
UNCORRECTED P
ROOF

PHYSE821

Physica E 000 (2000) 000–000
www.elsevier.nl/locate/physe

Critical phenomena in atomic physics

Jan M. Rost ∗

Max Planck Institute for the Physics of Complex Systems, N�othnitzer Str. 38, Dresden 01187, Germany

Accepted 18 August 2000

Abstract

It is shown that the threshold energy � = 0 for complete break-up of N charged particles represents a �xed point of the
dynamical system. Renormalization theory akin to thermodynamical phase transitions is used to determine the exponent �
of the power law for the fragmentation cross section �(�)˙ �� near the �xed point. In the generic case � is the ratio of
two rate constants expressed in terms of Liapunov exponents which emerge from the stability analysis of the critical point.
Using the derived low and the well-known high-energy behavior, a universal shape function for direct ionization by charged
particles is given. ? 2000 Elsevier Science B.V. All rights reserved.

PACS: 5.70Jk; 5.45; 3:80+r; 34.10+x
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1. Introduction

The threshold cross section for the fragmentation
of N charged particles is related to a critical point of
the N -body Hamiltonian. Scaling and renormalization
techniques are used to derive the (singular) energy
dependence of the threshold cross section constitut-
ing the threshold law �(�→ 0)˙ ��. Here, �= (E −
Ec)=(Ec + E0) measures the distance from the thresh-
old energy Ec in an arbitrary energy scale E0 and the
exponent � will turn out to be the ratio of two rates
determined by the local Liapunov exponents of the
critical (�xed) point. We will illustrate the abstract
derivation by the example of electron impact ioniza-
tion of a hydrogen-like atom or ion for which already
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Wannier [1] calculated the threshold behavior in 1953.
Finally, we will demonstrate that threshold behavior is
useful even for energies much higher than Ec through
the introduction of a universal shape function for the
ionization cross section which only depends on the
threshold exponent �.

2. The multi-fragmentation threshold as a critical
point

Let us de�ne a dynamical system by the Hamilto-
nian H = K + V , describing the interaction V of N
particles with kinetic energy K , expressed in Jacobi
coordinates as

K =
N−1∑
i

P2
i

2mi
; (1)
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where mi is the reduced mass along the Jacobi co-
ordinates Ri with conjugated momenta Pi. We will
work in mass-scaled-hyperspherical coordinates from
now on. In these coordinates only one length is spec-
i�ed, the radius of the hypersphere of all particles.
The hyperradius R is de�ned by the Euclidean dis-
tance R2 =

∑
i R
2
i of all mass weighted-Jacobi vectors

Ri =
√
mi=m0Ri, where m0 is an arbitrary mass scale

which we set to unity since we work in atomic units
unless stated otherwise. All other coordinates are an-
gles, abbreviated as ! = (�1; : : : ; �N−2; �1; : : : ; �2N−2),
where �i is the geometrical angle describing the rel-
ative position of the Rj in space, while the so-called
hyperangles �x the lengths Ri = |Ri| relative to each
other, e.g. �1 = arctan R1=R2 [2].
The potential is a function of all coordinates V =

V (R;!) of which we only require that

V (R→ ∞;!0)→ 0 (2)

for ! = !0 �xed. This limit represents the fully frag-
mented N -body system where all particles are force
free and in�nitely far separated from each other. To
simplify the derivation of the threshold law we will
only consider full fragmentation speci�ed by Eq. (2).
The result can be easily generalized to partial frag-
mentation into less than N fragments at the respective
threshold energy. Naturally, as de�ned by Eq. (2), the
threshold energy for full fragmentation is Ec = 0 and
the dimensionless energy takes the form �= E=E0.
The idea for the theoretical description of thresh-

old fragmentation as a critical phenomenon is based
on the following observation: If the N -particle sys-
tem has completely fragmented, its potential energy
approaches zero according to Eq. (2). Close to thresh-
old E ≈ 0 this implies that the kinetic energy will be
small too, since we have 0 ≈ E = K + V ≈ K . The
almost vanishing kinetic energy after threshold frag-
mentation has two important consequences which lead
directly to the description of threshold fragmentation
as a critical phenomenon.

