Diffusion with stochastic resetting

Shamik Gupta MPIPKS, Dresden

Collaborators:

• Satya N. Majumdar and Grégory Schehr (LPTMS Orsay, France)

References:

- M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601 (2011); J. Phys. A 44, 435001 (2011)
- SG, S. N. Majumdar, and G. Schehr, Phys. Rev. Lett. 112, 220601 (2014)

• In a small time Δt , $x(t + \Delta t) = x_0$ with probability $r\Delta t$ (Resetting) = Diffusion with probability $1 - r\Delta t$

- What is the probability to be at x at time t?
- What is the average time to detect the target ??

r = 0: Only Diffusion:

```
NO STATIONARY STATE,
Particle anywhere at long times
```


 $r \neq 0$: Diffusion+resetting:

STATIONARY STATE, Particle cannot go very far even at long times $p_{\text{stat}}(x) \sim \exp(-|x|\sqrt{r/D})$

 $P(x,t) = \int_0^t d\tau \ (r \exp(-r\tau)) \ G(x,\tau) + r \exp(-rt)G(x,t),$ $G(x,t): \text{ Free diffusion propagator} = \frac{1}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$ $t \to \infty \Rightarrow \sum_{p_{\text{stat}}(x) \sim \exp(-|x|\sqrt{r/D})}^{\frac{1}{2}} \exp\left(-\frac{x^2}{4Dt}\right)$

0.2

How does resetting affect the search time?

Average search time

Average search time

Sea of N independent searchers initially distributed with uniform density ρ .

Target survival probability P_s(t) = ∏_i Q(x_i, t) Q(x_i, t) : Probability that the *i*-th searcher starting at x_i does not reach the target up to time t

Sea of N independent searchers initially distributed with uniform density ρ .

- Target survival probability P_s(t) = ∏_i Q(x_i, t) Q(x_i, t) : Probability that the *i*-th searcher starting at x_i does not reach the target up to time t
- ② Average over initial conditions: x_i 's drawn independently and uniformly in $[-L/2, L/2] \rightarrow \langle P_s(t) \rangle = \langle \prod_i Q(x_i, t) \rangle$

Sea of N independent searchers initially distributed with uniform density ρ .

- Target survival probability P_s(t) = ∏_i Q(x_i, t) Q(x_i, t) : Probability that the *i*-th searcher starting at x_i does not reach the target up to time t
- ② Average over initial conditions: x_i 's drawn independently and uniformly in $[-L/2, L/2] \rightarrow \langle P_s(t) \rangle = \langle \prod_i Q(x_i, t) \rangle$
- **3** Finally let $N \to \infty$, $L \to \infty$, keeping density $\rho = N/L$ fixed and finite

• Average
$$\langle P_{s}(t) \rangle = \langle \prod_{i} Q(x_{i}, t) \rangle = \prod_{i=1}^{N} (1 - \langle (1 - Q(x_{i}, t)) \rangle)$$

$$= \left[1 - \frac{1}{L} \int_{-L/2}^{L/2} dx \left(1 - Q(x, t) \right) \right]^{N}$$
$$\rightarrow \boxed{\exp\left[-2\rho \int_{0}^{\infty} dx \left(1 - Q(x, t) \right) \right]}$$

• Average
$$\langle P_{s}(t) \rangle = \langle \prod_{i} Q(x_{i}, t) \rangle = \prod_{i=1}^{N} (1 - \langle (1 - Q(x_{i}, t)) \rangle)$$

$$= \left[1 - \frac{1}{L} \int_{-L/2}^{L/2} dx \left(1 - Q(x, t) \right) \right]^{N}$$

$$\rightarrow \left[\exp \left[-2\rho \int_{0}^{\infty} dx \left(1 - Q(x, t) \right) \right] \right]$$
• Typical $P_{s}^{\text{typ}}(t) = \exp \left[\langle \log \prod_{i=1}^{N} Q(x_{i}, t) \rangle \right]$

$$\rightarrow \left[\exp \left(2\rho \int_{0}^{\infty} dx \log Q(x, t) \right) \right]$$

• Average
$$\langle P_{s}(t) \rangle = \langle \prod_{i} Q(x_{i}, t) \rangle = \prod_{i=1}^{N} (1 - \langle (1 - Q(x_{i}, t) \rangle))$$

$$= \left[1 - \frac{1}{L} \int_{-L/2}^{L/2} dx \left(1 - Q(x, t) \right) \right]^{N}$$

$$\rightarrow \left[\exp \left[-2\rho \int_{0}^{\infty} dx \left(1 - Q(x, t) \right) \right] \right]$$
• Typical $P_{s}^{\text{typ}}(t) = \exp \left[\langle \log \prod_{i=1}^{N} Q(x_{i}, t) \rangle \right]$

$$\rightarrow \left[\exp \left(2\rho \int_{0}^{\infty} dx \log Q(x, t) \right) \right]$$

