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Overview |

Brownian paradigm: keeps Central Limit
Theorem, adapts walk models for movement
& search research

Continuous Time Random Walk & compound
Brownian models as exemplar.

Non-Brownian paradigms: arise from going to
ECLT and/or modifying time dependence

Levy Flights/Walks, Fractional Time Process as
resulting exemplars

Levy Foraging (or Environmental) Hypothesis
as resultine coniectures



Overview lI

* My current interest: Consequences of
different ways of introducing time
dependence-either Markovian or ergodic

* Disclaimer: First parts strongly influenced by
my own experience in 2005-8 [Edwards,
Philips, Watkins et al, Nature, 2007].
Hopefully, however, its semi-historical nature
sets a stage for those who will go on to bring
you up to date [Zaburdaev, Bartumeus and
others].



Movement modelling

PRACTICE §

In widespread use, for very diverse reasons ...

Home ranges of foraging animals [e.g. Randon-
Furling et al, PRL, 2009; Claussen et al, 2015]

* Tracking shoppers in malls [e.g. Path Intelligence].



Search Research

iRobot’s Firstlook
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Why (and which) stochastic model?

* Movement patterns of biological organismes,
including humans, very rich and complex.

* Fortunately, while reasonable to assume that
animal movements deterministic on small
spatiotemporal scales, on larger scales
foraging paths exhibit random patterns so
stochastic approaches to modelling exploited.

* But “randomness” comes in many flavours,
how to choose right one for given case?



BROWNIAN PARADIGM



The connection of
animal motion and
random walks was
made more than a
century ago by
pioneering
statistician and
biometrician Karl
Pearson.

[Pearson, Biometric
ser., 3, 54 (1906)].

Mathematical Contributions to the Theory of Evolution.

XV. A MATHEMATICAL THEORY OF RANDOM MIGRATION. By
Karn Peanrsow, F.R.8, with the assistance of Jomy Braksman, M.Sc

(1) Introductory. In dealing with any natural phenomenon,—especially one
of a vital nature, with all the complexity of living organisms in type and habit,
the mathematician has to simplify the conditions until they reachi the attenuated
character which lies within the power of his analysis™. The problem of migration
is one which is largely statistical, but it involves at the same time a close study
of geographical and geological conditions, and of food and shelter supply peculiar
to each species. Some years ago the late Professor Weldon started an extensive
study as to the distribution of various species and local races of land snails, but
he was struck by the absence in several cases of any definite change of environ-
ment at the boundaries of the distribution of a definite race. It occurred to me
in thinking over the matter that such bounderies, where they exist, may possibly
not be permanent. To take a purely hypothetical illustration : A species is pushed
back te a certain limit by a change of environmental conditions—say, an ice age.
Does it follow that if the environment again becomes favourable, that it will
rapidly occupy possible country? What is the rate of infiltration of a species
into a possible babitat? It depends, of course, on a whole series of most complex
conditions, the rate of locomotion, the channels of communication, the distribution
of food areas and breeding grounds in the new country, and the connecting links
between all these. Every detail must be studied by the field natuoralist in relation
to each species. All the mathematician can do is to make an idealised system,
which may be dangerous, if applied dogmatically to any particular case, but which can
hardly fail to be suggestive, if it be treated within the limits of reasonable application.
The idealised system which I proposed to myself was of the following kind :

(i) Breeding grounds and foed supply are supposed to have an average uniform
distribution over the district under consideration. There is to be no special following
of river beds or forest tracks.

* This is of course a perfectly familine process to every methematical physicist, bat its unfamiliarity
leads the biologist to suspect or even discard mathematical ressoning, instesd of testing the result

a2 the physicist does by experiment and ohservasion,
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Pearson also coined the term random
walk when posing it as a problem in a
famous letter to Nature, which was
answered by Lord Rayleigh who
showed the Gaussian nature of the
solution and linked it to a problem

he had solved in physics.

As the theory of Brownian random
walks and the Wiener process rapidly
developed in statistical physics and
mathematics, this concept came to
dominate the stochastic modeling of
movement in biology.