(i) With K(E → 0)→ 0 threshold fragmentation
will proceed with the minimum of kinetic energy
required to fragment the system. The signature of
(complete) fragmentation is that the hyperradius
grows, R→ ∞ and this requires a �nite velocity
Ṙ 6= 0. On the other hand, all other (angular) ve-
locities may vanish !̇i = 0 and the corresponding

degrees of freedom do not have kinetic energy.
Preserving this scenario over a �nite interval
of time, requires a �xed point condition for all
angles with the intuitive picture of the N -body
system being frozen in a certain geometrical
shape while its size is continuously growing with
increasing R. Note that the geometrical shape
refers to the 3N − 3 dimensional hyperspace and
includes the geometrical positions of the N par-
ticles in the three-dimensional physical space as
well as the ratio of the mutual distances between
the particles which remains the same.

(ii) The almost vanishing kinetic energy near thresh-
old implies also that the fragments move asymp-
totically (for R→ ∞) in�nitely slowly.

Property (ii) suggests that it might be possible to
formulate the dynamical process of threshold fragmen-
tation (which requires also t → ∞) by renormaliza-
tion of the time evolution of the phase space variables
about a �xed point. The phase space variables of the
Hamiltonian then play the same role as the coupling
constants in the theory of traditional phase transitions,
see e.g. Ref. [3]. First, we must �nd the relevant �xed
point. Using the observation (i) we have already a
natural �xed point condition for all angles. From the
same argument, we see, however, that it is impossible
to have a �xed point for the radial degree of freedom.
To overcome this problem we introduce the hyperra-
dius r, scaled by the excess energy �,

r = R�: (3)

For any �nite R the scaled hyperradius will approach
r∗ = 0 in the threshold limit �→ 0.
The scaling Eq. (3) is not only necessary to ob-

tain a radial �xed point condition. It also enables us
to formulate the threshold fragmentation cross section
in terms of the stability properties of the �xed point.
They are determined by the behavior of the system
under small perturbations �y= y− y∗ about the �xed
point, where y denotes the vector of all phase space
variables, i.e., momenta and coordinates. Choosing ap-
propriate values for �r we can show that the stability
properties describe the fragmentation dynamics in the
limit �→ 0.
As already mentioned implicitly in (i), a fully

fragmented state is enforced by R→ ∞ and all an-
gles !i = !∗

i being �xed. In scaled coordinates an
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arbitrarily small but �nite deviation �r = � from the
�xed point is su�cient to have �R= �r=�→ ∞ for
�→ 0.
For a fragmentation process to be possible, at least

some of the constituents must be bound before the
fragmentation. To break these bonds energy must be
transferred to the bound subsystem. This requires an
interaction, i.e., a nonvanishing potential V 6= 0 and
in turn a �nite hyperradius R0. However, in scaled
coordinates we have �r− = R0� which tends to zero
for �→ 0. Hence, the necessity of energy exchange for
a fragmentation process to happen forces the system
to the �xed point r∗ = 0 for �→ 0. For fragmentation
induced by particle impact, the initial hyperradius R0
must be chosen so large that the observables of the
scattering process do not change with a small change
of R0. In practice, this means to calculate the cross
section as a function of R0 and to take the limit R0 →
∞ afterwards.
To summarize, in the threshold limit the time

evolution of a small deviation �r from the �xed
point is su�cient to describe the dynamical evolu-
tion of the system with initial and �nal deviations
speci�ed as

�r− = R0�; �r+ = �; (4)

respectively, where � is an arbitrary constant. Work-
ing in energy-scaled coordinates and using a change of
the total energy � to describe the dynamical evolution
of the system at a �xed energy as implied by Eq. (4)
requires a careful separation of energy-dependent and
energy-independent variables. Otherwise one leaves
the energy shell � for small deviations �y from the
�xed point. In order to make sure that all variables
except r are in
uenced by the change in � we must
construct a Hamiltonian H such that �r is orthogo-
nal to all other deviations �y. The Hamiltonian which
ful�lls the above requirements reads

h= (E − K)=V − 1 = 0 (5)

which is essentially −(H − E)=V . We de�ne new
momenta as

p= P(−V )−1=2; (6)

pi = P!i(−Vr2)−1=2; (7)

where the reason for including an additional factor r2

in pi will become clear later. With these momenta the

critical Hamiltonian reads

H= p2=2 + D(!) + E0�=V (r=�;!)− 1 ≡ 0; (8)

where

D =
∑
i; j
lij(!)pipj (9)

is the kinetic energy from the angular degrees of free-
dom and only the term E=V = E0�=V carries an ex-
plicit dependence on �. The usual centrifugal radial
dependence 1=r2 has been absorbed in the pi de�ned
by Eq. (7) to avoid singularities when the �xed point
r∗ = 0 is approached.

