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Program

The problem
A taste of theory
Helix folding

Efficiency and selectivity in HIV reverse
transcriptase

Unassisted membrane transport



Long time processes in biophysics:
activation or long range diffusion
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Activated processes — rare & fast

Milestoning — slow diffusive

Continuous barrier “problem”



Long time dynamics

e Rare events (short infrequent trajectories)

Bond breaking

TST (Eyring)

Sampling of complete (rare) traj. :
1. TPS (Chandler, Dellago, Bolhuis)
2. TIS (Moroni, Bolhuis, van Erp)
3. FFS (Allen, Frenkel, ten Wolde)

4. WE (Kim, Huber)

5. Hyper-dynamics (Voter)



Long time dynamics: Diffusion on
rough energy landscape

Milestoning (West, Kirmizialtin, Cardenas, Elber)
PPTIS (Bolhuis, van Erp)
U(q) Markovian Milestoning (Venturoli and Vanden Eijnden)
N Markov State Model (Deuflhard,Schuette, Pande, Levy, Hummer, Noe,...)
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Chain collapse (Cytc c)
Conformational transitions
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Milestoning:

Ks,s' (t)

The probability density that traj. that hit Milestone s
for the first time will reach Milestone s’ for the first
time exactly at time t
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Assume that we know K, (¢)

How can we calculate the overall
time dependence of the system?



With the matrix K, . (7) determined, compute
kinetics t
Qs(f)Z77S5(t—0+)+J{ZQS.U')KS.DSU—t')}dt'
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Qstat (I B jK(T)de = 0 Ps,stat = Qs,statt—s
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s,s’ -- milestones
Q,(t) -- probability of passing milestone (interface) s at time t
P.(t) -- probability that the last milestone passed at time tis s

e by direct integration (with West, JCP 2004)
e by Laplace transform and moments of the first passage time (with Shalloway, JCP 2007)
e by trajectory statistics (Vanden Eijnden, JCP 2008)



Equivalent to Generalized Master
Equation

* The generalized Master equation has time
dependent rate coefficients
dp (t)

;’t B ;[;[_Rs'»s (7)B(t-7)+ R .(7)B.(1~ T)]dT

 Kin the QK formulation is easier to compute

than R and the Laplace transforms are related
by
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K, (1)

How to obtain the “appropriate” initial distribution?

How to compute K?

Run exact trajectories to s (TIS, Bolhuis; FFS, Allen, WE, Kim)
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Initiate traj. at the Milestone from Equilibrium
Check first time hit by running backward

Directional Milestoning: With Majek, JCTC 2010; with Kirmizialtin JPC 2011
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First hitting point trajectories inside cells with cell as small as ~0.1A : Especially short ~ps
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Milestoning assumption (more milestones not always better):

1. Loss of flux correlation between Milestones (interfaces)

K, (X, X,.H) =K, (X,,1)

2. Good approximation if the Milestones are sufficiently separated to allow loss

of correlation between sequential “hits” (West et al., JCP 2007; Majek & Elber
JCTC 2010).

Exact MFPT if the Milestones are iso-committors (with Vanden Eijnden, 2008).
Velocity de-correlation useful measure
Taking in and out interfaces for convergence check

Comparing sampling at interfaces and terminating distributions

N o v AW

Extension to next-next-... interface (Hawk and Makarov JCP 2011)
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Directional Milestoning works in high dimension using transitions
between interfaces of cells (Majek & Elber, JCTC 2010).