1 KARL PEARSON

(ii) The species scattering from & centre is supposed to distribute iteelf
uniformly in all diveetions. The average digtance through which an individual of
the species meves from babitat to habitat will be speken of as a “flight,” and there
miy be n such “flights” from lomus of origin to breeding ground, or again from
breeding ground to breeding ground, if the species reproduces more than onee
A flight is o be distinguished from a " flitter,” » mere two and fro motion nssecinted
with the guest for food or mate in the neighbourhood of the habitat

(i) Now taking a centre, reduced in the idealised system to a point, what
would be the distribution after 1 random ﬂig]:.Lw,' of N individuals riepm'l:ing from
this centre ¥ This is the first problem, T will call it the Fundamental Froblem of
fandom Migration,

{iv) Bupposing the firat problem solved, we have now to distribute auch points
over an area bounded by any econtour, and mark the distribution on both sides
of the contour after any number of breeding seasons,  The shape of the contour and
the number of asasona dealt with provide a series of problems which may be apoken
of as Secondary Prollems of Migroticn.

A little consideration of the Fundamental Problem showed me that it '||:'|_'5|_~,||I,|_:|J,
oonsiderable analytieal diffienlties, and 1 was by no means clear that the earies of
hypotheses adopted would be sufficiently close to the natural conditions of any
species to repay the labour involved in the investigation, At this stage the matter
regbed, until last year [||]i'.lilll' Foss prut hefore me the same ]_1:|'|,-||].;-':|1:| A5 '|||::|:|_-i_{ ol
essentinl importanee for the infiliration of mosguitoes into cleared arens, and asked
me if 1 eould not provide the stavistical solution of it. He considered that we
might treat & district os u-|l]lr-|xilllll1-=ﬂ_'|' “equi-swampous,” and thus my conditions
(i), (i) above could be applied to obtain wt any vate a first approximation fo
the :-'sl,l'hltiu'.-’.'l.

Btarting on the problem again I obtained the solution for the distribution after
two flights, an integral expressing the distribution after three flights, which 1
carelessly failed to see could be at onece reduced to an elliptic integral, and the
peneral functional relation between the distobution after sucoessive flights. At this
point I failed to make further progrees, and under the heading of “The Problem
of the Random Walk * asked for the aid of fellow-mathematicians in Neture®. The
reply to my appeal was threefold. Mr Geoffiey T. Bennett sent me in terms of
elliptic integrals the solution for three flights. Lord BRayleigh drew my attention
to the fact that the “problem of the rndom walk" where the number of fAights
i very great becomea identical with a problem in the combination of sound =|.l:|;p]i
tndes in the ease of notes of the same period, which e has dealt with in sever]
paperat.  Lastly Professor J. C. Klayver presented a paper to the ]lu}'ul :‘Lmr|l.:mj-.

+ July 2Tih, 1904
+ Phil, Bag., Augusd, 1880, p. 75 ; February, 1888, p. DiG.
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CTRW as archetype

Histogram of jump sizes
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X,y components

2D CTRW

Spatial pattern

Time series 3000

3000

2500 JJ“"MM 2500

Mo

2000
»ﬂ W
1500

=

=3
=

2000

i L
NA‘ 1500
A O
1000 L e g >
NN m 1000
. . ! o
oBh u K 'MM A 4W 500
W (i
A —
-500 " S— 0
-1000 '
0 1 2 3 4 5 6 7 8 9 10 -500
Time -1000 -500 0 500 1000 1500

x 10°



X,y components
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CTRW = renewal reward process

. Sb
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|—""? Here jumps at {J}
W,

become
rewards {W} and
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waiting times
become holding
times {S}

Much scope for interplay of maths and physics



Compound Brownian ?

 As measurement techniques in experimental biology advanced,
was found that ordinary Brownian motion too simple to generally
represent foraging paths.

e Variations on simple random walk paradigm, notably composite
correlated random walks and complex intermittent search
strategies combining scanning and relocation modes developed and
applied to explain biological movement data with much success [e.g
Benhamou, 2014; Benichou et al, 2011; Campos et al, 2014].