3. Derivation of the threshold law

The equations of motion for the new phase space
variables are most easily derived by determining �rst
the corresponding equations for the old (canonical)
phase space variables from the Hamiltonian h of Eq.
(5) in the canonical way. In a second step, one takes
the time derivative of the new momenta in terms of the
old ones according to Eq. (2). Finally, we need a set
of equations which behave regularly at the �xed point
r∗ = 0. This can be achieved by changing the time
variable from the old time t de�ned by the Hamiltonian
h of Eq. (5) to a new time de�ned by

dt = d�(−Vr2)1=2: (10)

Denoting dx=d� by ẋ, the equations of motion read
�nally

ṙ = pr;

ṗ= k(p2=2− 1) + D − p
=2;

!̇i =
9D
9pi

;

ṗi =
1
V
9V
9!i

− 9D
9!i

− pip(1− k=2)− pi
=2; (11)

where k and 
 are de�ned by

k =− R
V
9V
9R ; 
 =

∑
j

9V
9!j

!̇j
V
; (12)

respectively. At threshold �= 0 this dynamical system
of the abstract form ẏ= f (y) has a �xed point ẏ= 0
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with values

!∗
i from 9V=9!i = 0;

p∗
i = r

∗ = 0;

p∗ =
√
2; (13)

where the value for p∗ follows from the energy con-
servation according to the Hamiltonian Eq. (8).
Due to the scaling r = R� the �xed point r∗ = 0 is

realized for arbitrary unscaled R0 at threshold �= 0.
For R0 → ∞ the �xed point at �= 0 characterizes the
fully fragmented system where all particles have in-
�nite (unscaled) distance from each other, since all
angles are �xed at !∗

i . For small excess energies �,
deviations from the �xed point correspond to trajec-
tories which do not contribute to the fragmentation
since they fail to reach the �xed point for large inter-
particle distances due to its instability. The instability
of the �xed point can be quanti�ed by linearizing the
equations of motion about the �xed point according to

�ẏ i =
∑
j
M∗
ij�yj; (14)

whereM∗
ij = 9fi=9yj is the stability matrix at the �xed

point. Diagonalizing the matrixM∗ with components
M∗
ij yields the Liapunov exponents �i as eigenvalues

and the normal modes �
 as linear combinations of
the �y with the explicit time dependence
�
i(�) = e�i��
i(0): (15)

The Hamiltonian H has been constructed such that
all normal modes with eigenvalues �i decouple from
the radial normal mode whose di�erential equation
�ṙ = p∗�r follows directly from Eq. (11). Integration
yields

�r(�) = e�r� �r(0); (16)

with the radial Liapunov exponent �r = p∗. From Eq.
(4) we may identify �r+ with �r(�) and �r− with
�r(0). Thereby, we obtain the desired relation between
energy change in � and time evolution in � negotiated
by the scaling and dynamical evolution properties of
the hyperradius,

e�r� =
�r(�)
�r(0) ≡

�r+
�r− ˙ �−1: (17)

This relation states how �→ ∞ is connected with the
threshold limit �→ 0 through the instability of the
hyperradius �r.

To derive the explicit form of the threshold law, we
must formulate the classical fragmentation cross sec-
tion for N particles. The threshold law is essentially
independent of the actual initial state as expected for a
critical phenomenon. Hence, at �= 0 with a �nite hy-
perradius R(�= 0) = R0 before the fragmentation has
happened, we consider a general initial phase space
distribution �(R0; y) parameterized by 6N − 8 phase
space variables y. The yj depend on the physical ini-
tial state and the process which induces fragmenta-
tion (e.g. particle impact or photon impact, etc.). At
�xed hyperradius R0 the yi completely determine the
distribution � since the radial momentum P is used
to satisfy energy conservation. The total fragmenta-
tion cross section is the integral over the di�erential
cross section at all �nal hyperangles �+ and can be
expressed as

�˙ lim
�→∞

∫
d�+

∫
dy �(R0; y)�(�(�)− �+): (18)

The �-functions contain the entire, complicated dy-
namics of the N -particle system. To resolve it we
choose N − 2 (the dimension of �) of the integra-
tion variables yj(0) for which the Jacobi matrix Jij =
9�i(�)=9yj(0) has nonvanishing determinant |Jij| 6= 0.
With the �i(�) as new integration variables all inte-
grations can be performed and we are left with

