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Point defect complexes

@ Irradiation causes defect oA
cascades. L VAN AN
@ Leaves behind point defects: - ] el
o self-interstitial atoms (SIA) feu e
@ vacancies 0
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and complexes: . Y
o dislocation loops WS WA E ) .
o stacking fault tetrahedra NI I Hmaay st
@ nanovoids e e M Mg
o ...
@ Wealth of defect clusters and events: impossible to predict.
@ Time scale is beyond MD (milliseconds — hours).
@ Complex energy landscape.
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The kinetic Activation-Relaxation Technique
Execute events according to KMC rules. l

off-lattice

@ Not constrained to lattice (more systems).
@ Account for long-range elastic effects.

self-learning

@ ART nouveau (fastest unbiased saddle point search) to generate
events
o on the fly
o corrected for long-range effects.

@ Store events: Build topology-based catalog.

v

Al
El-Mellouhi, PRB 78, 153202 (2008). Béland PRE 84, 046704 (2011). ]
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Kinetic Monte Carlo

Standard KMC

@ Problem must be lattice based.

@ List of possible events is constructed

@ Rate r; from transition state theory:
ri=roexp(—AE/kgT).

@ One event picked at random.

@ Clock advanced by At = —Inu/> i,
w: Random number € (0; 1].
A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comput. Phys. (1975).

@
® O

@ Predefined, limited catalogue of known events at T = 0.

@ Ignores long-range interactions between defects.
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Topologies

Cluster centered on each atom
@ Topological analysis: Which atoms are neighbours?
@ Assign a key to each graph.
= 1:1 relationship between keys and local structures.

Search for events for each topology.

/ NAUTY
McKay, Congr. Numerant. 30 (1981)

1062187
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Find saddle points with ART nouveau

Activation-relaxation technique

@ Random displacement.

@ Leave harmonic well: negative
eigenvalue.

© Push up along corresponding
eigendirection, minimize
energy in perpendicular
hyperplane.

© Converge to saddle point.

@ Move configuration over the saddle point and relax to new
minimum.

Barkema, Mousseau, PRL 77 (1996); Malek, Mousseau, PRE 62 (2000);

JA
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Search for events
Find events centered on representative atom.

@ Random displacement.

@ Find saddle point (Lanczos, DIIS).
Expensive, but finds generic events for topology.

For lowest 99.99% of barrier weight:

Refine event for each specific atom.
@ Few iterations to exact critical points.
@ Takes into account specific local situation.

v

Tree of events
@ Calculate rates r; = ro exp(AE;/kgT), rp = 1013 s~ 1,
@ Use tree to select event with proper probability.

V.

Peter Brommer (U de Montréal) kinetic ART BeMoD 2012 8/34



Reconstructing events

Geometric transformation

Stored event

initial Configuration

@ Extract symmetry
operation needed

to transform stored
event to
configuration.

@ Apply same
operation to final
(saddle) state.

final rotate 90 degrees.

v
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Remembering events

Generic events

@ Kept, even though the topology might disappear,
but removed from tree.

@ Topology reappears: Events reinserted to tree.
@ Generic events can be imported from previous runs.

Atom keeps topology Atom changes topology
Specific events: Specific events:
@ refined. @ Old ones removed.

@ New ones calculated.

Béland, Brommer, et al., Phys. Rev. E 84, 046704 (2011). J
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bac-MRM
Local configurations with low barriers

@ k-ART might get trapped.
@ Many events, no progress. ?&‘er

Energy

Reaction coordinate
v

@ Correct distribution of exit states.

@ Low overhead.

= The basin auto-constructing Mean Rate Method
MRM: Puchala et al., J. Chem. Phys. 132, 134104 (2010)
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The Mean Rate Method (MRM)

Transient states Absorbing states

connected to transient states by
high barriers.

Basin exploration

@ costly
@ even unneccessary (early exit to absorbing state)
= Explore/construct basins on the fly!

connected by low barriers.

V.

Relevant entities: events, not states

basin event & exit event
connects transient state to
absorbing state.

connects transient states.

<.
ae monureal
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The Basin Mean Rate Method

Start from State A
@ Identify events. &
@ If any event could be a basin event @
(judge by barrier):
activate basin method. %

Pick an event:
@ Ordinary event: Go on normally

@ Potential basin event: Start basin:

o Execute event
o Block event
o Keep all other events.