* All generate “normal diffusion” in long time limit, mean squared
displacement of ensemble of foragers grows linearly in time.
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Persistent walk

Intermittent walk



BEYOND BROWNIAN MOTION



Symptoms of complex transport: 1

Possibility of very long jumps
(“flights™) compared to the <jump>



Anomalous diffusion ?

However, at least one observed feature of animal foraging (&
human movement) motivates something other than
Brownian, or even compound Brownian, picture.

Many individuals across a broad range of species observed to
make small local random movements interspersed with rare
long-distance jumps. Particularly true of affluent modern
humans ...

In consequence Brownian theoretical framework for diffusion
in both biology and the physical sciences has been challenged
over the past three decades by a new emerging synthesis.

This is drawn both from data and from the theory of those
stochastic processes which generate non-Brownian
“anomalous” diffusion, where the mean squared
displacement grows nonlinearly in the long time limit.




ME=EED oca<2

Brownian motion

paradigm for random
walks was closely linked
to central limit theorem
(CLT), but known for
much of the last century
that relaxing just one of
assumptions-finite
variance-gives a new
class of random walk.

This class obeys extended
central limit theorem-has
a very different
probability distribution
for the size of a step-
asymptotic power law
tail.



Levy flights

* The resulting stochastic movement model is
called a Lévy flight. Intriguingly, like the
biological observations, a “Lévy flyer” has
apparent clusters linked by long jumps.
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Symptoms of complex transport: 2

... longer waiting times
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24 August 20110 Last updated at 0047 a =S

China traffic jam stretches 'nine days,
100km’

A massive traffic jJam in China has slowed
vehicles to a crawl for nine days near
Beijing. local media say.

Wehicles, mostly larries bound for Beijing, are in
a gqueue for about 100km (62 miles) because of
hieawy traffic, road works and breakdomwns.

The drivers hawve complained that locals were
over-charging thern for food and drink while
they were stuck,

The drivers say locals are over-charging them for
food and drink

The situation has now "hasically returned to
normal," state television said on Mondsy,

There has been a boom in road building in China in recent years but
vehicle use has soared at the same time.

The stalled traffic stretched between Jining in Inner Mongolia and Huai'an
in Hebei province, narth-west of Beijing, said the Global Times.
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Fractional Time Process

»  Another type of

1 foscossscss c . anomalous
RN | diffusion-what
o1 | | you get if you
- keep Markovian
' structure and
0.01 | B=09 EN : : -
Eﬁ(-tﬁ), stochastic  © e : actorising
Eu(-t"), analytical H K
B oot probability byt.
0.001 ¢ b t allow long tails in
waiting time
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Example here is Mittag-Leffler, has advantage that one limit is exponential



X,y components
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X,y components

Can Combine LF & FTP

time series
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Called “Fully Fractional CTRW”
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Dollar bills [Brockmann, 2006]

Population: C,
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See also Bartumeus, Giuggioli et al’s work on Shearwaters, 2010



Can Combine LF & FTP

From supp. Info. of [Brockmann et al, 2006] comes very useful schematic-

NB they defined (a,B) opposite way to Fulger and others.

ordinary diffusion

= markowvian

# spatial moments exist

= temporal moments exist

= continuous sample paths
= diffusive

Hit)~th?

Actually not fBm,
but rather in fact the
— fractional time

' Dprocess (FTP).

~

fractional brownian motion

« spatial moments exist
* ontinuous sample paths

* divergent temperal moments Don,t believe

« subdiffusive

X(t)~t2 everything you
read in Nature ;-)

o, =0 spatial exponent B B=2

08/09/2015



Another way: couple space to time

Gives a finite velocity by introducing a jump duration T & coupling
the jJump size to it — idea known as Léevy walk
[Shlesinger & Klafter, PRL (1985)].

Lévy walk p(5,7) =Y (| 5)A(S)
=0(&|-7)4(S)

Uncoupled CTRW o(&,7)=A(Ew (1)

In above 1" means flight duration in Levy walk, and
T waiting time in CTRW.