�˙
∫
d�+ |Jij|−1�(�)=�+ : (19)

From Eq. (17) we know that in the threshold limit it
is su�cient to evaluate the dynamical Jacobi matrix
in linear approximation which reads with the help of
Eq. (15)

Jij =
∑
k
Aike�k�Bkj (20)

where the matrices Aij = 9�i=9
j and Bij = 9
i=9yj
represent coordinate transformations at times (�) and
(0), respectively. For large times �, the largest Lia-
punov exponents will dominate. Assuming an order-
ing �1¿�2; : : : ; we obtain for the determinant

|Jij(�→ ∞)|˙ exp
[
N−2∑
i
�i�
]
: (21)

The N − 2 terms in the sum re
ect the fact that the
determinant measures an N − 2 dimensional volume
which is spanned by the N − 2 normal modes with the
largest Liapunov exponents. Inserting Eq. (21) into
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Eq. (19) and using the relation Eq. (17) between �
and � we arrive at

�(�→ 0)˙ ��=�r ; (22)

where

�= lim
R0→∞

N−2∑
i
�i(R0): (23)

The threshold law has a simple interpretation: The
amount of fragmentation is decided by the competition
of two processes, �rstly, the mutual separation of the
particles with a growing hyperradius R, and secondly,
the departure from the �xed point of fragmentation in
angular directions. Threshold fragmentation is, rela-
tively speaking, a probable event, if the rate of radial
growth �r of the system is large compared to �, the
rate with which the dynamical system leaves the �xed
point. Finally, with an increasing number of particles
N , there are more possibilities for partial fragmenta-
tion which lower the cross section for complete frag-
mentation by more unstable directions contributing to
the sum in Eq. (23).
In the following section we will illustrate the result

obtained in a rather abstract way for three charged
particles.

4. General form of the threshold law for
three-particle systems of two degrees of freedom

To arrive at a compact form and an analytically
solvable �xed point condition we restrict ourselves
to A–B–A systems. Assume a collinear arrangement
of the three particles where B with mass mB is lo-
cated in between the two particles of sort A with mass
mA described by the two distances rAB and rBA. In
mass-weighted hyperspherical coordinates (r; �) this
geometrical arrangement can be parameterized in a
symmetric and compact way by

rAB = r sin(�0 − �);

rBA = r sin(�0 + �);

�0 =
1
2
arctan

√
mB
mA

2mA + mB
mA

; (24)

where � ∈ [− �0; �0]. The Hamiltonian Eq. (5) for-
mulated with momenta P and P� reads

h2 =−(P2=2 + P2�=(2r2)− E)=V − 1 ≡ 0 (25)

where V = V (r=�; �) is the total potential in scaled
coordinates. The equations of motion are now,

dP
dt

≡ −9h29r = �
−1Vr
V

− P2�
Vr3

;

dr
dt

≡ 9h2
9P =−p

V
;

dP�
dt

≡ −9h29� =
V�
V
;

d�
dt

≡ 9h2
9P�

=− P�
Vr2

; (26)

where Vx denotes 9V=9x. Calculating the time deriva-
tive of the new momenta Eq. (2) with the help of Eq.
(26) and formulating the equations of motion in the
new time variable according to Eq. (10) yields the cou-
pled �rst-order di�erential equations which are not sin-
gular at the �xed point (we de�nep1 ≡ p�(−Vr2)−1):
ṙ = pr;

ṗ= k(p2=2− 1) + p21 −
p1p
2
V�
V
;

�̇= p1;

ṗ1 =
V�
V
(1− p2=2)− p1p(1− k=2): (27)

The potential energy of the collinear Hamiltonian for
two electrons (particles A, mass mA = 1) and an in-
�nitely heavy nucleus B of charge Z is given by

v(rAB; rBA) =−Z=rAB − Z=rBA + |rAB + rBA|−1: (28)

It is easy to see that V� = 0 is ful�lled for �∗ = 0.
Hence, in the coordinates chosen, the relevant �xed
point for fragmentation is given by p∗

1 = r
∗ = �∗ = 0

and p∗ =
√
2 enforced by energy conservation. The

stability of the �xed point is calculated from small
deviations

�ṗ= 0; (29)

�ṙ = p∗ �r; (30)