The idea of using Voronoi cell for Milestoning was of Vanden Eijnden and
Venturoli, JCP, 2009




Efficiency (more Milestones the better!)

e Diffusive speedup: |t~L —=t~M(L/M)Y =L"/M

e Parallelization speedup: |t ~ L° / M *

« Exponential bootstrapping at large barrier: |_L
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Speed-up in practice

Microsecond allosteric transition rate predicted
for Scapharca (in accord with experiment)
based on an ensemble of picosecond trajs
totaling 10 ns

Results on myosin for the recovery stroke
predict submillisecond timescale (similar to
experiment) using nanosecond simulations

HIV reverse transcriptase millisecond
nanosecond simulations

Membrane permeation: hours — nanosecond
simulations



W-AAA-H (WH5):,

Peter Majek, Gouri Jas, Krzysztof Kuczera, Ron Elber, submitted

A nucleus: A significant inclination to structure in a short peptide
segment(s), can speed up folding rate (Local Go model, Zwanzig,
Brungelson & Wolynes, Thirumalai)

What is the shortest peptide chain that still has significant tendency to
structure?

A "
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W-AAA-H (WH5): multiple evidence for clear structure in a short
peptide, Gouri Jas
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Measurements by Ad Bax

2D 1H-1H ROESY and 2D 'H-13C HSQC
measurements were employed to
measure the 'H and 13C chemical shifts
and obtain 'H-'H distance information.
The 3J,,\4, COUpling constants were also
determined. The ROESY and HSQC
experiments were performed on a5
mM sample of the peptide, WAAAH, at
pH 4.2 and 5 °C (the 3J,,,,, constants
were also measured at 20 °C).

Regions of 2D 1H-1H ROESY on WH-5 (pH 4.2, 5 °C)

showing the HA-HN and HN-HN correlations
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Milestoning calculations: Peter Majek (with Krzysztof Kuczera and
Gouri Jas), JPCB, in press

*Peptide solvated in water box: 1us traj. by Kuczera

*10 coarse variables (all ¢, torsions)

*An interface ij is the set of points X with distance d(i) and d(j)
from interfaces i and j plus a shift DELTA.

M, = {X (X, X, =d(X, X))+ A% and Vk d(X,X )< d(X, Xk)}

*153 images from clustering 1us traj. conf. reduced to 90
*6186 reachable interfaces at 300K

*50 traj at each interface

*~310K traj of ~10ps each

*On a computer with 30K cores ~ 20min. On our system 2
months
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Comparison of MD and Directional
Milestoning: Eq. probability
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Folding network (from Milestoning)
Dominance of direct path and illustration of dead ends
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Early Events in Helix Unfolding

90>¥Y>0 Y>90

a-Helical Hbond T1-Helical Hbond

34p-Helical Hbond

with Tess Moon and Steve Kreuzer



Early events in helix unfolding

(network)

Unfolding Mean First Passage
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Fine Anchor [Quantity of o Helical Hydrogen Bond Status

Designation Hbonds (1=Intact; 0=Broken) v gl Velliee
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HIV reverse transcriptase
Avoiding errors in the genetic code
with KA Johnsson, V Nguyen, and S Kirmizialtin

* Enzyme generates DNA from RNA sequence

* Non equilibrium steady state system: Pictorially,
nucleotide binds weakly in an open form, protein
changes to close form, chemistry...

* How does the protein select the correct
substrate??



And a movie ( a molecular process,
time scale — millisecond




And another...
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HIV reverse transcriptase synthesizes DNA:
Selection by an induced fit, red correct substrate, blue incorrect.
Calculation by Serdal Kirmizialtin
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Milestoning for membranes

 Compute trajectory fragments between
interfaces (Milestones) to compute the Kes(?)

Kernel
A

o * Evolution (origin of life)
*Drug
epollution

”ﬁy / g
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Membrane permeation

Dogma: Charged species no permeation, Neutral, yes.
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Summary

 Code of MOIL:
— http://clsb.ices.utexas.edu/prebuilt/

* Milestoning is a method based on rigorous theory that
builds on short trajectory fragments to obtain long time
kinetic and thermodynamic properties of the system.

e Studies of biophysical systems along a reaction coordinate
(or not)
— Allosteric transition in Scapharca hemoglobin
— Myosin recovery stroke
— HIV reverse transcriptase
— Membrane permeation
— Helix folding/unfolding
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