Viswanathan et al
1996 [V9I6]
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FIG. 1 The longest of the 19 time series, with a length of 416 h. Each point FIG. 2 a, Distribution ijng the number n. of intervals in the entire data set
in the time series gives the number of 15-s intervals in each hour for which . . . - : L n .
the animal was wet for 9s or more. with flight-time intervals f,. We used bin widths of 2" h for the bin k, and used

the geometric midpoints of the bins to plot the results. The Léwy-walk model
of foraging fits the data quite well, as can be seen by the agreement of the
data with the straight line of slope —Z2. b, Double log plot of the r.m.s.

“In the days of sail the bird often
accompanied ships for days, not merely
following it, but wheeling in wide circles
around it without ever being observed to
land on the water.” - Wikipedia
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Dry for full hour

Time series data Is number of consecutive hours that
bird is not wet.



Levy Environmental Hypothesis |
V96

Having established the existence of scale invariance, we now
turn to the question of its origin. Although scale invariance is
widely observed in biology>'™"®, the basis for such scale-invariant
behaviour has remained elusive. Scale invariance in complex
systems could be caused by nonlinear dynamics, as it is well
known that nonlinear dynamics can give rise to intermittency,
chaos and scale invariance'’. However, it has been speculated that
scale invariance may confer biological advantages related to
adaptability of response; for example, loss of scale invariance
or heartbeat intervals corresponds to a diseased state™'~. Scale
invariance in foraging patterns may reflect the exploitation of
highly complex environments which might themselves have fractal
properties.




Levy Environmental Hypothesis Il
V96

a b e temporal behaviour to a possible spatial scale-invariance property
R} _/ in the underlying ecosystem™. It is known that the points visited by
‘|’ a Lévy flight form a fractal with dimension D = u — 1 (refs 2, 23).

| {—&% Figure 4 illustrates typical flight patterns constructed from the

N 4/ I data and from the model, assuming that the distance travelled is
¥/ Sl proportional to the time spent dry, and that the flight directions

7/ f/% \ change randomly after spending time in water. Although the latter

\ Y both the model and for the real data. The landing points of the
irds have spatially scale-invariant properties, which may indicate
hat the distribution of food on the ocean surface is also scale
nvariant®. If this is so, then there would be voids on all length
ales where there is little or no food, and birds that fail to produce
scale-invariant distribution of flight-time intervals would face a
eater difficulty finding food, and hence surviving. It is also not
nconceivable that the power-law distribution of flight intervals
ay be related to the lifetime distribution of the thermals used by

FIG. 4 a, Possible flight path of a bird constructed from the longest time
series, as described in the text. The time resolution of the data prevents us
from considering changes in flight directions which occur more frequently
than once per hour. b, Passible flight path given by the Lévy-walk model
discussed in the text. Both flight paths have scale-invariant ‘fractal’
properties which may indicate that the distribution of food on the ocean
surface is spatially scale invariant.



Lévy Foraging Hypothesis |

Schlesinger & Klafter ended their comparison of Lévy
walks & Lévy flights in a landmark 1985 NATO ASI
volume with this comment: “ It has been suggested
[B. Ninham, priv. comm.] that certain animals such as
ants perform Levy walks when searching for food in a
new area. The above analysis may imply that starving
Levy walk ants possess a slight evolutionary
advantage over ants performing other walks, such as
even the [self avoiding walk]. Flying ants can be
considered by the reader.” —in “On Growth & Form?”,
Stanley & Ostrowsky (eds. ) Editions Nijhoff,
1986.