• Diffusive searchers:

$$\rightarrow \langle P_s(t) \rangle = \exp(-4\rho\sqrt{Dt/\pi})$$

$$\rightarrow P_s^{\text{typ}}(t) = \exp(-4\rho b\sqrt{Dt}); \quad b = 1.03442...$$

STRETCHED EXPONENTIAL DECAY !

• Average
$$\langle P_{s}(t) \rangle = \langle \prod_{i} Q(x_{i}, t) \rangle = \prod_{i=1}^{N} (1 - \langle (1 - Q(x_{i}, t)) \rangle)$$

$$= \left[1 - \frac{1}{L} \int_{-L/2}^{L/2} dx \left(1 - Q(x, t) \right) \right]^{N}$$

$$\rightarrow \left[\exp \left[- 2\rho \int_{0}^{\infty} dx \left(1 - Q(x, t) \right) \right] \right]$$
• Typical $P_{s}^{\text{typ}}(t) = \exp \left[\langle \log \prod_{i=1}^{N} Q(x_{i}, t) \rangle \right]$

$$\rightarrow \left[\exp \left(2\rho \int_{0}^{\infty} dx \log Q(x, t) \right) \right]$$

• Diffusive + resetting searchers:

$$\begin{array}{l} \rightarrow \langle \mathcal{P}_{s}(t) \rangle \sim t^{-2\rho\sqrt{D/r}} \text{ for large } t \\ \rightarrow \mathcal{P}_{s}^{\mathrm{typ}}(t) \sim \exp\left(-8(1-\log 2)\sqrt{Dr}\rho t\right) \text{ for large } t \\ \qquad \qquad \mathcal{P}_{s}^{\mathrm{typ}}(t) \ll \langle \mathcal{P}_{s}(t) \rangle \\ \text{Typically the target has been reached,} \\ \text{ On the average, still not reached!} \end{array}$$

• Resetting to flat confg. at a fixed rate r

• Resetting to flat confg. at a fixed rate r

t

• Fluctuations $h(x, t) \equiv H(x, t) - \langle H(x, t) \rangle$

• Stationary state:

• Stationary state:

• Universal scaling form: $P_{\rm r}(h) \sim r^{\beta} G(hr^{\beta}), \ G(x) = \int_{0}^{\infty} \frac{dy}{y^{\beta}} e^{-y} g\left(\frac{x}{y^{\beta}}\right).$

Stationary state:

- Universal scaling form: $P_{\rm r}(h) \sim r^{\beta} G(hr^{\beta}), \ G(x) = \int_0^{\infty} \frac{dy}{y^{\beta}} e^{-y} g\left(\frac{x}{y^{\beta}}\right).$
- Highly non-Gaussian !!

• Stochastic resetting

 \rightarrow NOVEL NONEQUILIBRIUM STATIONARY STATE

- Stochastic resetting
 → NOVEL NONEQUILIBRIUM STATIONARY STATE
- Searching a stationary target with stochastic resetting \rightarrow OPTIMAL RESETTING RATE giving MINIMUM SEARCH TIME, RESETTING \Rightarrow EFFICIENT SEARCHING

- Stochastic resetting
 → NOVEL NONEQUILIBRIUM STATIONARY STATE
- Searching a stationary target with stochastic resetting
 → OPTIMAL RESETTING RATE giving MINIMUM SEARCH TIME,
 RESETTING ⇒ EFFICIENT SEARCHING
- Multiple searchers: Target survival probability $P_s^{\text{typ}}(t) \ll \langle P_s(t) \rangle$ TYPICAL NOT THE AVERAGE, Importance of rare trajectories

- Stochastic resetting \rightarrow NOVEL NONEQUILIBRIUM STATIONARY STATE
- Searching a stationary target with stochastic resetting
 → OPTIMAL RESETTING RATE giving MINIMUM SEARCH TIME,
 RESETTING ⇒ EFFICIENT SEARCHING
- Multiple searchers: Target survival probability $P_s^{\text{typ}}(t) \ll \langle P_s(t) \rangle$ TYPICAL NOT THE AVERAGE, Importance of rare trajectories
- More general search strategies: Space-dependent resetting rate, Resetting of searcher distribution,