Simulating crystallisation mechanisms with long timescale molecular dynamics.

David Quigley
Assistant Prof. and EPSRC Fellow
Department of Physics, University of Warwick.

Metadynamics of ice and CaCO_{3}
Prof. P. Mark Rodger (Warwick)
Prof. John Harding (Sheffield)
Dr Colin Freeman (Sheffield)
Dr Dorothy Duffy
A. Matt Bano
(UCL)
(Warwick)

Freezing of a hard-sphere polymer
Prof. M. P. Allen (Warwick)
Stepan Ruzicka

WARWICK

Overview

- Motivation
- Understanding biomineralisation processes.
- Crystal nucleation as a rare event.
- Adventures with metadynamics
- Adapting collective variables from previous MC studies.
- Example - control of crystal orientation by self-assembled organic monolayers.
- Problems going forward.
- Forward-flux sampling on a toy system
- Freezing of a hard-sphere polymer chain.
- Kinetics vs thermodynamics.
- Breakdown of the two state assumption.
- Possible reaction coordinate?

WARWICK

Motivation - biomineralisation

Columns of calcite
WA RWICK

Crystal nucleation as a rare event

WARWICK

Crystallisation with metadynamics

Sanz et al. Phys. Rev. Lett. 92, 255701 (2004)

- Adapted collective variables from MC TIP4P ice nucleation studies of Trout. [Radhakrishnan \& Trout. J.A.C.S. 125, 7743 - 7747 (2003) Phys. Rev. Lett. 90158301 (2003)]
Steinhardt Q_{6}, Q_{4} plus a tetrahedral order parameter and the potential energy.

Orientation specificity

- Possible bio-mimetic control of crystal orientation.

16-mecaptohexadecanoic acid (MHA)

15-mecaptopentaadecanoic acid (MPA)

WARWICK

Orientation specificity

Travaille et al J. Am. Chem. Soc., 2003, 125, 11571-11577

Chain parity	Even (MHA)	Odd (MPA)
Nucleation plane (Au substrate)	(012) or $(01 x) x=2-5$	(110) (113) (116)

Han \& Aizenberg Angew. Chem. Int. Ed., 2003, 42, 3668-3670

Simulating orientation specificity

- Use metadynamics to (carefully) drive amorphous to crystalline transition.
- Use Gaussian height around 2% of smallest surface energy difference.
- SAMs modelled using CHARMM united atom force-field, TIP3P water.
- Mineral-organic terms in Freeman et al J. Phys. Chem. C 111,11943 (2007).
- 8.3 ns metadynamics simulations (or until crystallised) with 2 ns MD for analysis of crystal.
- 310 Kelvin, constant density.

WA RWICK

Simulating orientation specificity

- Freezing the monolayer gives good epitaxial matching, but wrong result!
- Metadynamics allows us to simulate both the monolayer and the solvent at relevant temperatures.
- Reproduce (consistently) the experimental orientation when allowing flexibility.
- Simulations of polymorph-selecting monolayers are underway with improved potentials for CaCO_{3}.

54 \% bulk calcite (001) nucleation plane

39 \% bulk calcite (012) nucleation plane

Methodology problems

- Using metadynamics to;
- Predict structures
- Map gross features and changes in free energy landscapes
- Going beyond this requires better collective variables for crystallisation.
- Screen candidate CVs against path sampling data?
- TPS/TIS/FFS + likelihood maximisation.
- Issues with path sampling for systems with many glassy/amorphous minima?

WA RWICK

Attractive hard sphere chain

WARWICK

Properties

- Thermodynamics of system extensively studied previously.
[Taylor, Paul and Binder. Phys. Rev. E. 79, 050801 (2009) J. Chem. Phys. 131, 114907 (2009)]
- Single stage "protein-like" collapse for $\chi \lesssim 1.06$
- We study globule-crystal transition for larger χ.
- Brute force sampling feasible for $\chi \geq 1.15$.
- Use forward flux sampling (FFS) for smaller χ.
- Simulations use collision dynamics (CD) with a stochastic component to represent coupling to a heat bath.

Brute force CD trajectory at transition temperature.

WARWICK

Sampling and FFS

- All globule states can be connected by short CD trajectories.
- Different realisations of the crystal state separated by high barriers.
- Breakdown of two-state assumption.

_工 Free energy surface
$=P(E)$ at transition T
\longrightarrow High T $P(E)$
—— Low $T(E)$

8192 configurations at each FFS interface

WARWICK

Transition temperature via kinetics

- Systematic upward shift of transition temperature vs Wang-Landau (WL) MC simulations.
- Attribute this to inability of CD to sample transitions between realisations of crystal.
- Kinetic hindering of transitions in direction $A \rightarrow B$?

WA RWICK

An improved reaction coordinate?

- Compute Laplacian matrix G

$$
G_{i j}= \begin{cases}-1 & \text { if }|i-j|>1 \text { and } r_{i j} \leq \chi \sigma, \\ 0 & \text { if }|i-j|>1 \text { and } r_{i j}>\chi \sigma, \\ 0 & \text { if }|i-j|=1, \\ -\sum_{k, k \neq j} G_{k j} & \text { if }|i-j|=0 .\end{cases}
$$

- $\quad \gamma$ is largest eigenvalue.
- G sometimes treated as analogue of Hessian.
- Related to SPRINT coordinate of Pietrucci \& Andreoni, Phys. Rev. Lett. 107, 085504 (2011).

WARWICK

Summary

- Biomineralisation
- Gained some insight via metadynamics using naïve collective variables.
- Issues with going beyond this. Need better CVs and path sampling methods for very rugged landscapes.
- Kinetics of polymer crystallisation
- Can a two-state treatment every capture rates correctly?
- Insight into reaction coordinate from topology / mode analysis?

Crystallisation from the melt

- DQ \& Rodger, P. M. A metadynamics-based approach to sampling crystallisation events. Mol. Simul., 2009, 35, 613-623.
- DQ \& Rodger, P. M. Metadynamics simulations of ice nucleation and growth. J. Chem. Phys., 2008, 128, 154518.

Crystallization on self-assembled monolayers

- DQ; Rodger, P. M.; Freeman, C. L.; Harding, J. H. \& Duffy, D. M.

Metadynamics simulations of calcite crystallization on self-assembled monolayers. J. Chem. Phys., 2009, 131, 094703.
Kinetics of Homopolymer crystallisation

- Ruzicka, S.; DQ \& Allen, M.P. Folding kinetics of a polymer. Phys. Chem. Chem. Phys., 2012, DOI: 10.1039/C2CP00051B

WA RWICK