Lévy Foraging Hypothesis |

Schlesinger & Klafter ended their comparison of Lévy
walks & Levy flightsin a Iandmark 1985 NATO ASI
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Lévy Foraging Hypothesis Il

An additional potential advantage of Levy flights, suggested
first for insects (M. F. Shlesinger, personal communication),
relates to foragers that operate in swarms or flocks. After ¢
steps, a single brownian walker in two dimensions visits #/Inf new
sites, whereas a single Lévy walker visits 7 new sites®. This is not a
large difference: Lévy flights are not much better than brownian
motion in terms of reaching new sites. But for a ‘swarm’ comprised
of N walkers, there is a large difference between the brownian
walk and the Lévy flight: after ¢ steps, a brownian swarm of N
walkers visits only fIn(N/In¢) distinct sites until an astronomically
large crossover time f, ~ €" is reached®, whereas the swarm of
Lévy walkers visits Nt sites. Thus the Lévy flight pattern allows the
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We address the general question of what is the best statistical
strategy to adapt in order to search efficiently for randomly
located objects (“target sites’). It is often assumed in foraging
theory that the flight lengths of a forager have a characteristic
scale: from this assumption gaussian, Rayleigh and other classical
distributions with well-defined variances have arisen. However,
such theorics cannot cxplain  the long-tailed power-law
distributions" of flight lengths or flight times"* that are observed
experimentally. Here we study how the scarch efficiency depends
on the probability distribution of flight lengths taken by a forager
that can detect target sites only in its limited vicinity. We show
that, when the target sites are sparse and can be visited any
number of times, an inverse square power-law distribution of
flight lengths, corresponding to Levy flight motion, is an optimal
strategy. We test the theory by analysing experimental foraging
data on selected insect, mammal and bird species, and find that
they are consistent with the predicted inverse square power-law
distributions.
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Edwards, Philips, Watkins et al, 2007

* Time series including take off and landing
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Edwards et al, op cit.
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Short-tailed, unlike a Lévy walk ...but like the “ studies
[which] found [birds spent]... as long as 18 hours a
day in flight”: Poncet, Nat. Geographic, March 1989.




Re-examination of LW/LFH ...

* Travis, 2007; Buchanan, 2008; Barabasi,
2010;Viswanathan et al 2012. ...

NEWSFOCUS

Animal behaviour is an endless challenge to mathematical modellers. In the first of
two features, Mark Buchanan looks at how a mathematical principle from physics

ECOLOGY

might be able to explain patterns of movement. In the second, Arran Frood asks what

D 0 Wa n d e ri n g A I b atr oss es current models can teach us about ecological networks half a billion years old.
Care About Math? THE MATHEMATICAL MIRROR

TO ANIMAL NATURE

Repudiating a decade-old study of sea birds, a new report questions a popular model
of how animals—as well as fishing boats and people—search for food



... only increased activity in the field

4.0_
Two particular legacies of time:
30_ [] - - -
Renewed attention to statistical
'%20 i Inference and other issues around
9 N measurement
b | Consideration of a wider range
of models and paradigms
oL 0o dhfHlf |
1,980 1,990 2,000 2,010 2,020
YEAR

Figure 1: Numbers of published articles per year (through 2012) that consider Lévy walks

and movements by organisms Py k e , 2 O 14



Gedanken experiment

How would cleverest random
walker play battleships

How does even young child play
battleships ?




MY INTERESTS



Models for “1/f”

. MULTIFRACTALS ; ¢

9% 1/f NOISE _.

L

sl "

My models of both telephone errors and Nile floods involved spectra
of the form f ", Despite this common property, those processes were of

totally different character. That is, a common spectrum did not imply any
deeper commonality.



Choices for time dependence

e CTRW is Markovian in structure- “memory” is
modelled by using heavy tailed times between
jumps. [Mandelbrot, 65-67] knew that FTP-
ike process was non-ergodic because its
oeriodogram grows with observation time !

e Alternative is an ergodic, non-Markovian
process where memory is embodied in the
kernel [Mandelbrot and co-authors, 65-68]



IEEE TRANBACTIONS ON INFORMATION THEORY, VOL. IT-13, No, 2, APrIL 1967 - 280

Some Noises with 1[f Spectrum, a Bridge Between
Direct Current and White Noise

BENOIT MANDELBROT, SsENIOR MEMBER, IEEE
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“What you see is what you wait for”

* Abrupt state changes
« Fat distributions of switching times: “Levy” (E[t*2] = «) case.