Green: Ordinary event
Blue: Potential basin event
Red: Basin event

ul
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In the basin

Search for new events originating from stat

Green: Ordinary Blue: Potential basin Red: Basin
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The basin auto-constructing Mean Rate Method

Features

@ Basin is built on the fly.

o Basin explored only as far as needed.
o Integrates seamlessly into k-ART.

@ No state is visited twice.
@ Correct distribution of absorbing states.

@ However: Ignores correlation between basin residence time and
absorbing state (short residence time: absorbing state closer to
initial state).
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e Applications
@ Vacancies in a-iron
@ Amorphous silicon
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Atomistic simulation of a-Fe: Challenges

Kinetic Monte Carlo simulations of a-Fe

Extremely rich in states and events:
e.g. 4-SIA cluster: more than 1500 distinct configurations.
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Vacancies

Vacancy cluster agglomeration in bcc Fe
@ Slower dynamics than interstitials.
@ PAS results available.

The system: 2000 atoms
Remove 50 random atoms.

@ Temperature 50°C.

@ Display only vacancies,
color code cluster size,
green: monovacancies.

@ Ackland-Mendelev potential
(optimized).
Ackland JP:CM 16, S2629 (2004)
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K-ART simulations at 50 °C.

1
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K-ART simulations at 50 °C.

1

-7752.3
-7752.6
-7752.9
-7753.2

Avg. Size

3160 3180 3200

77535 | 0.8359 &Y |
-7753.8

-7754.1
-7754.4

MV fraction

-7759.0
-7759.2
-7759.4
-7759.6

2800 2820 2840

-7747.2 1 1.0770 eV 1
-7747.4 +

-7747.6 -
-7747.8 -7765
-7748.0

Energy (eV)
4
N
(o]
(&)

1800 1820 Tps 10ps 0.4 ms 1 ms 10ms 0.4 s Unpesicc dh
Simulated time

Peter Brommer (U de Montréal) kinetic ART BeMoD 2012 19/34



50 vacancies in o Fe
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Trajectory in detalil
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Experimental results

Positron Annihilation Spectroscopy

Iron irradiated at 50°C:2

@ Significant intensity from nanovoids as irradiated
(nanovoids: clusters of 9-14 vacancies).

@ Annealing over 150°C: Larger voids appear (40-50 V)
= Kk-ART simulation agrees with experiment

2Eldrup and Singh, J. Nucl. Mater. 323, 346—353, 2003.

Previous results: Autonomous Basin Climbing

@ ABC? always picks lowest new barrier.
@ k-ART may pick higher barrier, accounts for multiplicity.

Complete catalog essential for material description.

?Fan et al., PRL 106, 125501 (2011)

v
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Accelerating simulation
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Reasons

@ Lower effective energy barriers die out.
@ Basin acceleration threshold increased.
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Executed event barrier
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Increasing basin threshold

Basin acceleration with bac-MRM

Basin auto-constructing Mean Rate Method:
@ “Low” barriers: Average over transitions.
@ Expand basin on the fly.

@ Correct distribution of exit states.
@ Parameter: Basin threshold.

Optimal basin threshold
There is an optimal value for the basin threshold:
Too low: No progress.

Too high: Too many states in basin:

@ Lose trajectory
@ Memory requirements.

Gradual increase during simulation.

v
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Basin Threshold
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Conclusions: a-iron

Vacancies in bcc iron
@ Vacancies cluster in nanovoids on a sub-second timescale.

@ Full event catalog essential.
o Efficiently accelerated by bac-MRM.
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Amorphous silicon

Disordered metastable phase of Si

Defects in amorphous silicon:
@ Are vacancies stable defects?
@ Do vacancies diffuse?

No accelerated technique has been
applied to disordered materials.

Project of Jean-Francois Joly (Ph.D. student UdeM).
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k-ART simulation of a vacancy in a-Si

The system

@ 999 (= 1000 — 1) atoms.
@ Mod. Stillinger-Weber potential.
@ T=300K

Challenges

@ Every atom: unique topology.
Initial catalog: 32 120 events.

@ Flickers on every energy scale.
Basin threshold: 0.35 eV.
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Results: Vacancies in a-Si
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e Conclusions
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Conclusions

Kinetic Activation-Relaxation Technique (k-ART)
Versatile KMC simulation tool for complex systems:
o Off-lattice, self-learning: Few prerequisites.
@ Fully account for long-range elastic effects.
@ Can handle feature-rich defect systems.
@ Basin treated with bac-MRM.
@ Even fully amorphous systems.

El-Mellouhi et al., Phys. Rev. B78, 153202 (2008).
Béland, Brommer, et al., Phys. Rev. E 84, 046704 (2011).
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