = 0.226, L = 14.478 and a = 0.9 (dotted line). In addition a
box potential with equivalent range L and depth Vj is shown.

FIG. 2. Total absorption cross section as a function of the photon energy for the DFT potential
from Fig. 1. The single particle result is displayed by a solid line and the RPA result by a dashed
line. The calculation was carried out with an imaginary part € = 0.04 eV of the energy in Eq. (11).

FIG. 3. The differential cross section for photoionization from the 1s—level of the DFT potential
in Fig. 1 in the single particle approximation (solid line) and within RPA (dashed line). The
imaginary part of the energy is € = 0.0004 eV. Part (a) shows the dependence of the photon energy
w, in part (b) the cross section is plotted versus the wave number k = /2w + V; of the ionized
electron and o(k) has been scaled with the factor k7 exp(2ank)/(1+a%k?) to compensate the global
decrease. The arrow gives the oscillation frequency or wavelength in k—space A = 2m/2L.

FIG. 4. Same as in Fig. (3) but for the total photoionization cross section from the bound levels
of the DFT potential in Fig. 1.

10



REFERENCES

[1] M. Brack, Rev. Mod. Phys. 65 677 (1993)
[2] W. A. deHeer, Rev. Mod. Phys. 65 611 (1993)
[3] C. Bréchignac and J.P. Connerade, J. Phys. B 27 3795 (1994)
[4] C. Guet, W. R. Johnson, Phys. Rev. B 45 11283 (1992)
[6] W. Ekardt, Phys. Rev. B 65 6360 (1985)
[6] O. Frank, J. M. Rost, Z. Phys. D 38 59 (1996)
[7] O. Frank, J. M. Rost, Chem. Phys. Lett. 271 367 (1997)
[8] P. J. Benning et al., Phys. Rev. B 44 1962 (1991)
[9] T. Liebsch, R. Hentges, J. Viefhaus, U. Becker, R. Schlog, Chem. Phys. Lett. 279 197
(1997)
[10] Y. B. Xu, M. Q. Tan, U. Becker, Phys. Rev. Lett. 76 3538 (1996)
[11] M. Koskinen, M. Manninen, Phys. Rev. B 54 14796 (1996)
[12] S. Keller, E. Engel, H. Ast, R. M. Dreizler, J. Phys. B 30 L703 (1997)
[13] R. O. Jones, in Clusters of Atoms and Molecules, ed. H. Haberland (Springer—Verlag,
Berlin Heidelberg, 1994)
[14] W. Ekardt, Phys. Rev. B 29 1558 (1984)
[15] H. Friedrich, Theoretische Atomphysik (Springer-Verlag, Berlin Heidelberg New York,
1990)
[16] O. Frank, J. M. Rost, Comm. At. Mol. Phys. 34 1 (1998)
[17] D. J. Rowe, Rev. Mod. Phys. 40 153 (1968)
[18] C. Yannouleas, R. A. Broglia, Phys. Rev. A 44 5793 (1991)
[19] E. K. U. Gross, E. Runge, Vielteilchentheorie (Teubner Studienbuecher Physik, 1986)
[20] A. Zangwill, P. Soven, Phys. Rev. A 21 1561 (1980)
[21] O. Gunnarsson, B. I. Lundqvist, Phys. Rev. B 13 4274 (1976)
[22] G. Bertsch, Comp. Phys. Comm. 60 247 (1990)
[23] M. Madjet, C. Guet, W. R. Johnson, Phys. Rev. A 51 1327 (1995)

11



figure 1

0.00 - ==

-0.10 -

V (a.u.)

-0.20 r

~0.30 ‘ ‘ ‘ ‘ ‘
0.0 10.0 20.0 30.0

figure 2
10°

0.0 5.0 10.0 15.0

12



figure 3b

2

10

o, (k) (arbitrary units)
=

1.2
k (a.u.)

13

1.7




40.0

® (eV)

20.0

ﬁglzlre 4a

0.0

107
figure 4b

—_——

N
\

10" |

—

(suun Areiigie) ()50

10° ©

0.5

10"

14