Fig. 3. This is a rvepresentation of the positive portions of Paul

Lévy’s symmetric stable distributions, with 1 < ¢ < 2. Abscissa:
log w: ordinate: log Pril7 >u). The limit cases § = Land ¢ = 1 are

the classical laws of Gauss and of C'Luclw Note that, if « is large
annieh. nne has Pei Tl a0 ~ fwlua



The conditional spectrum:

[OLOWS, A WAUSSIATULY 18 & very SUDTIE OTON (dee 'LNapter N4), b) In an
environment that is not exactly Gaussian, a numerical spectrum found by
experimentalists to be proportional to 1/f" need ot be an estimate of an
underlyng Wiener-Khinchin spectrum. It may well be a more generally
valid expression that is described in M1967b{N10} and called conditional
spectrum, - In addition to f, a conditins! spectral density S(f) depends on a
conditioning length T and takes the form TG(Tf), where 0< G(0) < %, but

Gl ~ " for oo

Mandelbrot 1967 reviewed in N2, Selecta, 1999



The conditional spectrum:

WHOWS,  A) lodUssidility Is 4 VETY subtie Nonon toee Lhapter INd). b 1 all
environment that is not exactly Gaussian, a numerical spectrum tound by

experimentalists to be proportional to 1/f” reed nof be an estimate of an
 “Numerical ... 1/f ... spectrum ... need not ... estimate ...
Wiener-Khinchine spectrum”. Instead “depends on &
conditioning length T". Unlike stationary LRD model, J

spustnavlaibdditen arietaainditions] spectral density S(f) depends on a
conditioning length T and takes the form TG(Tf), where 0< G(0) < %, but
G~ * for f=om,

Mandelbrot 1967 reviewed in N2, Selecta, 1999



SIAM REviEw
Vol, 10, No. 4, October 1968 I I l

FRACTIONAL BROWNIAN MOTIONS, FRACTIONAL
NOISES AND APPLICATIONS*

BENOIT B. MANDELBROTYt anp JOHN W. VAN NESS{

The basic feature of fBm’s is that the “span of interdependence” between
their increments can be said to be infinite. By way of contrast, the study of

fBm: X,, (0~ [ [t-9))""=(-9)}" ' |dL, (5)

/7

Infinite range

Gaussian
memory kernel



What does fBm mean ?

[...], iIf infinite dependence is necessary it does not mean
that IBM's details of ten years ago influence IBM today,
because there's no mechanism within IBM for this
dependence. However, IBM is not alone. The River Nile is
[not] alone. They're just one-dimensional corners of
Immensely big systems. The behaviour of IBM stock ten
years ago does not influence its stock today through IBM, but
IBM the enormous corporation has changed the environment
very strongly. The way Its price varied, went up or went up
and fluctuated, had discontinuities, had effects upon all kinds
of other quantities, and they in turn affect us. —

Mandelbrot, interviewed in 1998 by B. Sapoval for Web of
Stories



What does fBm mean ?

[...], iIf infinite dependence is necessary it does not mean
that IBM's details of ten years ago influence IBM today,
because there's no mechanism within IBM for this
dependence. However, IBM is not alone. The River Nile is
[not] alone. They're just one-dimensional corners of

Resolution of apparent paradox is that world as a whole is
Markovian, the memory is a consequence of looking ata It

piece of it. Generalises the Mori-Zwanzig idea. L
very strongly. The way Its price varied, went up or went up

and fluctuated, had discontinuities, had effects upon all kinds
of other quantities, and they in turn affect us. —

Mandelbrot, interviewed in 1998 by B. Sapoval for Web of
Stories



Conclusions

 Random walks and biology co-evolved from
earliest days

e Still a productive dialogue to which ASG will
contribute

* Also links to deep and current issues in
fundamental statistical mechanics such as

weak ergodicity breaking
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range in time series:
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e Observation of a
singularity at zero in
Fourier spectra: “1/f”



Theme

Will today distinguish three
things often taken as same

* Observed growth of range

(SILRD in time series: “Hurst
effect”

1/f * Observation of a singularity

Hurst at zero in Fourier spectra:
111 f”

effect /

The long range dependence
seen in stationary 1/f case:
(S)LRD.