�ṗ1 = A11 �p1 + A12 ��; (31)

��̇= A21 �p1 + A22 �� (32)

with the elements

A11 = p∗=2; (33)
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A12 =
92V
9�2

1
V

≡ V ∗
��

V ∗ ; (34)

A21 = 1; (35)

A22 = 0 (36)

of the matrix A. Eq. (4) shows the decoupling of �r
from the other degrees of freedom which has been
achieved by construction of the critical Hamiltonian.
The decoupling leads in connection with �ṗ= 0 im-
mediately to the integrated time evolution of Eq. (16)
with �r = p∗ =

√
2. The time evolution of the hy-

perangle � is obtained by calculating the determinant
det(A− �) which leads to a quadratic secular equa-
tion for � with the solutions

�± =−�r
2

(
1±

√
1 +

16V��
V [p∗]2

)
; (37)

where use has been made of the fact that p∗ = �r .
Since we have only one angular degree of freedom the
sum for the rate in Eq. (23) contains only one term and

�= lim
R→∞

�−(R): (38)

With Eqs. (37) and (38) we can directly evaluate the
threshold exponent for speci�c interactions. For the
interaction Eq. (28) the threshold law reads �˙ ��

with

� =
�−
�r
=
1
4
− 1
4

√
100Z − 9
4Z − 1 ; (39)

which is exactly Wannier’s result [1].

5. Universal shape function for ionization cross
sections

The experimental veri�cation of the threshold cross
section �(�)˙�� is due to its very nature di�cult be-
cause the signal is small, even zero at threshold �= 0.
However, the threshold behavior in
uences signi�-
cantly the shape of the fragmentation cross section
over a wide energy range. This in
uence can be used
to verify the threshold exponents indirectly. Moreover,
the in
uence manifests itself in a universal shape of
the ionization cross section which only depends on the
threshold exponent � [4],

�(E) = �Mf(E=EM); (40)

Fig. 1. Double-ionization cross sections for H− (circles) [6], O−
(squares), and C− (triangles) [7] in terms of the maximum values
EM ; �M. In addition the shape function Eq. (41) is shown with a
solid line.

where the shape function is given by

f(x) = x�
(
� + 1
�x + 1

)�+1
: (41)

The shape is obtained by combining the low-energy
power-law behavior and the classical high-energy be-
havior �(�/1)˙ 1=� as it has been derived by Thom-
son in 1912 [5]. The shape function is parameter free
if expressed in dimensionless variables, i.e., the cross
section is expressed as y = �=�M and the energy is ex-
pressed as x = E=EM, where EM is the energy where
the cross section has its maximum, and �M is this
maximum value. Fig. 1 shows examples for di�erent
three-body fragmentations. However, the shape func-
tion is not restricted to three charged fragments. Since
the high-energy behavior is determined by the pro-
jectile the shape function remains the same even for
more fragments, only the exponent � changes. Fig.
2 presents data for double-electron detachment from
negative ions by electron impact which leaves four
charged fragments [12].

6. Summary

We have described threshold fragmentation into
three or more charged particles as a critical phe-
nomenon which motivates that the fragmentation
cross section has the closed form of a power law
as a function of excess energy. Moreover, we have
derived the critical exponent as the ratio of two
rate constants which characterize the stability of the
�xed point responsible for the criticality of threshold
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Fig. 2. Experimental cross sections for the ionization of hydrogen
plotted in scaled coordinates y = �=�M versus E=EM. The solid
line is the shape function Eq. (41). The projectiles are protons [8]
(open squares), positrons (y + 0:5, [9], �lled circles), antiprotons
with helium as a target (y + 1, [10], �lled squares), and electron
impact (y + 1:5, [11], open circles).

fragmentation. This ratio shows that threshold frag-
mentation can be viewed as the competition between
the radial expansion of the system described by one
rate and the rate for failing to reach the �xed point
of fragmentation during the radial expansion. This
second rate is expressed as a sum over Liapunov ex-
ponents at the �xed point. While this result, obtained
for systems of only a few degrees of freedom, is the-
oretically intriguing, its value for experiments lies in
the in
uence of the threshold behavior on the form of
the ionization cross section over a large energy range.
This in
uence has been demonstrated by formulating
a semiempirical ionization shape function, only de-
pendent on the threshold exponent �. Although so far
this shape lacks a rigorous theoretical derivation it has
been very successful for describing and interpreting
experimental cross sections.
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