* Using 1/f as a diagnostic of
LRD assumes stationarity




Fact: Anomalous growth of range

Hurst -
21 Nalural phenomena ‘ Toa 129%
Effect oAy i P

Mean valve of K 0-73 © 0r 7

Fach point is fhe resull of 1000 culs.
0 Small figures denole [he experiments.

03 1 LogN 2 3

36

“l heard about the ... Nile ... in '64, ... the variance doesn't draw

time span as you take bigger and bigger integration intervals;
It goes like time to a certain power different from one. ... Hurst ..

was aetting results that were incomprehensible”. — Mandelbrot.



Formula: Long Range Dependence

(S)LRD

Hurst
Effect

Mandelbrot, van Ness, and
Wallis, 1965-69

First [history in Graves et al,
arXiv, 2014a] demonstration
that Hurst effect could be
explained by stationary long
range dependent process

Model, fractional Gaussian
noise [see also Kolmogorov’s
“Wiener Spiral”], had singular
spectral density at lowest
frequencies.

S'(f)~f*



The 1/f “paradox”

If spectral density S'(f)~ f~/
theni) itissingularasf —0

and 11) If we define an autocorrelation
function via p(7) =< x(t)x(t+7) >

and use Wiener-Khinchine theorem to
get p from Fourier transform of S'(f)

then p falls off as power law, and its

summed lags "blow up" ZT p(r) >
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Fractional motions and noises

fBm: X,, (0~ [ [t-9))""=(-9)} ' |dL, (5)

Build a nonstationary, self
similar walk ... (used wfbm in

Matlab) Fractional Brownian motion, H=0.7
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1/f without (S)LRD

S/

(S)LRD

1/f

Hurst
effect

Before (S)LRD models,
Mandelbrot [1963-67]
had proposed other 1/f
models which were not
stationary LRD in same
sense as fGn.

Solved 1/f paradox by a
different route. Still
little known in the
geosciences [but see
Klemes, WRR, 1974].



“Nothing can be more fatal to
progress than a too confident
reliance on mathematical symbols;
for the student is only too apt to ...
consider the formula and not the
fact as the physical reality”.
Thomson (Kelvin) & Tait, 1890
edition.

“Like the ear, the eye is very
sensitive to features that the
spectrum does not reflect. Seen
side by side, different 1/f noises,
Gaussian [i.e. fGn], dustborne [i.e.
fractional renewal] and multifractal,

obviously differ from one another’™
Mandelbrot, Selecta N, 1999.



Open (L) v closed (R)Brownian
walks

1.5

0.5

-0.5°
-2.5




Randon-Furling et al, 2009
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FIG. 4 (color online). Setting 7" = 1, the analytical results for
average perimeter «y [Eq. (7)] and area 8y [Eq. (9)] of N open
(Op.) Brownian paths, and similarly the average perimeter a y(c)
[Eq. (10)] and area Sn(c) [Eq. (11)] of N closed (Cl.) Brownian
paths, plotted against N. The symbols denote results from
numerical simulations (up to N = 4).



Open (L) v closed (R) Levy flights
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Bover et al (2008)

* Boyer et al, arXiv, 2008 pointed out that jump
sizes of foraging model in Viswanathan et al,
1999 not same as those of simple Levy walk
used in Viswanathan et al, 1996. Worked out
distribution explicitly:

=]

Px)=Pyx)e™ +1t 'e™ j(!ﬁPO (u) (1)

with Py(x) = Cx ™ (u >1) being the choice distribution, and C a normalization constant.
The first term in (1) is the probability of making a trip of duration x and not finding
anything, the second the probability of finding a target after a time x (implying that the
chosen time u is >x). P takes two limiting forms: (i) P(x)= Cx ™ if x « t(u-1), a wide

1-

interval only if resources are scarce; (i) P(x) ~x R Po(x) if x » t( -1).



